Articles | Volume 18, issue 20
https://doi.org/10.5194/bg-18-5751-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5751-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isolation of subpollen particles (SPPs) of birch: SPPs are potential carriers of ice nucleating macromolecules
Julia Burkart
CORRESPONDING AUTHOR
Faculty of Physics, University of Vienna, Vienna, Austria
Jürgen Gratzl
Faculty of Physics, University of Vienna, Vienna, Austria
Teresa M. Seifried
Institute of Materials Chemistry, TU Wien, Vienna, Austria
Paul Bieber
Institute of Materials Chemistry, TU Wien, Vienna, Austria
Hinrich Grothe
Institute of Materials Chemistry, TU Wien, Vienna, Austria
Related authors
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Jürgen Gratzl, Alexander Böhmländer, Sanna Pätsi, Clara-E. Pogner, Markus Gorfer, David Brus, Konstantinos Matthaios Doulgeris, Florian Wieland, Eija Asmi, Annika Saarto, Ottmar Möhler, Dominik Stolzenburg, and Hinrich Grothe
Atmos. Chem. Phys., 25, 12007–12035, https://doi.org/10.5194/acp-25-12007-2025, https://doi.org/10.5194/acp-25-12007-2025, 2025
Short summary
Short summary
We studied particles in the air over 1 year in the Finnish sub-Arctic to understand how biological particles affect ice formation in clouds. We found that fungal spores are the main contributors to ice formation at warmer temperatures. These particles are released locally and vary with the weather. Our results also show that we know very little about which fungi can form ice in the atmosphere, highlighting a major gap in our understanding of how nature influences weather and climate.
Jürgen Gratzl, David Brus, Konstantinos Doulgeris, Alexander Böhmländer, Ottmar Möhler, and Hinrich Grothe
Earth Syst. Sci. Data, 17, 3975–3985, https://doi.org/10.5194/essd-17-3975-2025, https://doi.org/10.5194/essd-17-3975-2025, 2025
Short summary
Short summary
Near-real time monitoring of airborne biological particles like fungal spores or pollen grains is of great interest for two main reasons: to improve atmospheric allergen forecasts and to deepen the understanding of how bio-aerosols influence cloud formation. Here, we measured fluorescent bio-aerosols in the Finnish sub-Arctic with a high time resolution. A data set that might improve our understanding of biosphere–cloud interactions and the dynamics of bio-aerosols in the atmosphere.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Peter J. Wlasits, Joonas Enroth, Joonas Vanhanen, Aki Pajunoja, Hinrich Grothe, Paul M. Winkler, and Dominik Stolzenburg
Aerosol Research, 2, 199–206, https://doi.org/10.5194/ar-2-199-2024, https://doi.org/10.5194/ar-2-199-2024, 2024
Short summary
Short summary
We highlight that the composition dependence of the counting efficiency of condensation particle counters can be immensely reduced by choice of the working fluid. A butanol- and a propylene glycol-based version of the Airmodus A30 was calibrated using a set of four different seed particles. Our study shows that composition-dependent counting efficiencies almost vanish in the case of the propylene glycol-based CPC. Simulations of supersaturation profiles were used to explain the results.
Theresa Haller, Eva Sommer, Thomas Steinkogler, Christian Rentenberger, Anna Wonaschuetz, Anne Kasper-Giebl, Hinrich Grothe, and Regina Hitzenberger
Atmos. Meas. Tech., 14, 3721–3735, https://doi.org/10.5194/amt-14-3721-2021, https://doi.org/10.5194/amt-14-3721-2021, 2021
Short summary
Short summary
Structural changes of carbonaceous aerosol samples during thermal–optical measurement techniques cause a darkening of the sample during the heating procedure which can influence the attribution of the carbonaceous material to organic and elemental carbon. We analyzed structural changes of atmospheric aerosol samples occurring during the EUSAAR2 and NIOSH870 measurement protocols with Raman spectroscopy. We found that the darkening of the sample is not necessarily caused by graphitization.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Teresa M. Seifried, Paul Bieber, Laura Felgitsch, Julian Vlasich, Florian Reyzek, David G. Schmale III, and Hinrich Grothe
Biogeosciences, 17, 5655–5667, https://doi.org/10.5194/bg-17-5655-2020, https://doi.org/10.5194/bg-17-5655-2020, 2020
Cited articles
Bacsi, A., Choudhury, B. K., Dharajiya, N., Sur, S., and Boldogh, I.:
Subpollen particles: Carriers of allergenic proteins and oxidases, J. Allergy Clin. Immun., 118, 844–850,
https://doi.org/10.1016/j.jaci.2006.07.006, 2006.
Baker, H. G. and Baker, I.: Starch in angiosperm pollen grains and its
anthecological significance, New. Zeal. J. Bot., 17, 535–535, https://doi.org/10.1080/0028825X.1979.10432569, 1979.
Bogler, S. and Borduas-Dedekind, N.: Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing, Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, 2020.
Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, 2019.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K.,
Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: T. F.
