Research article
31 Jan 2019
Research article
| 31 Jan 2019
Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation
Shanying Tong et al.
Related authors
No articles found.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Short summary
Our results show that ocean acidification, warming, increased light exposure and reduced nutrient availability significantly reduce the growth rate but increase particulate organic and inorganic carbon in cells in the coccolithophore Emiliania huxleyi, indicating biogeochemical consequences of future ocean changes on the calcifying microalga. Concurrent changes in nutrient concentrations and pCO2 levels predominantly affected E. huxleyi growth, photosynthetic carbon fixation and calcification.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Xiangqi Yi, Fei-Xue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020, https://doi.org/10.5194/bg-17-1169-2020, 2020
Short summary
Short summary
Combined effects of warming and light intensity were estimated in N2-fixing cyanobacterium Trichodesmium. Its physiological responses to warming were significantly modulated by light, with growth peaking at 27 °C under the light-saturating condition but being non-responsive across the range of 23–31 °C under the light-limiting condition. Light shortage also weakened the acclimation ability of Trichodesmium to warming, making light-limited Trichodesmium more sensitive to acute temperature change.
Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins
Biogeosciences, 16, 4393–4409, https://doi.org/10.5194/bg-16-4393-2019, https://doi.org/10.5194/bg-16-4393-2019, 2019
Short summary
Short summary
In this study, we examine the responses of E. huxleyi to a future warmer and more thermally variable ocean. Elevated temperatures and thermal variation have negative effects on growth rate and physiology that are especially pronounced at high temperatures, but high-frequency thermal variation may reduce the risk of extreme high-temperature events. These findings have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.
Jiekai Xu, John Beardall, and Kunshan Gao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-4, https://doi.org/10.5194/bg-2019-4, 2019
Revised manuscript not accepted
Short summary
Short summary
A lot of papers studying Ocean acidification (OA) have been published while no related reports can be found on the combined effects of OA with decreased salinity on coccolithophores yet.Thus, we investigated the physiological responses of an Emiliania huxleyi strain grown at 2CO2 concentrations and 3 levels of salinity and found cells could tolerate reduced salinity under OA as its increased light capturing capability, which suggests a potential niche extension of coccolithophores in the future.
Sheng-Hui Zhang, Juan Yu, Qiong-Yao Ding, Gui-Peng Yang, Kun-Shan Gao, Hong-Hai Zhang, and Da-Wei Pan
Biogeosciences, 15, 6649–6658, https://doi.org/10.5194/bg-15-6649-2018, https://doi.org/10.5194/bg-15-6649-2018, 2018
Short summary
Short summary
Environmental effects of ocean acidification and trace gases have drawn much attention in recent years and existing studies reveal that the response of communities and trace gases to ocean acidification is still not predictable and requires further study. The present study examined the effect of elevated pCO2 on trace gas production and phytoplankton during an ocean acidification mesocosm experiment.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Xin Lin, Ruiping Huang, Yan Li, Futian Li, Yaping Wu, David A. Hutchins, Minhan Dai, and Kunshan Gao
Biogeosciences, 15, 551–565, https://doi.org/10.5194/bg-15-551-2018, https://doi.org/10.5194/bg-15-551-2018, 2018
Short summary
Short summary
We examine the effects of elevated CO2 on bacterioplankton community during a mesocosm experiment in subtropical, eutrophic coastal waters in southern China. We found that the elevated CO2 hardly altered the network structure of the bacterioplankton taxa present with high abundance but appeared to reassemble the community network of taxa with low abundance. Results suggest that the bacterioplankton community in this subtropical, high-nutrient coastal environment is insensitive to elevated CO2.
Yong Zhang, Feixue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-11, https://doi.org/10.5194/bg-2018-11, 2018
Revised manuscript not accepted
Short summary
Short summary
To investigate responses of the calcifying E. huxleyi to multiple environmental factors, we investigated its growth, POC and PIC quotas and photosynthesis parameter at different levels of CO2, light, dissolved inorganic nitrogen and phosphate concentrations. High CO2 (HC) and low nitrogen (LN) synergistically decreased growth rates, high light compensated for inhibition of low phosphate (LP) on growth rates at LC, but exacerbated inhibition of LP at HC. LN or LP increased PIC quotas and ETRmax.
