Articles | Volume 17, issue 12
Biogeosciences, 17, 3115–3133, 2020
https://doi.org/10.5194/bg-17-3115-2020

Special issue: Assessing environmental impacts of deep-sea mining...

Biogeosciences, 17, 3115–3133, 2020
https://doi.org/10.5194/bg-17-3115-2020

Research article 19 Jun 2020

Research article | 19 Jun 2020

Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison

Timm Schoening et al.

Related authors

Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl, Anne Hennke, Timm Schoening, Kevin Köser, and Jens Greinert
Biogeosciences, 17, 1463–1493, https://doi.org/10.5194/bg-17-1463-2020,https://doi.org/10.5194/bg-17-1463-2020, 2020
Short summary
Quantitative mapping and predictive modeling of Mn nodules' distribution from hydroacoustic and optical AUV data linked by random forests machine learning
Iason-Zois Gazis, Timm Schoening, Evangelos Alevizos, and Jens Greinert
Biogeosciences, 15, 7347–7377, https://doi.org/10.5194/bg-15-7347-2018,https://doi.org/10.5194/bg-15-7347-2018, 2018
Short summary
Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data
Anne Peukert, Timm Schoening, Evangelos Alevizos, Kevin Köser, Tom Kwasnitschka, and Jens Greinert
Biogeosciences, 15, 2525–2549, https://doi.org/10.5194/bg-15-2525-2018,https://doi.org/10.5194/bg-15-2525-2018, 2018
Short summary
Quantification of the fine-scale distribution of Mn-nodules: insights from AUV multi-beam and optical imagery data fusion
Evangelos Alevizos, Timm Schoening, Kevin Koeser, Mirjam Snellen, and Jens Greinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-60,https://doi.org/10.5194/bg-2018-60, 2018
Revised manuscript has not been submitted
Short summary

Related subject area

Biodiversity and Ecosystem Function: Marine
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021,https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021,https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021,https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021,https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021,https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary

Cited articles

Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., and Menesatti, P.: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna, Sensors, 9, 8438–8455, 2009. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Ayma, A., Aguzzi, J., Canals, M., Lastras, G., Bahamon, N., Mechó, A., and Company, J.: Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species, Deep-Sea Res. Pt. I, 114, 149–159, 2016. a
Beaulieu, S.: Life on glass houses: sponge stalk communities in the deep sea, Mar. Biol., 138, 803–817, 2001. a
Bergmann, M., Soltwedel, T., and Klages, M.: The interannual variability of megafaunal assemblages in the Arctic deep sea: Preliminary results from the HAUSGARTEN observatory (79 N), Deep-Sea Res. Pt. I, 58, 711–723, 2011. a
Download
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Altmetrics
Final-revised paper
Preprint