Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5655-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5655-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surfaces of silver birch (Betula pendula) are sources of biological ice nuclei: in vivo and in situ investigations
Teresa M. Seifried
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
Paul Bieber
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
Laura Felgitsch
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
Julian Vlasich
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
Florian Reyzek
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
David G. Schmale III
School of Plant and Environmental Sciences, Virginia Tech,
Blacksburg, Virginia 24061-0390, USA
Hinrich Grothe
CORRESPONDING AUTHOR
Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
Related authors
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Julia Burkart, Jürgen Gratzl, Teresa M. Seifried, Paul Bieber, and Hinrich Grothe
Biogeosciences, 18, 5751–5765, https://doi.org/10.5194/bg-18-5751-2021, https://doi.org/10.5194/bg-18-5751-2021, 2021
Short summary
Short summary
Extracts of birch pollen grains are known to be ice nucleation active and thus impact cloud formation and climate. In this study we develop an extraction method to separate subpollen particles from ice nucleating macromolecules. Our results thereby illustrate that ice nucleating macromolecules can be washed off the subpollen particles and that the ice activity is linked to the presence of proteins.
Jürgen Gratzl, Alexander Böhmländer, Sanna Pätsi, Clara-E. Pogner, Markus Gorfer, David Brus, Konstantinos Matthaios Doulgeris, Florian Wieland, Eija Asmi, Annika Saarto, Ottmar Möhler, Dominik Stolzenburg, and Hinrich Grothe
Atmos. Chem. Phys., 25, 12007–12035, https://doi.org/10.5194/acp-25-12007-2025, https://doi.org/10.5194/acp-25-12007-2025, 2025
Short summary
Short summary
We studied particles in the air over 1 year in the Finnish sub-Arctic to understand how biological particles affect ice formation in clouds. We found that fungal spores are the main contributors to ice formation at warmer temperatures. These particles are released locally and vary with the weather. Our results also show that we know very little about which fungi can form ice in the atmosphere, highlighting a major gap in our understanding of how nature influences weather and climate.
Jürgen Gratzl, David Brus, Konstantinos Doulgeris, Alexander Böhmländer, Ottmar Möhler, and Hinrich Grothe
Earth Syst. Sci. Data, 17, 3975–3985, https://doi.org/10.5194/essd-17-3975-2025, https://doi.org/10.5194/essd-17-3975-2025, 2025
Short summary
Short summary
Near-real time monitoring of airborne biological particles like fungal spores or pollen grains is of great interest for two main reasons: to improve atmospheric allergen forecasts and to deepen the understanding of how bio-aerosols influence cloud formation. Here, we measured fluorescent bio-aerosols in the Finnish sub-Arctic with a high time resolution. A data set that might improve our understanding of biosphere–cloud interactions and the dynamics of bio-aerosols in the atmosphere.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Peter J. Wlasits, Joonas Enroth, Joonas Vanhanen, Aki Pajunoja, Hinrich Grothe, Paul M. Winkler, and Dominik Stolzenburg
Aerosol Research, 2, 199–206, https://doi.org/10.5194/ar-2-199-2024, https://doi.org/10.5194/ar-2-199-2024, 2024
Short summary
Short summary
We highlight that the composition dependence of the counting efficiency of condensation particle counters can be immensely reduced by choice of the working fluid. A butanol- and a propylene glycol-based version of the Airmodus A30 was calibrated using a set of four different seed particles. Our study shows that composition-dependent counting efficiencies almost vanish in the case of the propylene glycol-based CPC. Simulations of supersaturation profiles were used to explain the results.
Julia Burkart, Jürgen Gratzl, Teresa M. Seifried, Paul Bieber, and Hinrich Grothe
Biogeosciences, 18, 5751–5765, https://doi.org/10.5194/bg-18-5751-2021, https://doi.org/10.5194/bg-18-5751-2021, 2021
Short summary
Short summary
Extracts of birch pollen grains are known to be ice nucleation active and thus impact cloud formation and climate. In this study we develop an extraction method to separate subpollen particles from ice nucleating macromolecules. Our results thereby illustrate that ice nucleating macromolecules can be washed off the subpollen particles and that the ice activity is linked to the presence of proteins.