Zhi Zhu, Pingping Qu, Jasmine Gale, Feixue Fu, and David A. Hutchins
Biogeosciences, 14, 5281–5295, https://doi.org/10.5194/bg-14-5281-2017, https://doi.org/10.5194/bg-14-5281-2017, 2017
Short summary
Short summary
This study focused on the individual and interactive effects of warming and CO2 variations on the diatom Pseudo-nitzschia subcurvata and the prymnesiophyte Phaeocystis antarctica. The results showed that both optimum and maximum growth temperatures of P. subcurvata were significantly higher than those of P. antarctica. CO2 functional response curves at two temperatures showed a significant interactive effect between warming and CO2. This study can help us to predict what will happen in future.
Xiaoni Cai, David A. Hutchins, Feixue Fu, and Kunshan Gao
Biogeosciences, 14, 4455–4466, https://doi.org/10.5194/bg-14-4455-2017, https://doi.org/10.5194/bg-14-4455-2017, 2017
Short summary
Short summary
Trichodesmium is significant marine N2 fixer. We conducted short- and long-term UV exposure experiment to investigate how UV affects this organism. Our results showed N2 fixation and carbon fixation rates were significantly reduced under UV radiation. As a defense strategy, Trichodesmium is able to synthesize UV-absorbing compounds to protect from UV damage. Our results suggest that shipboard experiments in UV-opaque containers may have substantially overestimated in situ N2 fixation rate.
Futian Li, Yaping Wu, David A. Hutchins, Feixue Fu, and Kunshan Gao
Biogeosciences, 13, 6247–6259, https://doi.org/10.5194/bg-13-6247-2016, https://doi.org/10.5194/bg-13-6247-2016, 2016
Short summary
Short summary
Ongoing ocean acidification is being superimposed on the natural carbonate buffer system to influence the physiology of phytoplankton. Here, we show that coastal and oceanic diatoms respond differentially to diurnal fluctuating carbonate chemistry in current and ocean acidification scenarios. We propose that the ability to acclimate to dynamic carbonate chemistry may act as one determinant of the spatial distribution of diatom species.
Guang Gao, Peng Jin, Nana Liu, Futian Li, Shanying Tong, David A. Hutchins, and Kunshan Gao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-403, https://doi.org/10.5194/bg-2016-403, 2016
Manuscript not accepted for further review
Short summary
Short summary
Our shipboard experiments showed high temperature and CO2 (HTHC) did not affect phytoplankton biomass at nearshore station but decreased it at offshore station. HT did not change dark respiration at nearshore station but enhanced it at offshore station. Our findings indicate that responses of coastal and offshore phytoplankton assemblages to ocean warming and acidification may be contrasting, with the pelagic phytoplankton communities being more sensitive to these two global change factors.
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Khan M. G. Mostofa, Cong-Qiang Liu, WeiDong Zhai, Marco Minella, Davide Vione, Kunshan Gao, Daisuke Minakata, Takemitsu Arakaki, Takahito Yoshioka, Kazuhide Hayakawa, Eiichi Konohira, Eiichiro Tanoue, Anirban Akhand, Abhra Chanda, Baoli Wang, and Hiroshi Sakugawa
Biogeosciences, 13, 1767–1786, https://doi.org/10.5194/bg-13-1767-2016, https://doi.org/10.5194/bg-13-1767-2016, 2016
Y. Li, S. Zhuang, Y. Wu, H. Ren, F. Cheng, X. Lin, K. Wang, J. Beardall, and K. Gao
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15809-2015, https://doi.org/10.5194/bgd-12-15809-2015, 2015
Revised manuscript not accepted
W. Li, K. Gao, and J. Beardall
Biogeosciences, 12, 2383–2393, https://doi.org/10.5194/bg-12-2383-2015, https://doi.org/10.5194/bg-12-2383-2015, 2015
S. Chen, J. Beardall, and K. Gao
Biogeosciences, 11, 4829–4837, https://doi.org/10.5194/bg-11-4829-2014, https://doi.org/10.5194/bg-11-4829-2014, 2014
Related subject area
Biodiversity and Ecosystem Function: Marine
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea
Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas
Diversity and distribution of nitrogen fixation genes in the oxygen minimum zones of the world oceans
Structure and function of epipelagic mesozooplankton and their response to dust deposition events during the spring PEACETIME cruise in the Mediterranean Sea
Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors
Technical note: Estimating light-use efficiency of benthic habitats using underwater O2 eddy covariance
Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates
Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
A meta-analysis on environmental drivers of marine phytoplankton C : N : P
Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system
Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean
Are seamounts refuge areas for fauna from polymetallic nodule fields?
