Articles | Volume 17, issue 17
https://doi.org/10.5194/bg-17-4421-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4421-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation influence and environmental controls on greenhouse gas fluxes from a drained thermokarst lake in the western Canadian Arctic
June Skeeter
CORRESPONDING AUTHOR
Department of Geography, The University of British Columbia,
Vancouver, V6T1Z2, Canada
Andreas Christen
Environmental Meteorology, Faculty of Environment and Natural
Resources, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
Andrée-Anne Laforce
Department of Geography and Environmental Studies, Carleton
University, Ottawa, K1S5B6, Canada
Elyn Humphreys
Department of Geography and Environmental Studies, Carleton
University, Ottawa, K1S5B6, Canada
Greg Henry
Department of Geography, The University of British Columbia,
Vancouver, V6T1Z2, Canada
Related authors
No articles found.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Rainer Hilland, Josh Hashemi, Stavros Stagakis, Dominik Brunner, Lionel Constantin, Natascha Kljun, Betty Molinier, Samuel Hammer, Lukas Emmenegger, and Andreas Christen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1088, https://doi.org/10.5194/egusphere-2025-1088, 2025
Short summary
Short summary
We present a study of simultaneously measured fluxes of carbon dioxide (CO2) and co-emitted species in the city of Zurich. Flux measurements of CO2 alone can’t be attributed to specific emission sectors, such as road transport or residential heating. We present a model which uses the measured ratios of CO2 to carbon monoxide (CO) and nitrogen oxides (NOx) as well as sector-specific reference ratios, to attribute measured fluxes to their emission sectors.
Ann-Kristin Kunz, Lars Borchardt, Andreas Christen, Julian Della Coletta, Markus Eritt, Xochilt Gutiérrez, Josh Hashemi, Rainer Hilland, Armin Jordan, Richard Kneißl, Virgile Legendre, Ingeborg Levin, Susanne Preunkert, Pascal Rubli, Stavros Stagakis, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3175, https://doi.org/10.5194/egusphere-2024-3175, 2025
Short summary
Short summary
We present, to our knowledge, the first relaxed eddy accumulation system explicitly tailored to a radiocarbon (14C)-based partitioning of fossil and non-fossil urban CO2 fluxes. Laboratory tests and in-depth quality and performance checks prove that the system meets the technical requirements. A pilot application on a tall-tower in the city of Zurich, Switzerland, demonstrates the ability to separate fossil and non-fossil CO2 fluxes within the typical precision of 14C measurements.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
Ferdinand Briegel, Jonas Wehrle, Dirk Schindler, and Andreas Christen
Geosci. Model Dev., 17, 1667–1688, https://doi.org/10.5194/gmd-17-1667-2024, https://doi.org/10.5194/gmd-17-1667-2024, 2024
Short summary
Short summary
We present a new approach to model heat stress in cities using artificial intelligence (AI). We show that the AI model is fast in terms of prediction but accurate when evaluated with measurements. The fast-predictive AI model enables several new potential applications, including heat stress prediction and warning; downscaling of potential future climates; evaluation of adaptation effectiveness; and, more fundamentally, development of guidelines to support urban planning and policymaking.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Cited articles
Anders, U. and Korn, O.: Model selection in neural networks, Neural
Networks, 12, 309–323, https://doi.org/10.1016/S0893-6080(98)00117-8, 1999.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical
Guide to Measurement and Data Analysis, 2012 edition, Springer, Dordrecht,
New York., 2012.
Biasi, C., Meyer, H., Rusalimova, O., Hämmerle, R., Kaiser, C., Baranyi, C., Daims, H., Lashchinsky, N., Barsukov, P., and Richter, A.: Initial
effects of experimental warming on carbon exchange rates, plant growth and
microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia, Plant
Soil, 307, 191–205, https://doi.org/10.1007/s11104-008-9596-2, 2008.
Billings, W. and Peterson, K.: Vegetational Change and Ice-Wedge Polygons
Through the Thaw-Lake Cycle, Arc. Antarct. Alp. Res., 12, 413–432,
https://doi.org/10.2307/1550492, 1980.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Budishchev, A., Mi, Y., van Huissteden, J., Belelli-Marchesini, L., Schaepman-Strub, G., Parmentier, F. J. W., Fratini, G., Gallagher, A., Maximov, T. C., and Dolman, A. J.: Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling, Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014, 2014.
