Articles | Volume 16, issue 8
https://doi.org/10.5194/bg-16-1641-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-1641-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the soil N2O emission intensity of croplands in northwest Europe
School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, UK
Mathew Williams
School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, UK
Robert M. Rees
Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
Cairistiona F. E. Topp
Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
Related authors
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
EGUsphere, https://doi.org/10.5194/egusphere-2023-19, https://doi.org/10.5194/egusphere-2023-19, 2023
Short summary
Short summary
Tropical forests like Amazon are historically an important carbon sink, helping to mitigate global climate change. Using an atmospheric model and regional and global atmospheric CO2 observations, we quantified Amazonian carbon emissions between 2010 and 2018. We estimated that Amazon acted as a small carbon source to the atmosphere, mostly due to fire emissions. However, the forest uptake compensated 50 % of these fire emissions. We do not find an increasing time trend of carbon emissions.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-160, https://doi.org/10.5194/bg-2022-160, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Model-Data Fusion (MDF) allows us to combine ecosystem models with earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to ensure ecological fidelity of the calibrated models.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Thomas Luke Smallman and Mathew Williams
Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, https://doi.org/10.5194/gmd-12-2227-2019, 2019
Short summary
Short summary
Photosynthesis and evapotranspiration are processes with global significance for climate, carbon and water cycling. Process-orientated simulation of these processes and their interactions have till now come at high computational cost. Here we present a new coupled model of intermediate complexity operating at orders of magnitude greater speed. Independent evaluation at FLUXNET sites for a single, global parameterization shows good agreement, with a typical R2 value of ~ 0.60.
Efrén López-Blanco, Jean-François Exbrayat, Magnus Lund, Torben R. Christensen, Mikkel P. Tamstorf, Darren Slevin, Gustaf Hugelius, Anthony A. Bloom, and Mathew Williams
Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, https://doi.org/10.5194/esd-10-233-2019, 2019
Short summary
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
Anne Sofie Lansø, Thomas Luke Smallman, Jesper Heile Christensen, Mathew Williams, Kim Pilegaard, Lise-Lotte Sørensen, and Camilla Geels
Biogeosciences, 16, 1505–1524, https://doi.org/10.5194/bg-16-1505-2019, https://doi.org/10.5194/bg-16-1505-2019, 2019
Short summary
Short summary
Although coastal regions only amount to 7 % of the global oceans, their contribution to the global oceanic surface exchange of CO2 is much greater. In this study, we gain detailed insight into how these coastal marine fluxes compare to CO2 exchange from coastal land regions. Annually, the coastal marine exchanges are smaller than the total uptake of CO2 from the land surfaces within the study area but comparable in size to terrestrial fluxes from individual land cover classes of the region.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Fortune Faith Gomo, Christopher Macleod, John Rowan, Jagadeesh Yeluripati, and Kairsty Topp
Proc. IAHS, 376, 15–23, https://doi.org/10.5194/piahs-376-15-2018, https://doi.org/10.5194/piahs-376-15-2018, 2018
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Efrén López-Blanco, Magnus Lund, Mathew Williams, Mikkel P. Tamstorf, Andreas Westergaard-Nielsen, Jean-François Exbrayat, Birger U. Hansen, and Torben R. Christensen
Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, https://doi.org/10.5194/bg-14-4467-2017, 2017
Short summary
Short summary
An improvement in our process-based understanding of CO2 exchanges in the Arctic and their climate sensitivity is critical. With continued warming temperatures and longer growing seasons, tundra systems will likely increase rates of C cycling, although shifts in sink strength could take place, challenging the forecast of upcoming C states. In this context, we investigated the functional responses of C exchange to environmental characteristics across 8 consecutive years in West Greenland.