Ocean deoxygenation and copepods: coping with oxygen minimum zone variability
Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation
Population dynamics of modern planktonic foraminifera in the western Barents Sea
Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands)
Light availability modulates the effects of warming in a marine N2 fixer
SiR-actin-labelled granules in foraminifera: patterns, dynamics, and hypotheses
Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific)
Dimensions of marine phytoplankton diversity
The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light
Flux variability of phyto- and zooplankton communities in the Mauritanian coastal upwelling between 2003 and 2008
Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins
Hypoxia in mangroves: occurrence and impact on valuable tropical fish habitat
Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021, https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Jiangtao Li, Lingyuan Gu, Shijie Bai, Jie Wang, Lei Su, Bingbing Wei, Li Zhang, and Jiasong Fang
Biogeosciences, 18, 113–133, https://doi.org/10.5194/bg-18-113-2021, https://doi.org/10.5194/bg-18-113-2021, 2021
Short summary
Short summary
Few studies have focused on the particle-attached (PA) and free-living (FL) microbes of the deep ocean. Here we determined PA and FL microbial communities along depth profiles of the SCS. PA and FL fractions accommodated divergent microbial compositions, and most of them are potentially generalists with PA and FL dual lifestyles. A potential vertical connectivity between surface-specific microbes and those in the deep ocean was indicated, likely through microbial attachment to sinking particles.
Saskia Brix, Karen J. Osborn, Stefanie Kaiser, Sarit B. Truskey, Sarah M. Schnurr, Nils Brenke, Marina Malyutina, and Pedro Martinez Arbizu
Biogeosciences, 17, 6163–6184, https://doi.org/10.5194/bg-17-6163-2020, https://doi.org/10.5194/bg-17-6163-2020, 2020
Short summary
Short summary
The Clarion–Clipperton Fracture Zone (CCZ) located in the Pacific is commercially the most important area of proposed manganese nodule mining. Extraction of this will influence the life and distribution of small deep-sea invertebrates like peracarid crustaceans, of which >90 % are undescribed species new to science. We are doing a species delimitation approach as baseline for an ecological interpretation of species distribution and discuss the results in light of future deep-sea conservation.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Guillermo Feliú, Marc Pagano, Pamela Hidalgo, and François Carlotti
Biogeosciences, 17, 5417–5441, https://doi.org/10.5194/bg-17-5417-2020, https://doi.org/10.5194/bg-17-5417-2020, 2020
Short summary
Short summary
The impact of Saharan dust deposition events on the Mediterranean Sea ecosystem was studied during a basin-scale survey (PEACETIME cruise, May–June 2017). Short-term responses of the zooplankton community were observed after episodic dust deposition events, highlighting the impact of these events on productivity up to the zooplankton level in the poorly fertilized pelagic ecosystems of the southern Mediterranean Sea.
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Karl M. Attard and Ronnie N. Glud
Biogeosciences, 17, 4343–4353, https://doi.org/10.5194/bg-17-4343-2020, https://doi.org/10.5194/bg-17-4343-2020, 2020
Short summary
Short summary
Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production. This report provides a framework to compute hourly and daily light-use efficiency using underwater eddy covariance, a recent technological development that produces habitat-scale rates of primary production for many different habitat types. The approach, tested on measured flux data, provides a useful means to compare habitat productivity across time and space.
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020, https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020, https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Short summary
The response of Cymodocea nodosa to environmental changes was reported during a 15-month period. The meadow decline was triggered in spring by the simultaneous reduction of available light in the water column and the creation of anoxic conditions in the rooted area. This disturbance was critical for the plant since it took place during its recruitment phase when metabolic needs are maximal and stored reserves minimal. The loss of such habitat-forming seagrass is a major environmental concern.
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020, https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Tatsuro Tanioka and Katsumi Matsumoto
Biogeosciences, 17, 2939–2954, https://doi.org/10.5194/bg-17-2939-2020, https://doi.org/10.5194/bg-17-2939-2020, 2020
Short summary
Short summary
We conducted an extensive literature survey (meta-analysis) on how the C : N : P ratio varies with change in key environmental drivers. We found that the expected reduction in nutrients and warming under the future climate change scenario is likely to result in increased C : P and C : N of marine phytoplankton. Further, our findings highlight the greater stoichiometric plasticity of eukaryotes over prokaryotes, which provide us insights on how to understand and model plankton.
Vanessa Joglar, Antero Prieto, Esther Barber-Lluch, Marta Hernández-Ruiz, Emilio Fernández, and Eva Teira
Biogeosciences, 17, 2807–2823, https://doi.org/10.5194/bg-17-2807-2020, https://doi.org/10.5194/bg-17-2807-2020, 2020
Short summary
Short summary
Coastal marine ecosystems are among the most ecologically and economically productive areas providing a large fraction of ecosystem goods and services to human populations, and B vitamins have long been considered important growth factors for phytoplankton. Our findings indicate that the responses of microbial plankton to B-vitamin supply are mainly driven by the bacterial community composition and that microbial plankton in this area seems to be well adapted to cope with B-vitamin shortage.
