Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1645-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1645-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
Department of Earth Sciences, University of Oxford, Oxford, UK
Walter Geibert
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
E. Malcolm S. Woodward
Plymouth Marine Laboratory, Plymouth, UK
Neil J. Wyatt
Ocean and Earth Sciences, National Oceanography Centre,
Southampton, UK
Maeve C. Lohan
Ocean and Earth Sciences, National Oceanography Centre,
Southampton, UK
Eric P. Achterberg
Ocean and Earth Sciences, National Oceanography Centre,
Southampton, UK
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Gideon M. Henderson
Department of Earth Sciences, University of Oxford, Oxford, UK
Related authors
No articles found.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian F. M. Breitenbach
Clim. Past, 21, 1533–1551, https://doi.org/10.5194/cp-21-1533-2025, https://doi.org/10.5194/cp-21-1533-2025, 2025
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate in 8.68 ± 0.09 Ma. We show that when the global average temperature was about 4.5 °C warmer than today (similar to what is expected in the coming decades should carbon emissions continue unabated), the Siberian Arctic temperature increased by more than 18 °C.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
Clim. Past, 21, 299–326, https://doi.org/10.5194/cp-21-299-2025, https://doi.org/10.5194/cp-21-299-2025, 2025
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial–interglacial sea ice responses to a changing climate and enhance our understanding of ocean–sea ice–ice shelf interactions and dynamics.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3639, https://doi.org/10.5194/egusphere-2024-3639, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers, and isolate the possible effect on phytoplankton community composition under a high emissions scenario.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Achterberg, E. P., Steigenberger, S., Marsay, C. M., LeMoigne, F. A. C., Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A., and Tanhua, T.: Iron biogeochemistry in the high
latitude North Atlantic Ocean, Sci. Rep., 8, 1283, https://doi.org/10.1038/s41598-018-19472-1, 2018.
Achterberg, E. P., Steigenberger, S., Klar, J. K., Browning, T. J., Marsay,
C. M., Painter, S. C., Vieira, L., Baker, A. R., Hamilton, D. S., Tanhua, T.,
and Moore, C. M.: Trace element biogeochemistry in the high latitude North
Atlantic Ocean; seasonal variations and volcanic inputs, Global
Biogeochem. Cy., e2020GB006674, https://doi.org/10.1029/2020GB006674, online first,
2020.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., and the SCOR/WCRP/IAPSO Working Group 136:
On the role of the Agulhas system in ocean circulation and climate, Nature,
472, 429–436, https://doi.org/10.1038/nature09983, 2011.
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefèvre, D., Monaco, C. L., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.-H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., and Wagener T.: Effect of natural iron
fertilization on carbon sequestration in the Southern Ocean, Nature, 446,
1070–1074, https://doi.org/10.1038/nature05700, 2007.
Bown, J., Boye, M., Baker, A., Duvieilbourg, E., Lacan, F., Le Moigne, F.,
Planchon, F., Speich, S., and Nelson, D. M.: The biogeochemical cycle of
dissolved cobalt in the Atlantic and the Southern Ocean south off the coast
of South Africa, Mar. Chem., 126, 193–206, https://doi.org/10.1016/j.marchem.2011.03.008, 2011.
Broecker, W. S., Goddard, J., and Sarmiento, J. L.: Distribution of Ra-226 in
Atlantic Ocean, Earth Planet. Sci. Lett., 32, 220–235, https://doi.org/10.1016/0012-821X(76)90063-7, 1976.
Browning, T. J., Bouman, H. A., Moore, C. M., Schlosser, C., Tarran, G. A., Woodward, E. M. S., and Henderson, G. M.: Nutrient regimes control phytoplankton ecophysiology in the South Atlantic, Biogeosciences, 11, 463–479, https://doi.org/10.5194/bg-11-463-2014, 2014.
Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., and
Moore, C. M.: Iron limitation of microbial phosphorus acquisition in the
tropical North Atlantic, Nat. Commun., 8, 15465, https://doi.org/10.1038/ncomms15465, 2017.
Bruland, K. W. and Franks, R. P.: Mn, Ni, Cu, Zn and Cd in the Western North
Atlantic, in: Trace Metals in Sea Water, edited by: Wong, C. S., Boyle, E.,
Bruland, K. W., Burton, J. D., and Goldberg, E. D., Springer, Boston, MA, USA, 395–414, https://doi.org/10.1007/978-1-4757-6864-0_23, 1983.