Theresa Haller, Eva Sommer, Thomas Steinkogler, Christian Rentenberger, Anna Wonaschuetz, Anne Kasper-Giebl, Hinrich Grothe, and Regina Hitzenberger
Atmos. Meas. Tech., 14, 3721–3735, https://doi.org/10.5194/amt-14-3721-2021, https://doi.org/10.5194/amt-14-3721-2021, 2021
Short summary
Short summary
Structural changes of carbonaceous aerosol samples during thermal–optical measurement techniques cause a darkening of the sample during the heating procedure which can influence the attribution of the carbonaceous material to organic and elemental carbon. We analyzed structural changes of atmospheric aerosol samples occurring during the EUSAAR2 and NIOSH870 measurement protocols with Raman spectroscopy. We found that the darkening of the sample is not necessarily caused by graphitization.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Cited articles
Allitt, U.: Airborne fungal spores and the thunderstorm of 24 June 1994,
Aerobiologia, 16, 397–406, https://doi.org/10.1023/A:1026503500730, 2000.
Ashworth, E. N., Echlin, P., Pearce, R. S., and Hayes, T. L.: Ice Formation
and Tissue-Response in Apple Twigs, Plant Cell Environ, 11, 703–710,
https://doi.org/10.1111/j.1365-3040.1988.tb01153.x, 1988.
Ashworth, E. N.: Response of bark and wood cells to freezing, in: Advances
in Low-Temperature Biology, 65–106, 1996.
Baker, M. B.: Cloud Microphysics and Climate, Science, 276, 1072–1078,
https://doi.org/10.1126/science.276.5315.1072, 1997.
Beck, P., Caudullo, G., de Rigo, D., and Tinner, W.: Betula pendula, Betula
pubescens and other birches in Europe: distribution, habitat, usage and
threats, in: European Atlas of Forest Tree Species, Publ. Off. EU,
Luxembourg, 70–73, 2016.
Bieber, P., Seifried, T. M., Burkart, J., Gratzl, J., Kasper-Giebl, A.,
Schmale, D. G., and Grothe, H.: A Drone-Based Bioaerosol Sampling System to
Monitor Ice Nucleation Particles in the Lower Atmosphere, Remote Sens.,
12, 552, https://doi.org/10.3390/rs12030552, 2020.
Bigg, E. K. and Miles, G. T.: The Results of Large–Scale Measurements of
Natural Ice Nuclei, J. Atmos. Sci., 21, 396–403,
https://doi.org/10.1175/1520-0469, 1964.
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012.
Brush, R. A., Griffith, M., and Mlynarz, A.: Characterization and
Quantification of Intrinsic Ice Nucleators in Winter Rye (Secale cereale)
Leaves, Plant Physiol., 104, 725–735, https://doi.org/10.1104/pp.104.2.725, 1994.
Burke, M., Gusta, L., Quamme, H., Weiser, C., and Li, P.: Freezing and
injury in plants, Ann. Rev. Plant Physiol., 27, 507–528, 1976.
Cantrell, W. and Heymsfield, A.: Production of ice in tropospheric clouds:
A review, B. Am. Meteorol. Soc., 86, 795–808,
2005.
Conen, F., Stopelli, E., and Zimmermann, L.: Clues that decaying leaves
enrich Arctic air with ice nucleating particles, Atmos. Environ.,
129, 91–94, https://doi.org/10.1016/j.atmosenv.2016.01.027,
2016.
Conen, F., Yakutin, M., Yttri, K., and Hüglin, C.: Ice Nucleating
Particle Concentrations Increase When Leaves Fall in Autumn, Atmosphere, 8,
202, https://doi.org/10.3390/atmos8100202, 2017.
Dahlberg, U., Berge, T. W., Petersson, H., and Vencatasawmy, C. P.:
Modelling biomass and leaf area index in a sub-arctic Scandinavian mountain
area, Scand. J. Forest Res., 19, 60–71, https://doi.org/10.1080/02827580310019266, 2004.