Cahoon, S. M. P., Sullivan, P. F., Shaver, G. R., Welker, J. M., and Post, E.: Interactions among shrub cover and the soil microclimate may determine
future Arctic carbon budgets, Ecol. Lett., 15, 1415–1422,
https://doi.org/10.1111/j.1461-0248.2012.01865.x, 2012.
Chaichana, N., Bellingrath-Kimura, S. D., Komiya, S., Fujii, Y., Noborio, K., Dietrich, O., and Pakoktom, T.: Comparison of Closed Chamber and Eddy
Covariance Methods to Improve the Understanding of Methane Fluxes from Rice
Paddy Fields in Japan, Atmosphere, 9, 356, https://doi.org/10.3390/atmos9090356,
2018.
Chollet, F., Rahman, F., Lee, T., et al.: Keras, available at: https://keras.io (last access: 2 September 2020),
2015.
Clark, M. G., Humphreys, E. R., and Carey, S. K.: Low methane emissions from a boreal wetland constructed on oil sand mine tailings, Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, 2020.
Davidson, S. J., Sloan, V. L., Phoenix, G. K., Wagner, R., Fisher, J. P.,
Oechel, W. C., and Zona, D.: Vegetation Type Dominates the Spatial
Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes,
Ecosystems, 19, 1116–1132, https://doi.org/10.1007/s10021-016-9991-0, 2016.
Davidson, S. J., Santos, M. J., Sloan, V. L., Reuss-Schmidt, K., Phoenix, G. K., Oechel, W. C., and Zona, D.: Upscaling CH4 Fluxes Using High-Resolution
Imagery in Arctic Tundra Ecosystems, Remote Sens.-Basel, 9, 1227,
https://doi.org/10.3390/rs9121227, 2017.
Dengel, S., Zona, D., Sachs, T., Aurela, M., Jammet, M., Parmentier, F. J. W., Oechel, W., and Vesala, T.: Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands, Biogeosciences, 10, 8185–8200, https://doi.org/10.5194/bg-10-8185-2013, 2013.
Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., Falge, E., Noormets, A., Papale, D., Reichstein, M., and
Stauch, V. J.: Cross-site evaluation of eddy covariance GPP and RE
decomposition techniques, Agr. Forest Meteorol., 148,
821–838, https://doi.org/10.1016/j.agrformet.2007.11.012, 2008.
Dou, X. and Yang, Y.: Estimating forest carbon fluxes using four different
data-driven techniques based on long-term eddy covariance measurements:
Model comparison and evaluation, Sci. Total Environ., 627,
78–94, https://doi.org/10.1016/j.scitotenv.2018.01.202, 2018.
Dybowski, R. and Roberts, S. J.: Confidence intervals and prediction intervals for feedforward neural networks, in: Clinical Applications of Artificial Neural Networks, edited by: Dybowski, R. and Gant, V., Cambridge University Press, Cambridge, 298–326, 2001.
Environment Canada: Climate Data Online, available at:
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html (last access: 2 September 2020), 2016.
Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C., and Shaver, G. R.: Seasonal patterns of carbon dioxide and water fluxes in three
representative tundra ecosystems in northern Alaska, Ecosphere, 3, art4,
https://doi.org/10.1890/ES11-00202.1, 2012.
French, H. M.: Thermokarst Processes and Landforms, in: The Periglacial Environment 4e, John Wiley & Sons, Ltd, Oxford, 169–192, 2017.
Heskes, T.: Practical Confidence and Prediction Intervals, in: Advances in Neural Information Processing Systems, MIT press, Cambridge, 176–182, 1997.
Ge, L., Lafleur, P. M., and Humphreys, E. R.: Respiration from Soil and
Ground Cover Vegetation Under Tundra Shrubs, available at:
https://pubag.nal.usda.gov/catalog/5943221 (last access: 28 April 2020), 2017.
Hornik, K.: Approximation capabilities of multilayer feedforward networks,
Neural Networks, 4, 251–257, 1991.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2014:
Synthesis Report, Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, IPCC, Geneva, Switzerland, 2014..