Cai, P., Huang, Y., Chen, M., Guo, L., Liu, G., and, Qiu, Y.: New production
based on Ra-228-derived nutrient budgets and thorium-estimated POC export at
the intercalibration station in the South China Sea, Deep-Sea Res., 49, 53–66, https://doi.org/10.1016/S0967-0637(01)00040-1, 2002.
Carr, A. S. and Botha, G. A.: Coastal Geomorphology, in: Southern African
Geomorphology: Recent Trends and New Directions, edited by: Holmes, P. and
Meadows, M. E., Sun Press, Bloemfontein, South Africa, 269–303, 2012.
Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal
concentrations, solubility and deposition fluxes in remote marine air over
the south-east Atlantic, Mar. Chem., 177, 45–56, https://doi.org/10.1016/j.marchem.2015.06.028, 2015.
Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G.,
Planquette, H., Salter, I., and Garabato, A. N.: Radium isotopes as tracers
of iron sources fueling a Southern Ocean phytoplankton bloom, Deep-Sea
Res., 54, 1989–1998, https://doi.org/10.1016/j.dsr2.2007.06.003, 2007.
Charette, M. A., Morris, P. J., Henderson, P. B., and Moore, W. S.: Radium
isotope distributions during the US GEOTRACES North Atlantic cruises, Mar.
Chem., 177, 184–195, https://doi.org/10.1016/j.marchem.2015.01.001, 2015.
Charette, M. A., Lam, P. J., Lohan, M. C., Kwon, E. Y., Hatje, V., Jeandel, C.,
Shiller, A. M., Cutter, G. A., Thomas, A., Boyd, P. W., Homoky, W. B.,
Milne, A., Thomas, H., Andersson, P. S., Porcelli, D., Tanaka, T.,
Geibert, W., Dehairs, F., and Garcia-Orellana, J.: Coastal ocean and
shelf-sea biogeochemical cycling of trace elements and isotopes: lessons
learned from GEOTRACES, Philos. T. R. Soc. A, 374, 20160076, https://doi.org/10.1098/rsta.2016.0076, 2016.
Chever, F., Bucciarelli, E., Sarthou, G., Speich, S., Arhan, M., Penven, P.,
and Tagliabue, A.: Physical speciation of iron in the Atlantic sector of the
Southern Ocean along a transect from the subtropical domain to the Weddell
Sea Gyre, J. Geophys. Res.-Oceans, 115, C10059, https://doi.org/10.1029/2009JC005880, 2010.
Clough, R., Floor, G. H., Quétel, C. R., Milne, A., Lohan, M. C., and Worsfold,
P. J.: Measurement uncertainty associated with shipboard sample collection
and filtration for the determination of the concentration of iron in
seawater, Anal. Methods, 8, 6711–6719, https://doi.org/10.1039/C6AY01551D, 2016.
Cochran, J. K.: The oceanic chemistry of the uranium- and thorium-series
nuclides, in: Uranium-Series Disequilibrium: Applications to Earth, Marine,
and Environmental Sciences, edited by: Ivanovich, M. and Harmon R. S.,
Clarendon Press, Oxford, UK, 334–391, 1992.
Cutter, G, Andersson, P., Codispoti, L, Croot, P., Francois, R., Lohan,
M. C., Obata, H., and Rutgers van der Loeff, M.: Sampling and sample-handling
protocols for GEOTRACES cruises, available at:
http://www.geotraces.org/libraries/documents/Intercalibration/Cookbook.pdf (last access: 10 January 2021), 2010.
Dulaiova, H., Ardelan, M. V., Henderson, P. B.,
and Charette, M. A.: Shelf-derived iron inputs drive biological productivity
in the southern Drake Passage, Global Biogeochem. Cy., 23, GB4014,
https://doi.org/10.1029/2008GB003406, 2009.
Emery, K. O.: Atlantic continental shelf and slope of the United States: U.S.
Geological Survey Professional Papers, 529, 1–23, 1966.
Foster, D. A., Staubwasser, M., and Henderson, G. M.: Ra-226 and Ba
concentrations in the Ross Sea measured with multicollector ICP mass
spectrometry, Mar. Chem., 87, 59–71, https://doi.org/10.1016/j.marchem.2004.02.003, 2004.
