Articles | Volume 18, issue 10
Biogeosciences, 18, 3219–3241, 2021
https://doi.org/10.5194/bg-18-3219-2021
Biogeosciences, 18, 3219–3241, 2021
https://doi.org/10.5194/bg-18-3219-2021
Research article
28 May 2021
Research article | 28 May 2021

Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099

Martina Franz and Sönke Zaehle

Related authors

Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments
Martina Franz, Rocio Alonso, Almut Arneth, Patrick Büker, Susana Elvira, Giacomo Gerosa, Lisa Emberson, Zhaozhong Feng, Didier Le Thiec, Riccardo Marzuoli, Elina Oksanen, Johan Uddling, Matthew Wilkinson, and Sönke Zaehle
Biogeosciences, 15, 6941–6957, https://doi.org/10.5194/bg-15-6941-2018,https://doi.org/10.5194/bg-15-6941-2018, 2018
Short summary
Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model
Martina Franz, David Simpson, Almut Arneth, and Sönke Zaehle
Biogeosciences, 14, 45–71, https://doi.org/10.5194/bg-14-45-2017,https://doi.org/10.5194/bg-14-45-2017, 2017
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023,https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023,https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022,https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Effect of land use legacy on the future carbon sink for the conterminous U.S.
Benjamin Seth Felzer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-208,https://doi.org/10.5194/bg-2022-208, 2022
Revised manuscript accepted for BG
Short summary
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022,https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary

Cited articles

Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005. a
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change, Annu. Rev. Plant Biol., 63, 637–661, 2012. a
Anav, A., Menut, L., Khvorostyanov, D., and Viovy, N.: Impact of tropospheric ozone on the Euro-Mediterranean vegetation, Glob. Change Biol., 17, 2342–2359, 2011. a
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Springer, Dordrecht, https://doi.org/10.1007/978-94-017-0519-6_48, 1987. a
Barbo, D., Chappelka, A., Somers, G., Miller-Goodman, M., and Stolte, K.: Diversity of an early successional plant community as influenced by ozone, New Phytol., 138, 653–662, 1998. a
Download
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Altmetrics
Final-revised paper
Preprint