Tasnim Patel, Henri Robert, Cedric D'Udekem D'Acoz, Koen Martens, Ilse De Mesel, Steven Degraer, and Isa Schön
Biogeosciences, 17, 2731–2744, https://doi.org/10.5194/bg-17-2731-2020, https://doi.org/10.5194/bg-17-2731-2020, 2020
Short summary
Short summary
Exploitation of deep-sea resources in one of the largest ecosystems on the planet has rendered research of its biodiversity more urgent than ever before. We investigated the known habitats and connectivity of deep-sea scavenging amphipods and obtained important knowledge about several species. We also demonstrated that a long-term disturbance experiment has possibly reduced amphipod biodiversity. These data and further sampling expeditions are instrumental for formulating sustainable policies.
Daphne Cuvelier, Pedro A. Ribeiro, Sofia P. Ramalho, Daniel Kersken, Pedro Martinez Arbizu, and Ana Colaço
Biogeosciences, 17, 2657–2680, https://doi.org/10.5194/bg-17-2657-2020, https://doi.org/10.5194/bg-17-2657-2020, 2020
Short summary
Short summary
Polymetallic nodule mining will remove hard substrata from the abyssal deep-sea floor. The only neighbouring ecosystems featuring hard substratum are seamounts, and their inhabiting fauna could aid in recovery post-mining. Nevertheless, first observations of seamount megafauna were very different from nodule-associated megafauna and showed little overlap. The possible uniqueness of these ecosystems implies that they should be included in management plans for the conservation of biodiversity.
Karen F. Wishner, Brad Seibel, and Dawn Outram
Biogeosciences, 17, 2315–2339, https://doi.org/10.5194/bg-17-2315-2020, https://doi.org/10.5194/bg-17-2315-2020, 2020
Short summary
Short summary
Increasing deoxygenation and oxygen minimum zone expansion are consequences of global warming. Copepod species had different vertical distribution strategies and physiologies associated with oxygen profile variability (0–1000 m). Species (1) changed vertical distributions and maximum abundance depth, (2) shifted diapause depth, (3) changed diel vertical migration depths, or (4) changed epipelagic depth range in the aerobic mixed layer. Present-day variability helps predict future scenarios.
Magdalini Christodoulou, Timothy O'Hara, Andrew F. Hugall, Sahar Khodami, Clara F. Rodrigues, Ana Hilario, Annemiek Vink, and Pedro Martinez Arbizu
Biogeosciences, 17, 1845–1876, https://doi.org/10.5194/bg-17-1845-2020, https://doi.org/10.5194/bg-17-1845-2020, 2020
Short summary
Short summary
Unexpectedly high diversity was revealed in areas licenced for polymetallic nodule mining exploration in the Pacific Ocean. For the first time, a comprehensive reference library including 287 novel ophiuroid sequences allocated to 43 species was produced. Differences in food availability along the nodule province of CCZ were reflected in the biodiversity patterns observed. The APEI3's dissimilarity with the exploration contract areas questions its ability to serve as a biodiversity reservoir.
Julie Meilland, Hélène Howa, Vivien Hulot, Isaline Demangel, Joëlle Salaün, and Thierry Garlan
Biogeosciences, 17, 1437–1450, https://doi.org/10.5194/bg-17-1437-2020, https://doi.org/10.5194/bg-17-1437-2020, 2020
Short summary
Short summary
This study reports on planktonic foraminifera (PF) diversity and distribution in the Barents Sea. The species Globigerinita uvula and Turborotalita quinqueloba dominate the water column while surface sediments are dominated by Neogloboquadrina pachyderma. We hypothesize the unusual dominance of G. uvula in the water to be a seasonal signal or a result of climate forcing. Size-normalized-protein concentrations of PF show a northward decrease, suggesting biomass to vary with the environment.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Xiangqi Yi, Fei-Xue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020, https://doi.org/10.5194/bg-17-1169-2020, 2020
Short summary
Short summary
Combined effects of warming and light intensity were estimated in N2-fixing cyanobacterium Trichodesmium. Its physiological responses to warming were significantly modulated by light, with growth peaking at 27 °C under the light-saturating condition but being non-responsive across the range of 23–31 °C under the light-limiting condition. Light shortage also weakened the acclimation ability of Trichodesmium to warming, making light-limited Trichodesmium more sensitive to acute temperature change.
