Articles | Volume 16, issue 4
Biogeosciences, 16, 917–926, 2019
https://doi.org/10.5194/bg-16-917-2019
Biogeosciences, 16, 917–926, 2019
https://doi.org/10.5194/bg-16-917-2019

Research article 27 Feb 2019

Research article | 27 Feb 2019

Evaluating the simulated mean soil carbon transit times by Earth system models using observations

Jing Wang et al.

Related authors

Spatial variations in terrestrial net ecosystem productivity and its local indicators
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020,https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Simulation of soil carbon dynamics in Australia under a framework that better connects spatially explicit data with Rᴏᴛʜ C
Juhwan Lee, Raphael A. Viscarra Rossel, Zhongkui Luo, and Ying Ping Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-150,https://doi.org/10.5194/bg-2020-150, 2020
Preprint under review for BG
Short summary
TraceME (v1.0) – An online Traceability analysis system for Model Evaluation on land carbon dynamics
Jian Zhou, Jianyang Xia, Ning Wei, Yufu Liu, Chenyu Bian, Yuqi Bai, and Yiqi Luo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-76,https://doi.org/10.5194/gmd-2020-76, 2020
Revised manuscript not accepted
Short summary
Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019,https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements
Junyi Liang, Gangsheng Wang, Daniel M. Ricciuto, Lianhong Gu, Paul J. Hanson, Jeffrey D. Wood, and Melanie A. Mayes
Geosci. Model Dev., 12, 1601–1612, https://doi.org/10.5194/gmd-12-1601-2019,https://doi.org/10.5194/gmd-12-1601-2019, 2019
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021,https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021,https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Robust processing of airborne laser scans to plant area density profiles
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020,https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020,https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020,https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary

Cited articles

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., and Kato, E.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015. 
Allison, S. D., Matthew, D. W., and Mark, A. B.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. 
Balesdent, J., Mariotti, A., and Guillet, B.: Natural 13C abundance as a tracer for studies of soil organic matter dynamics, Soil Biol. Biochem., 19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987. 
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., and Riahi, K.: IPCC, 2007: Climate Change 2007: Synthesis Report, 2008. 
Bloom, A. A., Exbrayat, J. F., van der Velde, I. R., Feng, L., and Williams, M.: The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290, https://doi.org/10.1073/pnas.1515160113, 2016. 
Download
Short summary
Soil is critical in mitigating climate change mainly because soil carbon turns over much slower in soils than vegetation and the atmosphere. However, Earth system models (ESMs) have large uncertainty in simulating carbon dynamics due to their biased estimation of soil carbon transit time (τsoil). Here, the τsoil estimates from 12 ESMs that participated in CMIP5 were evaluated by a database of measured τsoil. We detected a large spatial variation in measured τsoil across the globe.
Altmetrics
Final-revised paper
Preprint