Articles | Volume 17, issue 12
https://doi.org/10.5194/bg-17-3115-2020
https://doi.org/10.5194/bg-17-3115-2020
Research article
 | 
19 Jun 2020
Research article |  | 19 Jun 2020

Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison

Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira

Related authors

Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl, Anne Hennke, Timm Schoening, Kevin Köser, and Jens Greinert
Biogeosciences, 17, 1463–1493, https://doi.org/10.5194/bg-17-1463-2020,https://doi.org/10.5194/bg-17-1463-2020, 2020
Short summary
Quantitative mapping and predictive modeling of Mn nodules' distribution from hydroacoustic and optical AUV data linked by random forests machine learning
Iason-Zois Gazis, Timm Schoening, Evangelos Alevizos, and Jens Greinert
Biogeosciences, 15, 7347–7377, https://doi.org/10.5194/bg-15-7347-2018,https://doi.org/10.5194/bg-15-7347-2018, 2018
Short summary
Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data
Anne Peukert, Timm Schoening, Evangelos Alevizos, Kevin Köser, Tom Kwasnitschka, and Jens Greinert
Biogeosciences, 15, 2525–2549, https://doi.org/10.5194/bg-15-2525-2018,https://doi.org/10.5194/bg-15-2525-2018, 2018
Short summary
Quantification of the fine-scale distribution of Mn-nodules: insights from AUV multi-beam and optical imagery data fusion
Evangelos Alevizos, Timm Schoening, Kevin Koeser, Mirjam Snellen, and Jens Greinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-60,https://doi.org/10.5194/bg-2018-60, 2018
Revised manuscript has not been submitted
Short summary

Related subject area

Biodiversity and Ecosystem Function: Marine
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023,https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Bacterioplankton dark CO2 fixation in oligotrophic waters
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023,https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023,https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023,https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Phytoplankton Response to Increased Nickel in the Context of Ocean Alkalinity Enhancement
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-130,https://doi.org/10.5194/bg-2023-130, 2023
Revised manuscript accepted for BG
Short summary

Cited articles

Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., and Menesatti, P.: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna, Sensors, 9, 8438–8455, 2009. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Ayma, A., Aguzzi, J., Canals, M., Lastras, G., Bahamon, N., Mechó, A., and Company, J.: Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species, Deep-Sea Res. Pt. I, 114, 149–159, 2016. a
Beaulieu, S.: Life on glass houses: sponge stalk communities in the deep sea, Mar. Biol., 138, 803–817, 2001. a
Bergmann, M., Soltwedel, T., and Klages, M.: The interannual variability of megafaunal assemblages in the Arctic deep sea: Preliminary results from the HAUSGARTEN observatory (79 N), Deep-Sea Res. Pt. I, 58, 711–723, 2011. a
Download
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Altmetrics
Final-revised paper
Preprint