Darren Slevin, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams
Geosci. Model Dev., 10, 2651–2670, https://doi.org/10.5194/gmd-10-2651-2017, https://doi.org/10.5194/gmd-10-2651-2017, 2017
Stephanie K. Jones, Carole Helfter, Margaret Anderson, Mhairi Coyle, Claire Campbell, Daniela Famulari, Chiara Di Marco, Netty van Dijk, Y. Sim Tang, Cairistiona F. E. Topp, Ralf Kiese, Reimo Kindler, Jan Siemens, Marion Schrumpf, Klaus Kaiser, Eiko Nemitz, Peter E. Levy, Robert M. Rees, Mark A. Sutton, and Ute M. Skiba
Biogeosciences, 14, 2069–2088, https://doi.org/10.5194/bg-14-2069-2017, https://doi.org/10.5194/bg-14-2069-2017, 2017
Short summary
Short summary
We assessed the nitrogen (N), carbon (C) and greenhouse gas (GHG) budget from an intensively managed grassland in southern Scotland using flux budget calculations as well as changes in soil N and C pools over time. Estimates from flux budget calculations indicated that N and C were sequestered, whereas soil stock measurements indicated a smaller N storage and a loss of C from the ecosystem. The GHG sink strength of the net CO2 ecosystem exchange was strongly affected by CH4 and N2O emissions.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
L. Rowland, A. Harper, B. O. Christoffersen, D. R. Galbraith, H. M. A. Imbuzeiro, T. L. Powell, C. Doughty, N. M. Levine, Y. Malhi, S. R. Saleska, P. R. Moorcroft, P. Meir, and M. Williams
Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, https://doi.org/10.5194/gmd-8-1097-2015, 2015
Short summary
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
A. A. Bloom and M. Williams
Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, https://doi.org/10.5194/bg-12-1299-2015, 2015
D. Slevin, S. F. B. Tett, and M. Williams
Geosci. Model Dev., 8, 295–316, https://doi.org/10.5194/gmd-8-295-2015, https://doi.org/10.5194/gmd-8-295-2015, 2015
G. B. Bonan, M. Williams, R. A. Fisher, and K. W. Oleson
Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, https://doi.org/10.5194/gmd-7-2193-2014, 2014
R. Q. Thomas and M. Williams
Geosci. Model Dev., 7, 2015–2037, https://doi.org/10.5194/gmd-7-2015-2014, https://doi.org/10.5194/gmd-7-2015-2014, 2014
G. Xenakis and M. Williams
Geosci. Model Dev., 7, 1519–1533, https://doi.org/10.5194/gmd-7-1519-2014, https://doi.org/10.5194/gmd-7-1519-2014, 2014
T. L. Smallman, M. Williams, and J. B. Moncrieff
Biogeosciences, 11, 735–747, https://doi.org/10.5194/bg-11-735-2014, https://doi.org/10.5194/bg-11-735-2014, 2014
Related subject area
Biogeochemistry: Modelling, Terrestrial
Effect of droughts and climate change on future soil weathering rates in Sweden
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Effect of land-use legacy on the future carbon sink for the conterminous US
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Optimizing the Carbonic Anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the simple biosphere model (SiB4)
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Mapping of ESA-CCI land cover data to plant functional types for use in the CLASSIC land model
Key drivers of the annual carbon budget of biocrusts from various climatic zones determined with a mechanistic data-driven model
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Potassium-limitation of forest productivity, part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium-limitation of forest productivity, part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Assessing carbon storage capacity and saturation across six central US grasslands using data-model integration
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences, 20, 1879–1899, https://doi.org/10.5194/bg-20-1879-2023, https://doi.org/10.5194/bg-20-1879-2023, 2023
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health.
In this study, climate change effects on weathering were studied on sites in Sweden using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer and increases with global warming but that weathering during drought summers can become as low as winter weathering.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023, https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land-use legacy in the conterminous US from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and Luke T. Smallman
EGUsphere, https://doi.org/10.5194/egusphere-2022-1265, https://doi.org/10.5194/egusphere-2022-1265, 2022
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
EGUsphere, https://doi.org/10.5194/egusphere-2022-1305, https://doi.org/10.5194/egusphere-2022-1305, 2022
Short summary
Short summary
Carbonyl Sulfide (COS) is a useful constraint on photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a new temperature function for the enzyme carbonic anhydrase (CA) and optimize conductances using observations. CA has an optimum temperature below 40 °C, which can be influenced critically by air temperature changes. It brings tropics a smaller and higher latitudes a larger uptake. This update helps resolve gaps in the COS budget identified in earlier studies.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
EGUsphere, https://doi.org/10.5194/egusphere-2022-923, https://doi.org/10.5194/egusphere-2022-923, 2022