Jan Goleń, Jarosław Tyszka, Ulf Bickmeyer, and Jelle Bijma
Biogeosciences, 17, 995–1011, https://doi.org/10.5194/bg-17-995-2020, https://doi.org/10.5194/bg-17-995-2020, 2020
Short summary
Short summary
We studied the organisation and dynamics of actin in foraminifera. Actin is one of the key structural proteins in most lifeforms. Our investigations show that in foraminifera it forms small granules, around 1 µm in diameter, that display rapid movement. This granularity is unusual in comparison to other organisms. We suppose that these granules are most likely involved in the formation of all types of pseudopods responsible for movement, food capturing, biomineralisation, and other functions.
Paulo Bonifácio, Pedro Martínez Arbizu, and Lénaïck Menot
Biogeosciences, 17, 865–886, https://doi.org/10.5194/bg-17-865-2020, https://doi.org/10.5194/bg-17-865-2020, 2020
Short summary
Short summary
The patterns observed in the composition of polychaete assemblages were attributed to variations in food supply at the regional scale and nodule density at the local scale. The high levels of species replacement were mainly driven by rare species, leading to regional species pool estimates between 498 and 240 000 species. The high proportion of singletons seems reflect an under-sampling bias that is currently preventing the assessment of potential biodiversity loss due to nodule mining.
Stephanie Dutkiewicz, Pedro Cermeno, Oliver Jahn, Michael J. Follows, Anna E. Hickman, Darcy A. A. Taniguchi, and Ben A. Ward
Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, https://doi.org/10.5194/bg-17-609-2020, 2020
Short summary
Short summary
Phytoplankton are an essential component of the marine food web and earth's carbon cycle. We use observations, ecological theory and a unique trait-based ecosystem model to explain controls on patterns of marine phytoplankton biodiversity. We find that different dimensions of diversity (size classes, biogeochemical functional groups, thermal norms) are controlled by a disparate combination of mechanisms. This may explain why previous studies of phytoplankton diversity had conflicting results.
Emily White, Clara J. M. Hoppe, and Björn Rost
Biogeosciences, 17, 635–647, https://doi.org/10.5194/bg-17-635-2020, https://doi.org/10.5194/bg-17-635-2020, 2020
Short summary
Short summary
The Arctic picoeukaryote Micromonas pusilla was acclimated to two pCO2 levels under a constant and a dynamic light, simulating more realistic light fields. M. pusilla was able to benefit from ocean acidification with an increase in growth rate, irrespective of the light regime. In dynamic light M. pusilla optimised its photophysiology for effective light usage during both low- and high-light periods. This highlights M. pusilla is likely to cope well with future conditions in the Arctic Ocean.
Oscar E. Romero, Karl-Heinz Baumann, Karin A. F. Zonneveld, Barbara Donner, Jens Hefter, Bambaye Hamady, Vera Pospelova, and Gerhard Fischer
Biogeosciences, 17, 187–214, https://doi.org/10.5194/bg-17-187-2020, https://doi.org/10.5194/bg-17-187-2020, 2020
Short summary
Short summary
Monitoring of the multiannual evolution of populations representing different trophic levels allows for obtaining insights into the impact of climate variability in marine coastal upwelling ecosystems. By using a multiyear, continuous (1,900 d) sediment trap record, we assess the dynamics and fluxes of calcareous, organic and siliceous microorganisms off Mauritania (NW Africa). The experiment allowed for the recognition of a general sequence of seasonal variations of the main populations.
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Short summary
Along the Namibian and Angolan margins, low oxygen conditions do not meet environmental ranges for cold–water corals and hence are expected to be unsuitable habitats. Environmental conditions show that tidal movements deliver water with more oxygen and high–quality organic matter, suggesting that corals compensate unfavorable conditions with availability of food. With the expected expansion of oxygen minimum zones in the future, this study provides an example how ecosystems cope with extremes.
Alexia Dubuc, Ronald Baker, Cyril Marchand, Nathan J. Waltham, and Marcus Sheaves
Biogeosciences, 16, 3959–3976, https://doi.org/10.5194/bg-16-3959-2019, https://doi.org/10.5194/bg-16-3959-2019, 2019
Short summary
Short summary
Little is known about how hypoxia influences mangrove fish assemblages. In situ video observations reveal species-specific avoidance strategies in response to developing hypoxia in a mangrove forest. Taxa commonly using mangroves could withstand hypoxia, while others usually associated with reef habitats were not recorded below 70 % saturation. These results suggest that hypoxia is an important factor shaping mangrove fish assemblages and could explain the low species richness usually observed.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Cited articles
Alexiadis, A.: Global warming and human activity: A model for studying the
potential instability of the carbon dioxide/temperature feedback mechanism,
Ecol. Model., 203, 243–256, doi:10.1016/j.ecolmodel.2006.11.020, 2007.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S.