DeMott, P. J.: An Exploratory Study of Ice Nucleation by Soot Aerosols,
J. Appl. Meteorol., 29, 1072–1079, https://doi.org/10.1175/1520-0450, 1990.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl,
U., and Jaenicke, R.: Primary biological aerosol particles in the
atmosphere: a review, Tellus B, 64,
15598, https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., and Jaenicke, R.:
The ice nucleating ability of pollen: Part I: Laboratory studies in
deposition and condensation freezing modes, Atmos. Res., 58, 75–87,
https://doi.org/10.1016/S0169-8095(01)00091-6, 2001.
Dorsey, N. E.: The Freezing of Supercooled Water, T. Am. Philos. Soc., 38, 247–328, https://doi.org/10.2307/1005602, 1948.
Ene, L., Næsset, E., and Gobakken, T.: Single tree detection in
heterogeneous boreal forests using airborne laser scanning and area-based
stem number estimates, Int. J. Remote Sens., 33,
5171–5193, https://doi.org/10.1080/01431161.2012.657363, 2012.
Felgitsch, L., Baloh, P., Burkart, J., Mayr, M., Momken, M. E., Seifried, T. M., Winkler, P., Schmale III, D. G., and Grothe, H.: Birch leaves and branches as a source of ice-nucleating macromolecules, Atmos. Chem. Phys., 18, 16063–16079, https://doi.org/10.5194/acp-18-16063-2018, 2018.
Felgitsch, L., Bichler, M., Burkart, J., Fiala, B., Häusler, T.,
Hitzenberger, R., and Grothe, H.: Heterogeneous Freezing of Liquid
Suspensions Including Juices and Extracts from Berries and Leaves from
Perennial Plants, Atmosphere, 10, 37, https://doi.org/10.3390/atmos10010037, 2019.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.
W., Haywood, J., Lean, J., Lowe, D. C., and Myhre, G.: Changes in
atmospheric constituents and in radiative forcing. Chapter 2, in: Climate
Change 2007, The Physical Science Basis, 996 pp., 2007.
Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosciences, 12, 1057–1071, https://doi.org/10.5194/bg-12-1057-2015, 2015.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
and ecosystem interactions, Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H., and Toumi, R.: Ice
nucleation on soot particles, J. Aerosol Sci., 32, 199–215,
https://doi.org/10.1016/S0021-8502(00)00077-X, 2001.
Gross, D. C., Proebsting, E. L., and Maccrindle-Zimmerman, H.: Development,
distribution, and characteristics of intrinsic, nonbacterial ice nuclei in
Prunus wood, Plant Physiol., 88, 915–922, https://doi.org/10.1104/pp.88.3.915, 1988.
Grote, M., Valenta, R., and Reichelt, R.: Abortive pollen germination: A
mechanism of allergen release in birch, alder, and hazel revealed by
immunogold electron microscopy, J. Allergy Clin. Immun.,
111, 1017–1023, https://doi.org/10.1067/mai.2003.1452, 2003.
Hacker, J. and Neuner, G.: Ice Propagation in Dehardened Alpine Plant
Species Studied by Infrared Differential Thermal Analysis (IDTA), Arctic,
Antarctic, and Alpine Research, 40, 660–670, 611, https://doi.org/10.1657/1523-0430(07-077), 2008.
Haga, D. I., Iannone, R., Wheeler, M. J., Mason, R., Polishchuk, E. A.,
Fetch Jr., T., Van der Kamp, B. J., McKendry, I. G., and Bertram, A. K.: Ice
nucleation properties of rust and bunt fungal spores and their transport to
high altitudes, where they can cause heterogeneous freezing, J. Geophys. Res.-Atmos., 118, 7260–7272, https://doi.org/10.1002/jgrd.50556, 2013.