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-179, https://doi.org/10.5194/bg-2022-179, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Our study found while air temperature, ambient CO2 concentration, light intensity, and relative humidity are key drivers for annual carbon (C) balance, their relative impacts vary markedly among climatic zones. Moreover, seasonal acclimation may alter the C balance substantially at humid sites. Our study implies that climate change may have large effects on biocrust C balance at global scale, and suggests covering different seasons when measuring physiological traits to account for acclimation.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
EGUsphere, https://doi.org/10.5194/egusphere-2022-883, https://doi.org/10.5194/egusphere-2022-883, 2022
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain of their functions that allow them to build their trunk using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations we were able to investigate the effect the lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
EGUsphere, https://doi.org/10.5194/egusphere-2022-884, https://doi.org/10.5194/egusphere-2022-884, 2022
Short summary
Short summary
After simulating the effects of low levels of Potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees to acquire carbon is enought to exlplain why they do not produce enough wood when they are in soils with low levels of potassium.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda Smith, and Yiqi Luo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-164, https://doi.org/10.5194/bg-2022-164, 2022
Revised manuscript accepted for BG
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems will store carbon in the future. Here, we employ novel data-model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-65, https://doi.org/10.5194/bg-2022-65, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts for ecosystems. We examine extreme droughts with rising CO2 and temperatures using two dynamic vegetation models, to assess ecological processes to measure, and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explored specific plant responses that reflect knowledge gaps.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Cited articles
Baggs, E. M., Rees, R. M., and Smith, K. A.: Nitrous oxide emission from
soils
after incorporating crop residues, Soil Use Manage., 16, 82–87,
2000. a
Balkovia, J., van der Velde, M., Schmid, E., Skalsky, R., Khabarov, N.,
Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-European crop modelling
with EPIC: Implementation, up-scaling and regional crop yield validation,
Agr. Syst., 120, 61–75, 2013. a
Baobao, P., Shu, K. L., Arvin, M., Yiqi, L., and Deli, C.: Ammonia
volatilization from synthetic fertilizers and its mitigation strategies: A
global synthesis, Agr. Ecosyst. Environ., 232, 283–289,
https://doi.org/10.1016/j.agee.2016.08.019, 2016. a
Batjes, N. H.: Harmonized soil property values for broad-scale modelling
(WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269,
61–68, 2016. a
Bellocchi, G., Rivington, M., Matthews, K., and Acutis, M.: Deliberative
processes for comprehensive evaluation of agroecological models. A review,
Agron. Sustain. Dev., 35, 589–605, 2014. a
Bonsall, C., Macklin, M. G., Anderson, D. E., and Payton, R. W.: Climate
Change and the Adoption of Agriculture in North-West Europe, Eur.
J. Archaeol., 5, 9–23, https://doi.org/10.1177/1465712002005001168, 2002. a
Bouchet, A.-S., Laperche, A., Bissuel-Belaygue, C., Snowdon, R., Nesi, N.,
and
Stahl, A.: Nitrogen use efficiency in rapeseed. A review, Agron.
Sustain. Dev., 36, 1–20, https://doi.org/10.1007/s13593-016-0371-0, 2016. a
Cardenas, L. M., Gooday, R., Brown, L., Scholefield, D., Cuttle, S.,
Gilhespy,
S., Matthews, R., Misselbrook, T., Wang, J., Li, C. L., Hughes, G., and Lord,
E.: Towards an improved inventory of N2O from agriculture: Model evaluation
of N2O emission factors and N fraction leached from different sources in UK
agriculture, Atmos. Environ., 79, 340–348, 2013. a, b, c
Cowan, N. J., Famulari, D., Levy, P. E., Anderson, M., Bell, M. J., Rees,
R. M., Reay, D. S., and Skiba, U. M.: An improved method for measuring soil
N2O fluxes using a quantum cascade laser with a dynamic chamber, Eur.
J. Soil Sci., 65, 643–652, 2014. a
Dechow, R. and Freibauer, A.: Assessment of German nitrous oxide emissions
using empirical modelling approaches, Nutr. Cycl. Agroecosys.,
91, 235–254, https://doi.org/10.1007/s10705-011-9458-9, 2011. a, b, c
DEFRA: Fertiliser Manual RB209, 9th Edn., Stationery Office, Norwich, UK,
2010. a
De Vries, W., Kros, J., Reinds, G. J., and Butterbach-Bahl, K.: Quantifying
impacts of nitrogen use in European agriculture on global warming potential,
Curr. Opin. Env. Sust., 3, 291–302, 2011a. a
De Vries, W., Leip, A., Reinds, G. J., Kros, J., Lesschen, J. P., and
Bouwman, A. F.: Comparison of land nitrogen budgets for European agriculture
by various modeling approaches, Environ. Pollut., 159, 3254–3268,
https://doi.org/10.1016/j.envpol.2011.03.038, 2011b. a
Dobbie, K. E., McTaggart, I. P., and Smith, K. A.: Nitrous oxide emissions
from intensive agricultural systems: Variations between crops and seasons,
key driving variables, and mean emission factors, J. Geophys.