E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., and Wang, Y.: Acidification of
subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4,
766–770, https://doi.org/10.1038/ngeo1297, 2011.
Chen, C.-C., Shiah, F.-K., Chung, S.-W., and Liu, K.-K.: Winter phytoplankton
blooms in the shallow mixed layer of the South China Sea enhanced by
upwelling, J. Mar. Syst., 59, 97–110, https://doi.org/10.1016/j.jmarsys.2005.09.002,
2006.
Dickson, A. G.: Standard potential of the reaction: , and the standard acidity constant of the ion
HSO in synthetic sea water from 273.15 to 318.15 K, J. Chem.
Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F.-X., Rose, J., and
Hutchins, D. A.: Interactive effects of increased pCO2,
temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae), Eur. J. Phycol., 43, 87–98,
https://doi.org/10.1080/09670260701664674, 2008.
Fielding, S. R.: Emiliania huxleyi specific growth rate dependence
on temperature, Limnol. Oceanogr., 58, 663–666,
https://doi.org/10.4319/lo.2013.58.2.0663, 2013.
Gao, K., Wu, Y., Li, G., Wu, H., Villafañe, V. E.,
and Helbling, E. W.: Solar UV Radiation Drives CO2 Fixation in Marine
Phytoplankton: A Double-Edged Sword, Plant Physiol., 144, 54–59,
https://doi.org/10.1104/pp.107.098491, 2007.
Gao, K., Helbling, E. W., Häder, D.-P., and Hutchins, D. A.: Responses of
marine primary producers to interactions between ocean acidification, solar
radiation, and warming, Mar. Ecol. Prog. Ser., 470, 167–189,
https://doi.org/10.3354/meps10043, 2012.
Gattuso, J.-P., Pichon, M., and Frankignoulle, M.: Biological control of
air-sea CO2 fluxes: effect of photosynthetic and calcifying marine
organisms and ecosystems, Oceanogr. Lit. Rev., 7, 663–664,
https://doi.org/10.3354/meps129307, 1996.
Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L.,
Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M.,
Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H.-O., Rogers, A. D., Baxter,
J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R.,
Treyer, S., and Turley, C.: Contrasting futures for ocean and society from
different anthropogenic CO2 emissions scenarios, Science, 349,
aac4722, https://doi.org/10.1126/science.aac4722, 2015.
Guan, W. and Gao, K.: Impacts of UV radiation on photosynthesis and growth of
the coccolithophore Emiliania huxleyi (Haptophyceae), Environ. Exp.
Bot., 67, 502–508, https://doi.org/10.1016/j.envexpbot.2009.08.003, 2009.
Häder, D.-P. and Gao, K.: Interactions of anthropogenic stress factors on
marine phytoplankton, Front. Environ. Sci., 3, 1–14,
https://doi.org/10.3389/fenvs.2015.00014, 2015.
Häder, D.-P., Williamson, C. E., Wängberg, S.-Å., Rautio, M.,
Rose, K. C., Gao, K., Helbling, E. W., Sinhah, R. P., and Worrest, R.:
Effects of UV radiation on aquatic ecosystems and nteractions with other
environmental factors, Photoch. Photobio. Sci., 10, 113–150,
https://doi.org/10.1039/c4pp90035a, 2014.
Helbling, E. W., Gao, K., Gonçalves, R. J., Wu, H., and Villafañe, V.
E.: Utilization of solar UV radiation by coastal phytoplankton assemblages
off SE China when exposed to fast mixing, Mar. Ecol. Prog. Ser., 259, 59–66,
https://doi.org/10.3354/meps259059, 2003.
Helbling, E. W., Buma, A. G. J., Boelen, P., van der Strate, H. J.,
Giordanino, M. V. F., and Villafañe, V. E.: Increase in Rubisco activity
and gene expression due to elevated temperature partially counteracts
ultraviolet radiation-induced photoinhibition in the marine diatom
Thalassiosira weissflogii, Limnol. Oceanogr., 56, 1330–1342,
https://doi.org/10.4319/lo.2011.56.4.1330, 2011.
Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat.
Microbiol., 2, 17058, https://doi.org/10.1038/nmicrobiol.2017.58, 2017.
Jin, P., Ding, J., Xing, T., Riebesell, U., and Gao, K.: High levels of solar
radiation offset impacts of ocean acidification on calcifying and
non-calcifying strains of Emiliania huxleyi, Mar. Ecol. Prog. Ser.,
568, 47–58, https://doi.org/10.3354/meps12042 2017.