Gaiero, D. M., Simonella, L., Gassó, S., Gili, S., Stein, A. F., Sosa, P.,
Becchio, R., Arce, J., and Marelli, H.: Ground/satellite observations and
atmospheric modeling of dust storms originating in the high Puna- Altiplano
deserts (South America), implications for the interpretation of
paleo-climatic archives, J. Geophys. Res.-Atmos., 118,
3817–3831, https://doi.org/10.1002/jgrd.50036, 2013.
Geibert, W., Rodellas, V., Annett, A., van Beek, P., Garcia-Orellana, J.,
Hsieh, Y.-T., and Masque, P.: 226Ra determination via the rate of 222Rn ingrowth
with the Radium Delayed Coincidence Counter (RaDeCC), Limnol.
Oceanogr.-Meth., 11, 594–603, https://doi.org/10.4319/lom.2013.11.594, 2013.
Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E., and Schlosser,
C.: Inferring source regions and supply mechanisms of iron in the Southern
Ocean from satellite chlorophyll data, Deep Sea Res., 104, 9–25,
https://doi.org/10.1016/j.dsr.2015.05.007, 2015.
Hanfland, C.: Radium-226 and Radium-228 in the Atlantic sector of the
Southern Ocean, PhD thesis, Alfred Wegener Institut fur Polar und
Meeresforschung, Bremerhaven, Germany, 135 pp., 2002.
Hawco, N. J., Ohnemus, D. C., Resing, J. A., Twining, B. S., and Saito, M. A.: A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific, Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, 2016.
Hayes, C. T., Black, E. E., Anderson, R. F., Baskaran, M., Buesseler, K. O.,
Charette, M. A., Cheng, H., Cochran, J. K., Edwards, R. L., Fitzgerald, P.,
Lam, P. J., Lu, Y., Morris, S. O., Ohnemus, D. C., Pavia, F. J., Stewart, G.,
and Tang, Y.: Flux of Particulate Elements in the North Atlantic Ocean
Constrained by Multiple Radionuclides, Global Biogeochem. Cy., 32,
1738–1758, 2018.
Homoky, W., John, S. G., Conway, T. M., and Mills, R. A.: Distinct iron
isotopic signatures and supply from marine sediment dissolution, Nat.
Commun., 4, 2143, https://doi.org/10.1038/ncomms3143, 2013.
Hooker, Y., Prieto-Rios, E., and Solís-Marín, F. A.: Echinoderms of
Peru, in: Echinoderm research and diversity in Latin America, edited by:
Alvarado-Barrientos, J. J. and Solís-Marín, F. A., Springer,
Berlin, Germany, 277–299, 2013.
Hsieh, Y.-T. and Henderson, G. M.: Precise measurement of ratios
and Ra concentrations in seawater samples by multi-collector ICP mass
spectrometry, J. Anal. Atom. Spect., 26, 1338–1346,
https://doi.org/10.1039/C1JA10013K, 2011.
Jenkins, W. J.: Nitrate Flux into the Euphotic Zone near Bermuda, Nature,
331, 521–523, https://doi.org/10.1038/331521a0, 1988.
Kadko, D., Aguilar-Islas, A., Buck, C. S., Fitzsimmons, J. N., Landing, W. M.,
Shiller, A., Till, C. P., Bruland, K. W., Boyle, E. A., and Anderson, R. F.:
Sources, fluxes and residence times of trace elements measured during the
U.S. GEOTRACES East Pacific Zonal Transect, Mar. Chem., 222, 103781,
https://doi.org/10.1016/j.marchem.2020.103781, 2020.
Kaufman, A., Trier, R., Broecker, W. S., and Feely, H. W.: Distribution of
228Ra in the world ocean, J. Geophys. Res., 78, 8827–8848,
https://doi.org/10.1029/JC078i036p08827, 1973.
Key, R. M., Rotter, R. J., McDonald, G. J., and Slater, R. D.: Western Boundary
Exchange Experiment Final Data Report for large volume samples 228Ra, 226Ra,
9Be, and 10Be Results, Technical Report 90-1, Ocean Tracer Laboratory, Department of
Geology and Geophysics, Princeton University, Princeton, USA, 298 pp., 1990.