Res.-Atmos., 104, 26891–26899, 1999. a
Edina AgCensus: Grid square agricultural census data for England, Scotland
and Wales, available at: http://agcensus.edina.ac.uk (last access: 1 March 2017), 2016. a
European Commission: European Union: Agri-food database, available at:
http://agridata.ec.europa.eu/extensions/DataPortal/home.html (last access: 1 June 2018),
2018. a
Eurostat: Farm structure statistics, available at:
https://ec.europa.eu/eurostat/web/agriculture/data/database (last
access: 1 October 2018),
2015. a
Fitton, N., Datta, A., Cloy, J. M., Rees, R. M., Topp, C. F. E., Bell, M. J.,
Cardenas, L. M., Williams, J., Smith, K., Thorman, R., Watson, C. J.,
McGeough, K. L., Kuhnert, M., Hastings, A., Anthony, S., Chadwick, D., and
Smith, P.: Modelling spatial and inter-annual variations of nitrous oxide
emissions from UK cropland and grasslands using DailyDayCent, Agr.
Ecosyst. Environ., 250, 1–11, https://doi.org/10.1016/j.agee.2017.08.032,
2017. a, b
Gabrielle, B., Laville, P., Duval, O., Nicoullaud, B., Germon, J. C., and
Henault, C.: Process-based modeling of nitrous oxide emissions from
wheat-cropped soils at the subregional scale, Global Biogeochem. Cy.,
20, GB4018, https://doi.org/10.1029/2006GB002686, 2006. a
Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W.: A chronology
of human understanding of the nitrogen cycle, Philos. T.
R. Soc. B, 368, 20130120, https://doi.org/10.1098/rstb.2013.0120, 2013. a
Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li,
C., Misselbrook, T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P.,
Tilston, E. L., Topp, C. F. E., Vetter, S., and Yeluripati, J. B.: First 20
years of DNDC (DeNitrification DeComposition): Model evolution, Ecol.
Model., 292, 51–62, 2014. a, b
Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R.,
Grote,
R., Breuer, L., and Butterbach-Bahl, K.: LandscapeDNDC: a process model for
simulation of biosphere–atmosphere–hydrosphere
exchange processes at site and regional scale, Landscape Ecol., 28, 615–636, https://doi.org/10.1007/s10980-012-9772-x,
2012. a, b
Hay, R., Russell, G., and Edwards, T. W.: Crop Production in the East of
Scotland, Tech. rep., Scottish Agricultural Science Agency, Edinburgh, UK, 2000. a
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based
on Automated Mapping, PLoS ONE, 9, e105992-17,
https://doi.org/10.1371/journal.pone.0105992, 2014. a
Hinton, N. J., Cloy, J. M., Bell, M. J., Chadwick, D. R., Topp, C. F. E., and
Rees, R. M.: Managing fertiliser nitrogen to reduce nitrous oxide emissions
and emission intensities from a cultivated Cambisol in Scotland, Geoderma Regional, 4, 55–65, 2015. a
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann,
N. I.,
McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore,
A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W.,
Peake, A. S., Poulton, P. L., Hochman, Z., Thorburn, P. J., Gaydon, D. S.,
Dalgliesh, N. P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira,
E., Sharp, J., Cichota, R., Vogeler, I., Li, F. Y., Wang, E., Hammer, G. L.,
Robertson, M. J., Dimes, J. P., Whitbread, A. M., Hunt, J., van Rees, H.,
McClelland, T., Carberry, P. S., Hargreaves, J. N. G., MacLeod, N., McDonald,
C., Harsdorf, J., Wedgwood, S., and Keating, B. A.: Evolution towards a new generation of agricultural systems simulation, Environ. Model. Softw., 62, 327–350, 2014. a
Jeuffroy, M. H., Baranger, E., Carrouée, B., de Chezelles, E., Gosme, M.,
Hénault, C., Schneider, A., and Cellier, P.: Nitrous oxide emissions from
crop rotations including wheat, oilseed rape and dry peas, Biogeosciences,
10, 1787–1797, https://doi.org/10.5194/bg-10-1787-2013, 2013. a
Kaiser, E. A. and Ruser, R.: Nitrous oxide emissions from arable soils in
Germany – An evaluation of six long-term field experiments,
J. Plant Nutr. Soil Sc., 163, 249–259, 2000. a
Klatt, S., Kraus, D., Rahn, K., Werner, C., Kiese, R., Butterbach-Bahl, K.,
and Haas, E.: Parameter-Induced Uncertainty Quantification of Regional
N2O Emissions and NO3 Leaching using the Biogeochemical Model
LandscapeDNDC, in: Synthesis and Modeling of Greenhouse Gas Emissions and
Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and
Adaptation, edited by: Del Grosso, S., Ahuja, L., and Parton, W., Adv. Agric.