Jones, B. M., Grosse, G., Arp, C. D., Jones, M. C., Anthony, K. M. W., and
Romanovsky, V. E.: Modern thermokarst lake dynamics in the continuous
permafrost zone, northern Seward Peninsula, Alaska, J. Geophys.
Res.-Biogeo.,
https://doi.org/10.1029/2011JG001666,
2018.
Katayanagi, N.: Spatial variability of greenhouse gas fluxes from soils of
various land uses on a livestock farm in southern Hokkaido, Japan, Phyton, 45, 309–318, 2005.
Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F.: Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances, IEEE Transactions on Neural Networks, 22, 1341–1356, https://doi.org/10.1109/TNN.2011.2162110, 2011.
Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., and Baldocchi, D.: Gap-filling approaches for eddy covariance
methane fluxes: A comparison of three machine learning algorithms and a
traditional method with principal component analysis, Glob. Change Biol.,
26, 1499–1518, https://doi.org/10.1111/gcb.14845, 2020.
King, G. M. and Adamsen, A. P. S.: Effects of Temperature on Methane
Consumption in a Forest Soil and in Pure Cultures of the Methanotroph
Methylomonas rubra, Appl. Environ. Microbiol., 58, 2758–2763, 1992.
Kittler, F., Burjack, I., Corradi, C. A. R., Heimann, M., Kolle, O., Merbold, L., Zimov, N., Zimov, S., and Göckede, M.: Impacts of a decadal drainage disturbance on surface-atmosphere fluxes of carbon dioxide in a permafrost ecosystem, Biogeosciences, 13, 5315–5332, https://doi.org/10.5194/bg-13-5315-2016, 2016.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J.,
and Baldocchi, D.: Biophysical controls on interannual variability in
ecosystem-scale CO2 and CH4 exchange in a California rice paddy, J.
Geophys. Res.-Biogeo., 121, 978–1001,
https://doi.org/10.1002/2015JG003247, 2016.
Lafleur, P. M., Humphreys, E. R., St. Louis, V. L., Myklebust, M. C.,
Papakyriakou, T., Poissant, L., Barker, J. D., Pilote, M., and Swystun, K. A.: Variation in Peak Growing Season Net Ecosystem Production Across the
Canadian Arctic, Environ. Sci. Technol., 46, 7971–7977,
https://doi.org/10.1021/es300500m, 2012.
Laforce, A.-A.: Spatial variability of carbon emissions within a drained lake basin and its surrounding tundra, Illisarvik, Northwest Territories, Carleton University, 2018.
Lai, D. Y. F.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19, 409–421, 2009.
Lantz, T. C. and Turner, K. W.: Changes in lake area in response to
thermokarst processes and climate in Old Crow Flats, Yukon, J. Geophys.
Res.-Biogeo., 120, 513–524, https://doi.org/10.1002/2014JG002744, 2015.
Lara, M. J., McGuire, A. D., Euskirchen, E. S., Tweedie, C. E., Hinkel, K. M., Skurikhin, A. N., Romanovsky, V. E., Grosse, G., Bolton, W. R., and
Genet, H.: Polygonal tundra geomorphological change in response to warming
alters future CO2 and CH4 flux on the Barrow Peninsula, Glob. Change
Biol., 21, 1634–1651, https://doi.org/10.1111/gcb.12757, 2015.
Lee, S.-C., Christen, A., Black, A. T., Johnson, M. S., Jassal, R. S.,
Ketler, R., Nesic, Z., and Merkens, M.: Annual greenhouse gas budget for a bog
ecosystem undergoing restoration by rewetting, Biogeosciences, 14, 2799–2814,
https://doi.org/10.5194/bg-14-2799-2017, 2017.
Liu, Y., Liu, X., Cheng, K., Li, L., Zhang, X., Zheng, J., Zheng, J., and
Pan, G.: Responses of Methanogenic and Methanotrophic Communities to
Elevated Atmospheric CO2 and Temperature in a Paddy Field, Front. Microbiol.,
7, 1895, https://doi.org/10.3389/fmicb.2016.01895, 2016.
López-Blanco, E., Lund, M., Williams, M., Tamstorf, M. P., Westergaard-Nielsen, A., Exbrayat, J.-F., Hansen, B. U., and Christensen, T. R.: Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance, Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, 2017.