Hara, K., Maki, T., Kobayashi, F., Kakikawa, M., Wada, M., and Matsuki, A.:
Variations of ice nuclei concentration induced by rain and snowfall within a
local forested site in Japan, Atmos. Environ., 127, 1–5, https://doi.org/10.1016/j.atmosenv.2015.12.009, 2016.
Hegg, D. and Baker, M.: Nucleation in the atmosphere, Reports on progress
in Physics, 72, 056801, https://doi.org/10.1088/0034-4885/72/5/056801, 2009.
Heiskanen, J.: Estimating aboveground tree biomass and leaf area index in a
mountain birch forest using ASTER satellite data, Int. J. Remote Sens., 27, 1135–1158, https://doi.org/10.1080/01431160500353858, 2006.
Hirst, J. M.: Changes in atmospheric spore content: Diurnal periodicity and
the effects of weather, T. Brit. Mycol. Soc., 36,
375–393, https://doi.org/10.1016/S0007-1536(53)80034-3, 1953.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S.,
and Velling, P.: Silviculture of birch (Betula pendula Roth and Betula
pubescens Ehrh.) in northern Europe, Forestry: An International Journal of
Forest Research, 83, 103–119, https://doi.org/10.1093/forestry/cpp035, 2009.
Iannone, R., Chernoff, D. I., Pringle, A., Martin, S. T., and Bertram, A. K.: The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere, Atmos. Chem. Phys., 11, 1191–1201, https://doi.org/10.5194/acp-11-1191-2011, 2011.
Ishikawa, M. and Sakai, A.: Freezing avoidance mechanisms by supercooling
in some Rhododendron flower buds with reference to water relations, Plant
Cell Physiol., 22, 953–967, https://doi.org/10.1093/oxfordjournals.pcp.a076259, 1981.
Ishikawa, M., Ishikawa, M., Toyomasu, T., Aoki, T., and Price, W. S.: Ice
nucleation activity in various tissues of Rhododendron flower buds: their
relevance to extraorgan freezing, Front, Plant Sci., 6, 1–12, https://doi.org/10.3389/fpls.2015.00149, 2015.
Isono, K. and Tanaka, T.: Sudden Increase of Ice Nucleus Concentration
Associated with Thunderstorm, J. Meteorol. Soc. Jpn., 44, 255–259, https://doi.org/10.2151/jmsj1965.44.5_255, 1966.
Jaenicke, R.: Abundance of Cellular Material and Proteins in the Atmosphere,
Science, 308, 73–73, https://doi.org/10.1126/science.1106335,
2005.
Johansson, T.: Biomass equations for determining fractions of common and
grey alders growing on abandoned farmland and some practical implications,
Biomass and Bioenergy, 18, 147–159, https://doi.org/10.1016/S0961-9534(99)00078-1, 2000.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on
atmospheric bioaerosol concentrations – a review, Science of The Total
Environment, 326, 151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021, 2004.
Joung, Y. S., Ge, Z., and Buie, C. R.: Bioaerosol generation by raindrops on
soil, Nat. Commun., 8, 14668, https://doi.org/10.1038/ncomms14668, 2017.
Karlsson, P. S., Weih, M., and Borg, C.: Mountain birch growth in relation
to climate and herbivores, in: Plant ecology, herbivory, and human impact in
Nordic mountain birch forests, Springer, 71–86, 2005.
Kieft, T. L.: Ice Nucleation Activity in Lichens, Appl. Environ. Microb., 54, 1678–1681, 1988.
Kim, S., Park, H., Gruszewski, H. A., Schmale III, D. G., and Jung, S.:
Vortex-induced dispersal of a plant pathogen by raindrop impact, P. Natl. Acad. Sci. USA, 116, 4917–4922, https://doi.org/10.1073/pnas.1820318116, 2019.
Kim, S., Wu, Z., Esmaili, E., Dombroskie, J. J., and Jung, S.: How a
raindrop gets shattered on biological surfaces, P. Natl. Acad. Sci. USA, 117, 13901–13907,
https://doi.org/10.1073/pnas.2002924117 2020.