Korbee, N., Mata, M. T., and Figueroa, F. l. L.: Photoprotection mechanisms
against ultraviolet radiation in Heterocapsa sp. (Dinophyceae) are
influenced by nitrogen availability: Mycosporine-like amino acids vs.
xanthophyll cycle, Limnol. Oceanogr., 55, 899–908,
https://doi.org/10.4319/lo.2010.55.2.0899, 2010.
Kottmeier, D. M., Rokitta, S. D., and Rost, B.: Acidification, not
carbonation, is the major regulator of carbon fluxes in the coccolithophore
Emiliania huxleyi, New Phytol., 211, 126–137,
https://doi.org/10.1111/nph.13885, 2016.
Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.: Strain-specific
responses of Emiliania huxleyi to changing seawater carbonate
chemistry, Biogeosciences, 6, 2637–2646,
https://doi.org/10.5194/bg-6-2637-2009, 2009.
Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2
system calculations, Carbon Dioxide Information Analysis Center, managed by
Lockheed Martin Energy Research Corporation for the US Department of Energy
Tennessee, 1998.
Li, Y., Gao, K., Villafañe, V. E., and Helbling, E. W.: Ocean
acidification mediates photosynthetic response to UV radiation and
temperature increase in the diatom Phaeodactylum tricornutum, Biogeosciences,
9, 3931–3942, https://doi.org/10.5194/bg-9-3931-2012, 2012.
Litchman, E., Neale, P. J., and Banaszak, A. T.: Increased sensitivity to
ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection
and repair, Limnol. Oceanogr., 47, 86–94, https://doi.org/10.4319/lo.2002.47.1.0086,
2002.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45,
569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
Milner, S., Langer, G., Grelaud, M., and Ziveri, P.: Ocean warming modulates
the effects of acidification on Emiliania huxleyi calcification and
sinking, Limnol. Oceanogr., 61, 1322–1336, 2016.
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E.,
Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., and Gibbs, S.: Why
marine phytoplankton calcify, Sci. Adv., 2, e1501822,
https://doi.org/10.1126/sciadv.1501822, 2016.
Norberg, J.: Biodiversity and ecosystem functioning: A complex adaptive
systems approach, Limnol. Oceanogr., 49, 1269–1277,
https://doi.org/10.4319/lo.2004.49.4_part_2.1269, 2004.
Paasche, E.: The effect of temperature, light intensity, and photoperiod on
coccolith formation, Limnol. Oceanogr., 13, 178–181,
https://doi.org/10.4319/lo.1968.13.1.0178, 1968.
Paasche, E.: A review of the coccolithophorid Emiliania huxleyi
(Prymnesiophyceae), with particular reference to growth, coccolith formation,
and calcification-photosynthesis interactions, Phycologia, 40, 503–529,
https://doi.org/10.2216/i0031-8884-40-6-503.1, 2002.
Raitsos, D. E., Lavender, S. J., Pradhan, Y., Tyrrell, T., Reid, P. C., and
Edwards, M.: Coccolithophore bloom size variation in response to the regional
environment of the subarctic North Atlantic, Limnol. Oceanogr., 51,
2122–2130, https://doi.org/10.4319/lo.2006.51.5.2122, 2006.
Raven, J. A. and Crawfurd, K.: Environmental controls on coccolithophore
calcification, Mar. Ecol. Prog. Ser., 470, 137–166, https://doi.org/10.3354/meps09993,
2012.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and
Morel, F. M. M.: Reduced calcification of marine plankton in response to
increased atmospheric CO2, Nature, 407, 364–367,
https://doi.org/10.1038/35030078, 2000.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump:
responses to environmental changes, in: Coccolithophores, Springer, 99–125,
2004.
Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C.
E., Millero, F. J., and Campbell, D. M.: The dissociation constants of
carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to
45 ∘C, Mar. Chem., 44, 249–267, 1993.
Sett, S., Bach, L. T., Schulz, K. G., Koch-Klavsen, S., Lebrato, M., and
Riebesell, U.: Temperature modulates coccolithophorid sensitivity of growth,
photosynthesis and calcification to increasing seawater
pCO2, Plos One, 9, 1–9, https://doi.org/10.1371/journal.pone.0088308,
2014.
Sobrino, C. and Neale, P. J.: Short-term and long-term effects of temperature
on photosynthesis in the diatom Thalassiosira Pseudonana under UVR
exposures, J. Phycol., 43, 426–436, https://doi.org/10.1111/j.1529-8817.2007.00344.x,
2007.