Mackay, J. R.: A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: a discussion of the method and some results, Can. J. Earth Sci., 34, 17–33, https://doi.org/10.1139/e17-002, 1997.
Mackay, J. R.: Periglacial features developed on the exposed lake bottoms of
seven lakes that drained rapidly after 1950, Tuktoyaktuk Peninsula area,
western Arctic coast, Canada, Permafrost Periglac., 10,
39–63, https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:1{<}39::AID-PPP305{>}3.3.CO;2-I, 1999.
Mackay, J. R. and Burn, C. R.: The first 20 years (1978–1979 to 1998–1999)
of active-layer development, Illisarvik experimental drained lake site,
western Arctic coast, Canada, Can. J. Earth Sci., 39, 1657–1674,
https://doi.org/10.1139/E02-068, 2002.
Marsh, P., Russell, M., Pohl, S., Haywood, H., and Onclin, C.: Changes in
thaw lake drainage in the Western Canadian Arctic from 1950 to 2000, Hydrol.
Process., 23, 145–158, https://doi.org/10.1002/hyp.7179, 2009.
Martin, A. F., Lantz, T. C., and Humphreys, E. R.: Ice wedge degradation and
CO2 and CH4 emissions in the Tuktoyaktuk Coastlands, Northwest Territories,
Arct. Sci., 4, 130–145, 2018.
Mauder, M. and Foken, T.: Documentation and Instruction Manual of the Eddy Covariance Software Package TK2, Univ. Bayreuth Abt. Mikrometeorologie, Bayreuth, 2004.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Meijide, A., Manca, G., Goded, I., Magliulo, V., di Tommasi, P., Seufert, G., and Cescatti, A.: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy, Biogeosciences, 8, 3809–3821, https://doi.org/10.5194/bg-8-3809-2011, 2011.
Melesse, A. M. and Hanley, R. S.: Artificial neural network application for
multi-ecosystem carbon flux simulation, Ecol. Model., 189,
305–314, https://doi.org/10.1016/j.ecolmodel.2005.03.014, 2005.
Michel, F. A., Fritz, P., and Drimmie, R. J.: Evidence of climatic change
from oxygen and carbon isotope variations in sediments of a small arctic
lake, Canada, J. Quaternary Sci., 4, 201–209,
https://doi.org/10.1002/jqs.3390040302, 1989.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest
Meteorol., 147, 209–232, https://doi.org/10.1016/j.agrformet.2007.08.011, 2007.
Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., and Heimann, M.:
Characterization of ecosystem responses to climatic controls using
artificial neural networks, Glob, Change Biol,, 16, 2737–2749,
https://doi.org/10.1111/j.1365-2486.2010.02171.x, 2010.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
Detrending, and Filtering of Eddy Covariance Time Series, in: Handbook of
Micrometeorology, edited by: Lee, X., Massman, W., and Law, B.,
Springer Netherlands, 7–31, 2004.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A
system to measure surface fluxes of momentum, sensible heat, water vapour
and carbon dioxide, J. Hydrol., 188, 589–611,
https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
dynamics, impacts and research priorities, Environ. Res. Lett., 6,
045509, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Nadeau, D. F., Rousseau, A. N., Coursolle, C., Margolis, H. A., and Parlange, M. B.: Summer methane fluxes from a boreal bog in northern Quebec, Canada,
using eddy covariance measurements, Atmos. Environ., 81, 464–474,
https://doi.org/10.1016/j.atmosenv.2013.09.044, 2013.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
O'Neill, H. B. and Burn, C. R.: Physical and temporal factors controlling
the development of near-surface ground ice at Illisarvik, western Arctic
coast, Canada, Can. J. Earth Sci., 49, 1096–1110, 2012.
Ovenden, L.: Vegetation Colonizing the Bed of a Recently Drained Thermokarst
Lake (illisarvik), Northwest-Territories, Can. J. Bot.,
64, 2688–2692, 1986.
