Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-367-2021
https://doi.org/10.5194/bg-18-367-2021
Research article
 | 
18 Jan 2021
Research article |  | 18 Jan 2021

Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland

Aurelio Guevara-Escobar, Enrique González-Sosa, Mónica Cervantes-Jiménez, Humberto Suzán-Azpiri, Mónica Elisa Queijeiro-Bolaños, Israel Carrillo-Ángeles, and Víctor Hugo Cambrón-Sandoval

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024,https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024,https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024,https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary

Cited articles

Aguirre-Díaz, G. J., Aguillón-Robles, A., Tristán-González, M., Labarthe-Hernández, G., López-Martínez, M., Bellon, H., and Nieto-Obregón, J.: Geologic setting of the Peña de Bernal Natural Monument, Querétaro, México: An endogenous volcanic dome, Geosphere, 9, 557–571, https://doi.org/10.1130/GES00843.1, 2013. 
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., and Peylin, P.: Spatiotemporal patterns of terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015. 
Anderson-Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., and Litvak, M. E.: Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico, Glob. Change Biol., 17, 410–424, https://doi.org/10.1111/j.1365-2486.2010.02269.x, 2011. 
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method, Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. 
Barron-Gafford, G. A., Sanchez-Cañete, E. P., Minor, R. L., Hendryx, S. M., Lee, E., Sutter, L. F., Tran, N., Parra, E., Colella, T., Murphy, P. C., Hamerlynck, E. P., Kumar, P., and Scott, R. L.: Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi-arid savanna, New Phytol., 215, 1451–1461, https://doi.org/10.1111/nph.14693, 2017. 
Download
Short summary
All vegetation types can sequester carbon dioxide. We compared ground measurements (eddy covariance) with remotely sensed data (Moderate Resolution Imaging Spectroradiometer, MODIS) and machine learning ensembles of primary production in a semiarid scrub in Mexico. The annual carbon sink for this vegetation type was −283.5 g C m−2 y−1; MODIS underestimated the primary productivity, and the machine learning modeling was better locally.
Altmetrics
Final-revised paper
Preprint