Key, R. M., Moore, W. S., and Sarmiento, J. L.: Transient Tracers in the Ocean
North Atlantic Study Final Data Report for 228Ra and 226Ra, Technical Report
92-2, Ocean Tracer Laboratory, Department of Geology and Geophysics, Princeton
University, Princeton, USA, 193 pp., 1992a.
Key, R. M., Moore, W. S., and Sarmiento, J. L.: Transient Tracers in the Ocean
Tropical Atlantic Study Final Data Report for 228Ra and 226Ra, Technical
Report 92-3, Ocean Tracer Laboratory, Department of Geology and Geophysics,
Princeton University, Princeton, USA, 298 pp., 1992b.
Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., and Rigor,
I. G.: Increased fluxes of shelf-derived materials to the central Arctic
Ocean, Sci. Adv., 4, eaao1302, https://doi.org/10.1126/sciadv.aao1302,
2018a.
Kipp, L. E., Sanial, V., Henderson, P. B., van Beek, P.,
Reyss, J.-L., Hammond, D. E., Moore, W. S., and Charette, M. A.: Radium isotopes
as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in
the deep ocean, Mar. Chem., 201, 51–65, https://doi.org/10.1016/j.marchem.2017.06.011, 2018b.
Knauss, K. G., Ku, T. L., and Moore, W. S.: Radium and Thorium Isotopes in
Surface Waters of East Pacific and Coastal Southern-California, Earth
Planet. Sci. Lett., 39, 235–249, https://doi.org/10.1016/0012-821X(78)90199-1, 1978.
Ku, T. L. and Lin, M. C.: Ra-226 Distribution in Antarctic Ocean, Earth
Planet. Sci. Lett., 32, 236–248, https://doi.org/10.1016/0012-821X(76)90064-9, 1976.
Ku, T. L. and Luo, S.: Ocean circulation/mixing studies with decay-series
isotopes, in: U-Th Series Nuclides in Aquatic Systems, edited by:
Krishnaswami, S. and Cochran, J. K., Elsevier, Oxford, UK, 307–344, 2008.
Ku, T. L., Luo, S. D., Kusakabe, M., and Bishop, J. K. B.: Ra-228-Derived
Nutrient Budgets in the Upper Equatorial Pacific and the Role of New
Silicate in Limiting Productivity, Deep-Sea Res., 42, 479–497, https://doi.org/10.1016/0967-0645(95)00020-Q, 1995.
Kunze, E. and Sanford, T. B.: Abyssal mixing: Where it is not, J. Phys.
Oceanogr., 26, 2286–2296, https://doi.org/10.1175/1520-0485(1996)026<2286:AMWIIN>2.0.CO;2, 1996.
Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Cho, H.-M., DeVries, T.,
Sarmiento, J. L., Charette, M. A., and Cho, Y.-K.: Global estimate of
submarine groundwater discharge based on an observationally constrained
radium isotope model, Geophys. Res. Lett., 41, 8438–8444, https://doi.org/10.1002/2014GL061574, 2014.
Lamontagne, S. and Webster, I. T.: Theoretical assessment of the effect of
vertical dispersivity on coastal seawater radium distribution, Front. Mar.
Sci., 6, 357, https://doi.org/10.3389/fmars.2019.00357, 2019.
Ledwell, J. R., Watson, A. J., and Law, C. S.: Evidence for slow mixing across
the pycnocline from an open-ocean tracer-release experiment, Nature, 364,
701–703, https://doi.org/10.1038/364701a0, 1993.
Le Gland, G., Mémery, L., Aumont, O., and Resplandy, L.: Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated?, Biogeosciences, 14, 3171–3189, https://doi.org/10.5194/bg-14-3171-2017, 2017.
Li, Y. H., Peng, T. H., Broecker, W. S., and Ostlund, H. G.: The Average Vertical
Mixing Coefficient for the Oceanic Thermocline, Tellus B, 36, 212–217, https://doi.org/10.3402/tellusb.v36i3.14905, 1984.
Liang, X., Spall, M., and Wunsch, C.: Global ocean vertical velocity from a
dynamically consistent ocean state estimate, J. Geophys.
Res.-Oceans, 122, 8208–8224, https://doi.org/10.1002/2017JC012985, 2017.