Kishimoto, T., Sekozawa, Y., Yamazaki, H., Murakawa, H., Kuchitsu, K., and
Ishikawa, M.: Seasonal changes in ice nucleation activity in blueberry stems
and effects of cold treatments in vitro, Environmental and Experimental
Botany, 106, 13-23, https://doi.org/10.1016/j.envexpbot.2014.02.010, 2014a.
Kishimoto, T., Yamazaki, H., Saruwatari, A., Murakawa, H., Sekozawa, Y.,
Kuchitsu, K., Price, W. S., and Ishikawa, M.: High ice nucleation activity
located in blueberry stem bark is linked to primary freeze initiation and
adaptive freezing behaviour of the bark, AoB Plants, 6, 1–17, https://doi.org/10.1093/aobpla/plu044, 2014b.
Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale III, D. G., Pöschl, U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing, Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, 2019.
Lindow, S. E., Arny, D. C., and Upper, C. D.: Bacterial Ice Nucleation: A
Factor in Frost Injury to Plants, Plant Physiol., 70, 1084–1089,
https://doi.org/10.1104/pp.70.4.1084, 1982.
Lohmann, U.: A glaciation indirect aerosol effect caused by soot aerosols,
Geophys. Res. Lett., 29, 11-1–11-4, https://doi.org/10.1029/2001GL014357, 2002.
Mishchenko, M. I., Rossow, W. B., Macke, A., and Lacis, A. A.: Sensitivity
of cirrus cloud albedo, bidirectional reflectance and optical thickness
retrieval accuracy to ice particle shape, J. Geophys. Res.,
101, 16973–16985, https://doi.org/10.1029/96jd01155, 1996.
Morris, C. E., Georgakopoulos, D. G., and Sands, D. C.: Ice nucleation
active bacteria and their potential role in precipitation, Journal de
Physique IV (Proceedings), 121, 87–103, https://doi.org/10.1051/jp4:2004121004, 2004.
Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H.,
Christenson, H. K., and Murray, E. J.: Kinetics of the homogeneous freezing
of water, Phys. Chem. Chem. Phys., 12, 10380–10387, https://doi.org/10.1039/c003297b, 2010.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chemical
Society Reviews, 41, 6519–6554, https://doi.org/10.1039/C2CS35200A, 2012.
Pearce, R. S.: Plant Freezing and Damage, Ann. Bot., 87, 417–424,
https://doi.org/10.1006/anbo.2000.1352, 2001.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angewandte Chemie International Edition, 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman,
J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J.
L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D.,
Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R.,
Artaxo, P., and Andreae, M. O.: Rainforest Aerosols as Biogenic Nuclei of
Clouds and Precipitation in the Amazon, Science, 329, 1513–1516, https://doi.org/10.1126/science.1191056, 2010.
Pouleur, S., Richard, C., Martin, J.-G., and Antoun, H.: Ice Nucleation
Activity in Fusarium acuminatum and Fusarium avenaceum, Applied and
Environmental Microbiology, 58, 2960–2964, 1992.
Prenni, A. J., Tobo, Y., Garcia, E., DeMott, P. J., Huffman, J. A.,
McCluskey, C. S., Kreidenweis, S. M., Prenni, J. E., Pöhlker, C., and
Pöschl, U.: The impact of rain on ice nuclei populations at a forested
site in Colorado, Geophys. Res. Lett., 40, 227–231, https://doi.org/10.1029/2012gl053953, 2013.
Pruppbacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, 2nd ed., Kluwer Academic Publishers, 954 pp., 1997.
Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541–2550, https://doi.org/10.5194/acp-12-2541-2012, 2012.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Quamme, H. A.: Mechanism of supercooling in overwintering peach flower buds,
Journal of the American Society for Horticultural Science, 103, 57–61, 1978.
Rathnayake, C. M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P. S., O'Shaughnessy, P. T., and Stone, E. A.: Influence of rain on the abundance of bioaerosols in fine and coarse particles, Atmos. Chem. Phys., 17, 2459–2475, https://doi.org/10.5194/acp-17-2459-2017, 2017.