Papale, D. and Valentini, R.: A new assessment of European forests carbon
exchanges by eddy fluxes and artificial neural network spatialization,
Glob. Change Biol., 9, 525–535, https://doi.org/10.1046/j.1365-2486.2003.00609.x,
2003.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K.,
Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., and Dolman, A. J.:
Spatial and temporal dynamics in eddy covariance observations of methane
fluxes at a tundra site in northeastern Siberia, J. Geophys.
Res.-Biogeo., 116, G3, https://doi.org/10.1029/2010JG001637, 2011.
Paul-Limoges, E., Christen, A., Coops, N., Black, T., and Trofymow, J.:
Estimation of aerodynamic roughness of a harvested Douglas-fir forest using
airborne LiDAR, Remote Sens. Environ., 136, 225–233,
https://doi.org/10.1016/j.rse.2013.05.007, 2013.
Riederer, M., Serafimovich, A., and Foken, T.: Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions, Atmos. Meas. Tech., 7, 1057–1064, https://doi.org/10.5194/amt-7-1057-2014, 2014.
Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on
ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta,
Siberia, J. Geophys. Res.-Biogeo., 113, G00A03,
https://doi.org/10.1029/2007JG000505, 2008.
Schmid, H. P.: Footprint modeling for vegetation atmosphere exchange
studies: a review and perspective, Agr. Forest Meteorol.,
113, 159–183, https://doi.org/10.1016/S0168-1923(02)00107-7, 2002.
Skeeter, J.: June-Spaceboots/Illisarvik_CFluxes,
available at: https://github.com/June-Spaceboots/Illisarvik_CFluxes,
last access: 3 December 2019.
Street, L. E., Subke, J.-A., Baxter, R., Dinsmore, K. J., Knoblauch, C., and
Wookey, P. A.: Ecosystem carbon dynamics differ between tundra shrub types
in the western Canadian Arctic, Environ. Res. Lett., 13, 084014,
https://doi.org/10.1088/1748-9326/aad363, 2018.
Sturm, M., Racine, C., and Tape, K.: Increasing shrub abundance in the
Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Sturtevant, C. S. and Oechel, W. C.: Spatial variation in landscape-level
CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation,
wetness, and the thaw lake cycle, Glob. Change Biol., 19, 2853–2866,
https://doi.org/10.1111/gcb.12247, 2013.
Sweet, S. K., Griffin, K. L., Steltzer, H., Gough, L., and Boelman, N. T.:
Greater deciduous shrub abundance extends tundra peak season and increases
modeled net CO2 uptake, Glob. Change Biol., 21, 2394–2409,
https://doi.org/10.1111/gcb.12852, 2015.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region: Soil organic carbon pools, Global Biogeochem. Cy.,
23, 1–11, https://doi.org/10.1029/2008GB003327, 2009.
Tetko, I. V., Livingstone, D. J., and Luik, A. I.: Neural network studies. 1.
Comparison of overfitting and overtraining, J. Chem. Inf. Model., 35, 826–833, https://doi.org/10.1021/ci00027a006, 1995.
van der Molen, M. K., Huissteden, J. van, Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev, S. V., and Suzdalov, D. A.: The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia, Biogeosciences, 4, 985–1003, https://doi.org/10.5194/bg-4-985-2007, 2007.
van Huissteden, J., Berrittella, C., Parmentier, F. J. W., Mi, Y., Maximov, T. C., and Dolman, A. J.: Methane emissions from permafrost thaw lakes
limited by lake drainage, Nat. Clim. Change, 1, 119–123,
https://doi.org/10.1038/nclimate1101, 2011.
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for Tower and Aircraft Data, J. Atmos. Oceanic Technol., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Virkkala, A.-M., Virtanen, T., Lehtonen, A., Rinne, J., and Luoto, M.: The
current state of CO2 flux chamber studies in the Arctic tundra: A review,
Prog. Phys. Geog., 42, 030913331774578,
https://doi.org/10.1177/0309133317745784, 2018.
Vitale, D., Bilancia, M., and Papale, D.: A Multiple Imputation Strategy for
Eddy Covariance Data, J. Environ. Inform., 34,
68–87, 2018.