Lohan, M. C. and Tagliabue, A.: Oceanic Micronutrients: trace metals that are
essential for marine life, Elements, 14, 385–390, https://doi.org/10.2138/gselements.14.6.385, 2018.
Longhurst, A. R.: Ecological Geography of the Sea, Academic Press, Burlington, VT, USA, https://doi.org/10.1016/B978-0-12-455521-1.X5000-1, 2007.
Martin, A. P., Lucas, M. I., Painter, S. C., Pidcock, R., Prandke, H., Prandke,
H., and Stinchcombe, M. C.: The supply of nutrients due to vertical turbulent
mixing: a study at the Porcupine Abyssal Plain study site (49∘50′ N
16∘30′ W) in the Northeast Atlantic, Deep-Sea Res., 57,
1293–1302, https://doi.org/10.1016/j.dsr2.2010.01.006, 2010.
Menzel Barraqueta, J.-L., Klar, J. K., Gledhill, M., Schlosser, C., Shelley, R., Planquette, H. F., Wenzel, B., Sarthou, G., and Achterberg, E. P.: Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study, Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, 2019.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Earanon, E., Marinov, I.,
Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F.,
Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient
limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and
iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Moore, W. S.: Determining coastal mixing rates using radium isotopes, Cont.
Shelf Res., 20, 1993–2007, https://doi.org/10.1016/S0278-4343(00)00054-6, 2000.
Moore, W. S.: Inappropriate attempts to use distributions of 228Ra and 226Ra
in coastal waters to model mixing and advection rates, Cont. Shelf Res.,
105, 95–100, https://doi.org/10.1016/j.csr.2015.05.014, 2015.
Moore, W. S. and Arnold, R.: Measurement of Ra-223 and Ra-224 in coastal
waters using a delayed coincidence counter, J. Geophys.
Res.-Oceans, 101, 1321–1329, https://doi.org/10.1029/95JC03139, 1996.
Moore, W. S. and Dymond, J.: Fluxes of Ra-226 and Barium in the Pacific-Ocean
– the Importance of Boundary Processes, Earth Planet. Sci. Lett.,
107, 55–68, https://doi.org/10.1016/0012-821X(91)90043-H, 1991.
Moore, W. S., Key, R. M., and Sarmiento, J. L.: Techniques for Precise Mapping
of Ra-226 and Ra-228 in the Ocean, J. Geophys. Res.-Oceans,
90, 6983–6994, https://doi.org/10.1029/JC090iC04p06983, 1985.
Moore, W. S., Sarmiento, J. L., and Key, R. M.: Submarine groundwater discharge
revealed by 228Ra distribution in the upper Atlantic Ocean, Nat.
Geosci., 1, 309–311, https://doi.org/10.1038/ngeo183, 2008.
Morel, F. M. M. and Price, N. M.: The biogeochemical cycles of trace metals in
the oceans, Science, 300, 944–947, https://doi.org/10.1126/science.1083545, 2003.
Nelson, G., Boyd, A. J., Agenbag, J. J., and Duncombe Rae, C. M.: An upwelling
filament north-west of Cape Town, South Africa, S. Afr. J.
Marine Sci., 19, 75–88, https://doi.org/10.2989/025776198784126953, 1998.
Noble, A. E., Lamborg, C. H, Ohnemus, D. C., Lam, P. J., Goepfert, T. J.,
Measures, C. I., Frame, C. H., Casciotti, K. L., DiTullio, G. R., Jennings, J.,
and Saito, M. A.: Basin-scale inputs of cobalt, iron, and manganese from the
Benguela-Angola front to the South Atlantic Ocean, Limnol.
Oceanogr., 57, 989–1010, https://doi.org/10.4319/lo.2012.57.4.0989, 2012.
Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J., and Saito, M. A.: Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03, Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, 2017.
Nozaki, Y. and Yamamoto, Y.: Radium 228 based nitrate fluxes in the eastern
Indian Ocean and the South China Sea and a silicon-induced “alkalinity pump”
hypothesis, Global Biogeochem. Cy., 15, 555–567, https://doi.org/10.1029/2000GB001309, 2001.
Oschlies, A.: Nutrient supply to the surface waters of the North Atlantic: A
model study, J. Geophys. Res.-Oceans, 107, 3046, https://doi.org/10.1029/2000JC000275, 2002.
Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of
particle dynamics and upper ocean export in the Atlantic Ocean, Deep Sea
Res., 116, 42–59, https://doi.org/10.1016/j.dsr2.2014.11.010,
2015.
Painter, S. C., Henson, S. A., Forryan, A., Steigenberger, S., Klar, J., Stinchcombe, M. C., Rogan, N., Baker, A. R., Achterberg, E. P., and Moore, C. M.: An assessment of the vertical diffusive flux of iron and other nutrients to the surface waters of the subpolar North Atlantic Ocean, Biogeosciences, 11, 2113–2130, https://doi.org/10.5194/bg-11-2113-2014, 2014.
Paul, M., Van De Flierdt, T., Rehkämper, M., Khondoker, R., Weiss, D.,
Lohan, M. C., and Homoky, W. B.: Tracing the Agulhas leakage with lead isotopes,
Geophys. Res. Lett., 42, 8515–8521, https://doi.org/10.1002/2015GL065625, 2015.
Price, N. M. and Morel, F. M. M.: Cadmium and cobalt substitution for zinc in a
marine diatom, Nature, 344, 658–660, 1990.
Reid, D. F., Key, R. M., and Schink, D. R.: Radium, Thorium and Actinium
extraction from seawater using an improved manganese-oxide-coated fiber,
Earth Planet. Sci. Lett., 43, 223–226, https://doi.org/10.1016/0012-821X(79)90205-X, 1979.
Rigby, S. J., Williams, R. G., Achterberg, E. P., and Tagliabue, A.: Resource
availability and entrainment are driven by offsets between nutriclines and
winter mixed-layer depth, Global Biogeochem. Cy., 34, e2019GB006497,
https://doi.org/10.1029/2019GB006497, 2020.
Rijkenberg, M. J. A., Middag, R., Laan, P., Gerringa, L. J. A., van Aken, H. M.,
Schoemann, V., de Jong, J. T. M., and de Baar, H. J. W.: The distribution of
dissolved iron in the west Atlantic Ocean, PLoS One, 9, e101323, https://doi.org/10.1371/journal.pone.0101323, 2014.
Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., and
Weinstein, Y.: Submarine groundwater discharge as a major source of
nutrients to the Mediterranean Sea, P. Natl. Acad. Sci., 12, 3926–3930,
https://doi.org/10.1073/pnas.1419049112, 2015.
Rutgers van der Loeff, M. M., Key, R. M., Scholten, J., Bauch, D., and
Michel, A.: 228Ra as a tracer for shelf water in the arctic ocean, Deep. Sea
Res., 42, 1533–1553, https://doi.org/10.1016/0967-0645(95)00053-4, 1995.
Saito, M. A., Noble, A. E., Tagliabue, A., Goepfert, T. J., Lamborg, C. H., and
Jenkins, W. J.: Slow-spreading submarine ridges in the South Atlantic as a
significant oceanic iron source, Nat. Geosci., 6, 775–779, https://doi.org/10.1038/ngeo1893, 2013.
Sanial, V., Kipp, L. E., Henderson, P. B., van Beek, P., Reyss, J.-L.,
Hammond, D. E., Hawco, N., Saito, M. A., Resing, J. A., Sedwick, P. N., Moore,
W. S., and Charette, M. A.: Radium-228 as a tracer of dissolved trace element
inputs from the Peruvian continental margin, Mar. Chem., 201, 20–34,
https://doi.org/10.1016/j.marchem.2017.05.008, 2018.
Sarmiento, J. L., Feely, H. W., Moore, W. S., Bainbridge, A. E., and Broecker,
W. S.: Relationship between Vertical Eddy Diffusion and Buoyancy Gradient in
Deep-Sea, Earth Planet. Sci. Lett., 32, 357–370, https://doi.org/10.1016/0012-821X(76)90076-5, 1976.
Sarmiento, J. L., Thiele, G., Key, R. M., and Moore, W. S.: Oxygen and Nitrate
New Production and Remineralization in the North-Atlantic Subtropical Gyre,
J. Geophys. Res.-Oceans, 95, 18303–18315, https://doi.org/10.1029/JC095iC10p18303, 1990.
Schlitzer, R.: Mass and Heat Transport in the South Atlantic Derived from
Historical Hydrographie Data, edited by: Wefer, G., Berger, W. H., Siedler, G., and Webb, D. J. , in: The South Atlantic, Springer, Berlin and Heidelberg, Germany, 305–323, https://doi.org/10.1007/978-3-642-80353-6_17, 1996.