Syst. Model. 6. ASA, CSSA, and SSSA, Madison, WI, 149–172,
https://doi.org/10.2134/advagricsystmodel6.2013.0001, 2016. a
Kracher, D.: Modeling Nitrous Oxide Emissionsand Associated C and N Turnover
and Exchange Processes Between Atmosphere and Biosphere for Agricultural
Ecosystems Onsite and Regional Scale, PhD thesis,
Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany, 2010. a
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., and Garnier, J.: 50
year trends in nitrogen use efficiency of world cropping systems: the
relationship between yield and nitrogen input to cropland, Environ.
Res. Lett., 9, 105011, https://doi.org/10.1088/1748-9326/9/10/105011, 2014. a, b
Lesschen, J. P., Velthof, G. L., de Vries, W., and Kros, J.: Differentiation
of nitrous oxide emission factors for agricultural soils, Environ.
Pollut., 159, 3215–3222, https://doi.org/10.1016/j.envpol.2011.04.001, 2011. a
Li, C. L., Frolking, S., and Frolking, T. A.: A model of nitrous oxide
evolution from soil driven by rainfall events: 1. Model structure and
sensitivity, J. Geophys. Res.-Oceans, 97, 9759–9776, 1992. a
Li, X., Yeluripati, J., Jones, E. O., Uchida, Y., and Hatano, R.:
Hierarchical
Bayesian calibration of nitrous oxide (N2O) and nitrogen monoxide (NO) flux
module of an agro-ecosystem model: ECOSSE, Ecol. Model., 316,
14–27, 2015. a
Lilly, A., Ball, B. C., McTaggart, I. P., and Horne, P. L.: Spatial and
temporal scaling of nitrous oxide emissions from the field to the regional
scale in Scotland, Nutr. Cycl. Agroecosys., 66, 241–257, 2003. a
McTaggart, I. P. and Smith, K. A.: The effect of rate, form and timing of
fertilizer N on nitrogen uptake and grain N content in spring malting
barley, J. Agr. Sci., 125, 341–353, https://doi.org/10.1017/S0021859600084847, 1995. a
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008. a
Myrgiotis, V., Rees, R. M., Topp, C. F., and Williams, M.: A systematic
approach to identifying key parameters and processes in agroecosystem
models, Ecol. Model., 368, 344–356,
https://doi.org/10.1016/j.ecolmodel.2017.12.009, 2018a. a, b
Myrgiotis, V., Williams, M., Topp, C. F. E., and Rees, R. M.: Improving
model
prediction of soil N2O emissions through Bayesian calibration, Sci. Total Environ., 624, 1467–1477,
https://doi.org/10.1016/j.scitotenv.2017.12.202, 2018b. a, b, c
Necpálová, M., Anex, R. P., Fienen, M. N., Del Grosso, S. J.,
Castellano, M. J., Sawyer, J. E., Iqbal, J., Pantoja, J. L., and Barker,
D. W.: Understanding the DayCent model: Calibration, sensitivity, and identifiability
through inverse modeling, Environ. Modell.
Softw., 66, 110–130, 2015. a
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvaag, A. O., Seguin, B.,
Peltonen-Sainio, P., Rossi, F., Kozyra, J., and Micale, F.: Impacts and
adaptation of European crop production systems to climate change, Eur.