Sakai, A. and Larcher, W.: Frost Survival of Plants: Responses and
Adaptation to Freezing Stress, Ecological Studies, Springer Verlag, Berlin,
321 pp., 1987.
Schnell, R. C. and Vali, G.: World-wide Source of Leaf-derived Freezing
Nuclei, Nature, 246, 212–213, https://doi.org/10.1038/246212a0,
1973.
Storey, J. M. and Storey, K. B.: Cold hardiness and freeze tolerance,
Functional metabolism: regulation and adaptation, 473–503, 2005.
Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., and Glovsky, M.
M.: Birch pollen rupture and the release of aerosols of respirable
allergens, Clinical & Experimental Allergy, 34, 1591–1596, https://doi.org/10.1111/j.1365-2222.2004.02078.x, 2004.
Tobo, Y., Prenni, A. J., DeMott, P. J., Huffman, J. A., McCluskey, C. S.,
Tian, G., Pöhlker, C., Pöschl, U., and Kreidenweis, S. M.:
Biological aerosol particles as a key determinant of ice nuclei populations
in a forest ecosystem, J. Geophys. Res.-Atmos., 118, 10, https://doi.org/10.1002/jgrd.50801, 2013.
Turnbull, D. and Fisher, J. C.: Rate of Nucleation in Condensed Systems,
The Journal of Chemical Physics, 17, 71–73, https://doi.org/10.1063/1.1747055, 1949.
Uri, V., Lõhmus, K., Ostonen, I., Tullus, H., Lastik, R., and Vildo, M.:
Biomass production, foliar and root characteristics and nutrient
accumulation in young silver birch (Betula pendula Roth.) stand growing on
abandoned agricultural land, European Journal of Forest Research, 126,
495–506, https://doi.org/10.1007/s10342-007-0171-9, 2007.
Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., and Lõhmus,
K.: Biomass production and carbon sequestration in a fertile silver birch
(Betula pendula Roth) forest chronosequence, Forest Ecol. Manage.,
267, 117–126, https://doi.org/10.1016/j.foreco.2011.11.033,
2012.
Vali, G.: Quantitative Evaluation of Experimental Results an the
Heterogeneous Freezing Nucleation of Supercooled Liquids, J. Atmos. Sci., 28, 402–409, https://doi.org/10.1175/1520-0469, 1971.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vasebi, Y., Mechan Llontop, M. E., Hanlon, R., Schmale III, D. G., Schnell, R., and Vinatzer, B. A.: Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years, Biogeosciences, 16, 1675–1683, https://doi.org/10.5194/bg-16-1675-2019, 2019.
Wang, B., Harder, T. H., Kelly, S. T., Piens, D. S., China, S., Kovarik, L.,
Keiluweit, M., Arey, B. W., Gilles, M. K., and Laskin, A.: Airborne soil
organic particles generated by precipitation, Nat. Geosci., 9, 433–437,
https://10.1038/ngeo2705, 2016.
Weber, C. F.: Polytrichum commune spores nucleate ice and associated
microorganisms increase the temperature of ice nucleation activity onset,
Aerobiologia, 32, 353–361, https://doi.org/10.1007/s10453-015-9395-1, 2016.
Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., van
Montagu, M., and Warren, G. J.: Identification and purification of a
bacterial ice-nucleation protein, P. Natl. Acad. Sci. USA, 83, 7256–7260, https://doi.org/10.1073/pnas.83.19.7256, 1986.
Wright, T. P., Hader, J. D., McMeeking, G. R., and Petters, M. D.: High
Relative Humidity as a Trigger for Widespread Release of Ice Nuclei, Aerosol
Science and Technology, 48, i–v, https://doi.org/10.1080/02786826.2014.968244, 2014.
Zolles, T., Burkart, J., Häusler, T., Pummer, B., Hitzenberger, R., and
Grothe, H.: Identification of Ice Nucleation Active Sites on Feldspar Dust
Particles, The Journal of Physical Chemistry A, 119, 2692–2700, https://doi.org/10.1021/jp509839x, 2015.
Altmetrics
Final-revised paper
Preprint