Schlitzer, R.: Quantifying He fluxes from the mantle using multi-tracer data
assimilation, Philos. T. R. Soc. A, 374, 20150288, https://doi.org/10.1098/rsta.2015.0288, 2016.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in marine
phytoplankton: Biological and geochemical implications, Limnol.
Oceanogr., 40, 1404–1417, https://doi.org/10.4319/lo.1995.40.8.1404, 1995.
Sunda, W. G. and Huntsman, S. A.: Interrelated influence of iron, light and
cell size on marine phytoplankton growth, Nature, 390, 389–392,
https://doi.org/10.1038/37093, 1997.
Sunda, W. G. and Huntsman, S. A.: Effect of Zn, Mn and Fe on Cd accumulation in
phytoplankton: Implications for oceanic Cd cycling, Limnol.
Oceanogr., 45, 1501–1516, https://doi.org/10.4319/lo.2000.45.7.1501,
2000.
Tagliabue, A., Sallee, J. B., Bowie, A. R., Levy, M., Swart, S., and Boyd,
P. W.: Surface-water iron supplies in the Southern Ocean sustained by deep
winter mixing, Nat. Geosci., 7, 314–320, https://doi.org/10.1038/Ngeo2101, 2014.
Thomalla, S., Turnewitsch, R., Lucas, M., and Poulton, A.: Particulate
organic carbon export from the North and South Atlantic gyres: the
234Th/238U disequilibrium approach, Deep Sea Res., 53, 1629–1648, https://doi.org/10.1016/j.dsr2.2006.05.018, 2006.
Urien, C. M. and Ewing, M.: Recent Sediments and Environment of Southern
Brazil, Uruguay, Buenos Aires, and Rio Negro Continental Shelf, in: The
Geology of Continental Margins, edited by: Burk, C. A. and Drake, C. L.,
Springer, Berlin and Heidelberg, Germany, 157–177, https://doi.org/10.1007/978-3-662-01141-6_12, 1974.
van Beek, P., Bourquin, M., Reyss, J.-L., Souhaut, M., Charette, M. A.,
and Jeande, C.: Radium isotopes to investigate the water mass pathways on
the Kerguelen Plateau (Southern Ocean), Deep-Sea Res., 55,
622–637, https://doi.org/10.1016/j.dsr2.2007.12.025, 2008.
Vieira, L. H., Krisch, S., Hopwood, M. J., Beck, A. J., Scholten, J.,
Liebetrau, V., and Achterberg, E. P.: Unprecedented Fe delivery from the
Congo River margin to the South Atlantic Gyre, Nat. Commun., 11, 556,
https://doi.org/10.1038/s41467-019-14255-2, 2020.
Windom, H. L., Moore, W. S., Niencheski, L. F. H., and Jahnke, R. A.: Submarine
groundwater discharge: a large, previously unrecognized source of dissolved
iron to the South Atlantic Ocean, Mar. Chem., 102, 252–266, https://doi.org/10.1016/j.marchem.2006.06.016, 2006.
Wyatt, N. J., Milne, A., Woodward, E. M. S., Rees, A. P., Browning, T. J.,
Bouman, H. A., Worsfold, P. J., and Lohan, M. C.: Biogeochemical cycling of
dissolved zinc along the GEOTRACES South Atlantic transect GA10 at
40∘S, Global Biogeochem. Cy., 28, 44–56, https://doi.org/10.1002/2013GB004637, 2014.
Wyatt, N. J., Milne, A., Achterberg, E. P., Browning, T. J., Bouman, H. A., Woodward, E. M. S., and Lohan, M. C.: Seasonal cycling of zinc and cobalt in the Southeast Atlantic along the GEOTRACES GA10 section, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-42, in review, 2020.
Yamada, M. and Nozaki, Y.: Radium Isotopes in Coastal and Open Ocean Surface
Waters of the Western North Pacific, Mar. Chem., 19, 379–389,
https://doi.org/10.1016/0304-4203(86)90057-5, 1986.
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions...
Altmetrics
Final-revised paper
Preprint