Walker, D., Raynolds, M., Daniëls, F., Einarsson, E., Elvebakk, A.,
Gould, W., Katenin, A., Kholod, S., Markon, C., Melnikov, E., Moskalenko, N., Talbot, S., Yurtsev, B., and Team, T.: The Circumpolar Arctic Vegetation
Map, J. Veg. Sci., 16, 267–282,
https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Walter, K. M., Smith, L. C., and Chapin, F. S.: Methane Bubbling from
Northern Lakes: Present and Future Contributions to the Global Methane
Budget, Philosophical Transactions: Mathematical, Phys. Eng.
Sci., 365, 1657–1676, 2007.
Webb, E., Pearman, G., and Leuning, R.: Correction of Flux Measurements for
Density Effects Due to Heat and Water-Vapor Transfer, Q. J. Roy. Meteor.
Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Weigend, A. S. and Lebaron, B.: Evaluating Neural Network Predictors by
Bootstrapping, Humboldt University of Berlin, Interdisciplinary Research
Project 373: Quantification and Simulation of Economic Processes, available
at: https://ideas.repec.org/p/zbw/sfb373/199435.html (last access:
21 January 2019), 1994.
Whalen, S. C. and Reeburgh, W. S.: Consumption of atmospheric methane by
tundra soils, Nature, 346, 160–162, https://doi.org/10.1038/346160a0, 1990.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic Anemometer Tilt
Correction Algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001.
Wilson, M. A., Burn C. R., and Humphreys E. R.: Vegetation Development and
Variation in Near-Surface Ground Temperatures at Illisarvik, Western Arctic
Coast, Cold Regions Engineering 2019, 687–695,
https://doi.org/10.1061/9780784482599.079, 2019.
Wilson, K. S. and Humphreys, E. R.: Carbon dioxide and methane fluxes from arctic mudboils, Can. J. Soil Sci., 90, 441–449, https://doi.org/10.4141/CJSS09073, 2010.
Zhang, Y., Sachs, T., Li, C., and Boike, J.: Upscaling methane fluxes from
closed chambers to eddy covariance based on a permafrost biogeochemistry
integrated model, Glob. Change Biol., 18, 1428–1440,
https://doi.org/10.1111/j.1365-2486.2011.02587.x, 2012.
Zona, D., Oechel, W. C., Kochendorfer, J., Paw U, K. T., Salyuk, A. N.,
Olivas, P. C., Oberbauer, S. F., and Lipson, D. A.: Methane fluxes during the
initiation of a large-scale water table manipulation experiment in the
Alaskan Arctic tundra, Glob. Biogeochem. Cy., 23, GB2013,
https://doi.org/10.1029/2009GB003487, 2009.
Zona, D., Oechel, W. C., Peterson, K. M., Clements, R. J.,
Paw, U. K. T., and Ustin, S. L.: Characterization of the carbon fluxes of a vegetated drained
lake basin chronosequence on the Alaskan Arctic Coastal Plain, Glob. Change
Biol., 16, 1870–1882, https://doi.org/10.1111/j.1365-2486.2009.02107.x, 2010.
Zona, D., Lipson, D. A., Paw U, K. T., Oberbauer, S. F., Olivas, P., Gioli, B., and Oechel, W. C.: Increased CO2 loss from vegetated drained lake tundra
ecosystems due to flooding, Glob. Biogeochem. Cy., 26, GB2004,
https://doi.org/10.1029/2011GB004037, 2012.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget, P. Natl.
Acad. Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Zulueta, R. C., Oechel, W. C., Loescher, H. W., Lawrence, W. T., and Paw U. K. T.: Aircraft-derived regional scale CO2 fluxes from vegetated drained
thaw-lake basins and interstitial tundra on the Arctic Coastal Plain of
Alaska, Glob. Change Biol., 17, 2781–2802,
https://doi.org/10.1111/j.1365-2486.2011.02433.x, 2011.
Short summary
This study investigates carbon fluxes at Illisarvik, an artificial drained thermokarst lake basin (DTLB) in Canada's Northwest Territories. This is the first carbon balance study in a DTLB outside of Alaska. We used neural networks to identify the factors controlling fluxes and to model the effects of the controlling factors. We discuss the role of vegetation heterogeneity in fluxes, especially of methane, and we show how the carbon fluxes differ from Alaskan DTLBs.
This study investigates carbon fluxes at Illisarvik, an artificial drained thermokarst lake...
Altmetrics
Final-revised paper
Preprint