Sobrino, C., Montero, O., and Lubián, L. M.: UV-B radiation increases
cell permeability and damages nitrogen incorporation mechanisms in
Nannochloropsis gaditana, Aquat. Sci., 66, 421–429,
https://doi.org/10.1007/s00027-004-0731-8, 2004.
Sobrino, C., Ward, M. L., and Neale, P. J.: Acclimation to elevated carbon
dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: Effects on growth, photosynthesis, and spectral sensitivity of
photoinhibition, Limnol. Oceanogr., 53, 494–505,
https://doi.org/10.4319/lo.2008.53.2.0494, 2008.
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate Change 2013:
The physical science basis, Cambridge University Press Cambridge, UK, New
York, USA, 2014.
Sunda, W. G., Price, N. M., and Morel, F. M.: Trace metal ion buffers and
their use in culture studies, Algal Culturing Techniques, 4, 35–63, 2005.
Tedetti, M., Sempéré, R., Vasilkov, A., Charriere, B., Nérini,
D., Miller, W. L., Kawamura, K., and Raimbault, P.: High penetration of
ultraviolet radiation in the south east Pacific waters, Geophys. Res. Lett.,
34, L12610, https://doi.org/10.1029/2007GL029823, 2007.
Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: A Global
Pattern of Thermal Adaptation in Marine Phytoplankton, Science, 338,
1085–1088, https://doi.org/10.1126/science.1224836, 2012.
Tong, S., Hutchins, D. A., Fu, F., and Gao, K.: Effects of varying growth
irradiance and nitrogen sources on calcification and physiological
performance of the coccolithophore Gephyrocapsa oceanica grown under
nitrogen limitation, Limnol. Oceanogr., 61, 2234–2242,
https://doi.org/10.1002/lno.10371, 2016.
Tong, S., Gao, K., and Hutchins, D. A.: Adaptive evolution in the
coccolithophore Gephyrocapsa oceanica following 1,000 generations of
selection under elevated CO2, Global Change Biol., 24, 3055–3064,
https://doi.org/10.1111/gcb.14065, 2018.
Voss, K. J., Balch, W. M., and Kilpatrick, K. A.: Scattering and attenuation
properties of Emiliania Huxleyi cells and their detached coccoliths, Limnol.
Oceanogr., 43, 870–876, https://doi.org/10.4319/lo.1998.43.5.0870, 1998.
Williamson, C. E., Zepp, R. G., Lucas, R. M., Madronich, S., Austin, A. T.,
Ballaré, C. L., Norval, M., Sulzberger, B., Bais, A. F., McKenzie, R. L.,
Robinson, S. A., Häder, D.-P., Paul, N. D., and Bornman, J. F.: Solar
ultraviolet radiation in a changing climate, Nat. Clim. Change, 4, 434–441,
https://doi.org/10.1038/nclimate2225, 2014.
Wu, Y., Gao, K., Li, G., and Helbling, E. W.: Seasonal Impacts of Solar UV
Radiation on Photosynthesis of Phytoplankton Assemblages in the Coastal
Waters of the South China Sea, Photochem. Photobiol., 86, 586–592,
https://doi.org/10.1111/j.1751-1097.2009.00694.x, 2010.
Xu, J. and Gao, K.: Use of UV-A Energy for Photosynthesis in the Red
Macroalga Gracilaria lemaneiformis, Photochem. Photobiol., 86,
580–585, https://doi.org/10.1111/j.1751-1097.2010.00709.x, 2010.
Xu, J., Bach, L. T., Schulz, K. G., Zhao, W., Gao, K., and Riebesell, U.: The
role of coccoliths in protecting Emiliania huxleyi against stressful
light and UV radiation, Biogeosciences, 13, 4637–4643,
https://doi.org/10.5194/bg-13-4637-2016, 2016.
Xu, K. and Gao, K.: Solar UV Irradiances Modulate Effects of Ocean
Acidification on the Coccolithophorid Emiliania huxleyi, Photochem.
Photobiol., 91, 92–101, https://doi.org/10.1111/php.12363, 2015.
Short summary
Most previous studies concerning the effects of environmental changes on marine organisms have been carried out under
photosynthetically active radiation onlyconditions, with solar ultraviolet radiation (UVR) not being considered. In this study, we found that UVR can counteract the negative effects of the
greenhousetreatment on the calcification rate to photosynthesis rate ratio, and may be a key stressor when considering the impacts of future greenhouse conditions on E. huxleyi.
Most previous studies concerning the effects of environmental changes on marine organisms have...
Altmetrics
Final-revised paper
Preprint