J. Agron., 34, 96–112, https://doi.org/10.1016/j.eja.2010.11.003, 2011. a
Pan, B., Lam, S. K., Mosier, A., Luo, Y., and Chen, D.: Ammonia
volatilization
from synthetic fertilizers and its mitigation strategies: A global
synthesis, Agr. Ecosyst. Environ., 232, 283–289,
https://doi.org/10.1016/j.agee.2016.08.019, 2016. a
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.:
Climate-smart soils, Nature, 532, 49–57, 2016. a
Pogson, M. and Smith, P.: Effect of spatial data resolution on uncertainty,
Environ. Modell. Softw., 63, 87–96, 2015. a
Potter, P., Ramankutty, N., Bennett, E. M., and Donner, S. D.:
Characterizing
the Spatial Patterns of Global Fertilizer Application and Manure Production,
Earth Interact., 14, 1–22, https://doi.org/10.1175/2009EI288.1, 2010. a
Rathke, G., Behrens, T., and Diepenbrock, W.: Integrated nitrogen management
strategies to improve seed yield, oil content and nitrogen efficiency of
winter oilseed rape (Brassica napus L.): A review, Agr. Ecosyst. Environ., 117, 80–108, 2006. a
Ravishankara, A. R., Haag, D., and Portmann, R. W.: Nitrous Oxide
(N2O): The
Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science,
326, 123–125, 2009. a
Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M.,
Dentener, F., and Crutzen, P. J.: Global agriculture and nitrous oxide
emissions, Nature Climate Change, 2, 410–416, 2012. a
Robinson, E., Blyth, E., Clark, D., Comyn-Platt, E., Finch, J., and Rudd, A.:
Climate hydrology and ecology research support system meteorology dataset
for Great Britain (1961–2015) [CHESS-met] v1.2. NERC Environmental
Information Data Centre, https://doi.org/10.5285/b745e7b1-626c-4ccc-ac27-56582e77b900,
2017. a, b
The Scottish Government: Results From the June 2013 Scottish Agricultural
Census, Edinburgh, UK, 1–49, 2013. a
Scottish Spatial Data Infrastructure: National Soil Inventory of Scotland,
available at:
https://www.spatialdata.gov.scot/geonetwork/srv/eng/catalog.search#/home
(last access: 9 April 2019),
2014. a
Smith, K. A.: Changing views of nitrous oxide emissions from agricultural
soil: key controlling processes and assessment at different spatial scales,
Eur. J. Soil Sci., 68, 137–155, https://doi.org/10.1111/ejss.12409,
2017. a
Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural
fields and
soils under natural vegetation: summarizing available measurement data and
modeling of global annual emissions, Nutr. Cycl. Agroecosys., 74,
207–228, https://doi.org/10.1007/s10705-006-9000-7, 2006. a, b
Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., Snoo, G. R. d.,
and Eden, P.: Ecological impacts of arable intensification in Europe,
J. Environ. Manage., 63, 337–365,
https://doi.org/10.1006/jema.2001.0473, 2001. a
Sylvester-Bradley, R., Thorman, R., Kindred, D. R., Wynn, S. C., Smith,
K. E.,
Rees, R. M., Topp, C. F. E., Pappa, V. A., Mortimer, N. D., Misselbrook,
T. H., Gilhespy, S., Cardenas, L. M., Chauhan, M., Bennet, G., Malkin, S.,
and Munro, D. G.: Minimising nitrous oxide intensities of arable crop
products (MIN-NO), Tech. rep., Kenilworth, UK, 2015. a, b
Toth, G., Montanarella, L., Stolbovoy, V., Mate, F., Bodis, K., Jones, A.,
Panagos, P., and van Liedekerke, M.: Soils of the European Union, Tech. rep.,
Institute for Environment and Sustainability, Luxembourg, 2008. a
Van Meter, K. J., Basu, N. B., Veenstra, J. J., and Burras, C. L.: The
nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic
landscapes, Environ. Res. Lett., 11, 1–12, 2016. a
Wang, G. and Chen, S.: A review on parameterization and uncertainty in
modeling greenhouse gas emissions from soil, Geoderma, 170, 206–216, 2012. a
Short summary
This study focuses on a northwestern European cropland region and shows that the type of crop growing on a soil has notable effects on the emission of nitrous oxide (N2O – a greenhouse gas) from that soil. It was found that N2O emissions from soils under oilseed cultivation are significantly higher than soils under cereal cultivation. This variation is mostly explained by the fact that oilseeds require more nitrogen (fertiliser) than cereals, especially at early crop growth stages.
This study focuses on a northwestern European cropland region and shows that the type of crop...
Altmetrics
Final-revised paper
Preprint