Intergovernmental Panel on Climate Change, (edn. Climate Change 2013: The Physical Science Basis)
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Bradford, M. M.: A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding, Anal Biochem., 72, 248–254, https://doi.org/10.1006/abio.1976.9999, 1976.
Buléon, A., Colonna, P., Planchot, V., and Ball, S.: Starch granules:
structure and biosynthesis, Int. J. Biol. Macromol., 23, 85–112,
https://doi.org/10.1016/S0141-8130(98)00040-3, 1998.
Burkart, J. and Gratzl, J.: Birch pollen rupture, Zenodo, https://doi.org/10.5281/zenodo.5550102, 2021.
D'Amato, G., Liccardi, G., and Frenguelli, G.: Thunderstorm-asthma and
pollen allergy, Allergy, 62, 11–16, https://doi.org/10.1111/j.1398-9995.2006.01271.x, 2007.
D'Amato, G., Tedeschini, E., Frenguelli, G., and D'Amato, M.: Allergens as
trigger factors for allergic respiratory diseases and severe asthma during
thunderstorms in pollen season, Aerobiologia, 35, 379–382,
https://doi.org/10.1007/s10453-019-09560-8, 2019.
Damialis, A., Kaimakamis, E., Konoglou, M., Akritidis, I., Traidl-Hoffmann,
C., and Gioulekas, D.: Estimating the abundance of airborne pollen and
fungal spores at variable elevations using an aircraft: how high can they
fly?, Sci. Rep.-UK, 7, 44535,
https://doi.org/10.1038/srep44535, 2017.
Dengate, H. N., Baruch, D. W., and Meredith, P.: The Density of Wheat
Starch Granules: A Tracer Dilution Procedure for Determining the Density of
an Immiscible Dispersed Phase, Starch – Stärke, 30, 80–84,
https://doi.org/10.1002/star.19780300304, 1978.
Diehl, K., Matthias-Maser, S., Jaenicke, R., and Mitra, S. K.: The ice
nucleating ability of pollen:: Part II. Laboratory studies in immersion and
contact freezing modes, Atmos. Res., 61, 125–133, https://doi.org/10.1016/S0169-8095(01)00132-6, 2002.
Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., and Jaenicke, R.:
The ice nucleating ability of pollen: Part I: Laboratory studies in
deposition and condensation freezing modes, Atmos. Res., 58,
75–87, https://doi.org/10.1016/S0169-8095(01)00091-6, 2001.
Diethart, B., Sam, S., and Weber, M.: Walls of allergenic pollen: Special
reference to the endexine, Grana, 46, 164–175,
https://doi.org/10.1080/00173130701472181, 2007.
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., and Koop, T.:
Boreal pollen contain ice-nucleating as well as ice-binding “antifreeze”
polysaccharides, Sci. Rep.-UK, 7, 41890,
https://doi.org/10.1038/srep41890, 2017.
Fægri, K. and Iversen, J.: Textbook of pollen analysis, 4 edn., reprint,
edited by: Fægri, K., Emil Kaland, P., and Krzywinski, K., Wiley, Chichester,
https://ubdata.univie.ac.at/AC07661753, 328 pp., ISBN: 0471937193, 1992.
Felgitsch, L., Baloh, P., Burkart, J., Mayr, M., Momken, M. E., Seifried, T. M., Winkler, P., Schmale III, D. G., and Grothe, H.: Birch leaves and branches as a source of ice-nucleating macromolecules, Atmos. Chem. Phys., 18, 16063–16079, https://doi.org/10.5194/acp-18-16063-2018, 2018.
Felgitsch, L., Bichler, M., Burkart, J., Fiala, B., Häusler, T.,
Hitzenberger, R., and Grothe, H.: Heterogeneous Freezing of Liquid
Suspensions Including Juices and Extracts from Berries and Leaves from
Perennial Plants, Atmosphere-Basel, 10, 37,
https://doi.org/10.3390/atmos10010037, 2019.
Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosciences, 12, 1057–1071, https://doi.org/10.5194/bg-12-1057-2015, 2015.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
and ecosystem interactions, Atmos. Res., 182, 346–376,
https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Grote, M., Valenta, R., and Reichelt, R.: Abortive pollen germination: A
mechanism of allergen release in birch, alder, and hazel revealed by
immunogold electron microscopy, J. Allergy Clin. Immun.,
111, 1017–1023,
https://doi.org/10.1067/mai.2003.1452, 2003.
Gute, E. and Abbatt, J. P.: Ice nucleating behavior of different tree
pollen in the immersion mode, Atmos. Environ., 231, 117488,
https://doi.org/10.1016/j.atmosenv.2020.117488, 2020.
Gute, E., David, R. O., Kanji, Z. A., and Abbatt, J. P.: Ice Nucleation
Ability of Tree Pollen Altered by Atmospheric Processing, ACS Earth
Space Chem., 4, 12, 2312–2319, 2020.
Haga, D. I., Iannone, R., Wheeler, M. J., Mason, R., Polishchuk, E. A.,
Fetch, T., Kamp, B. J. van der, McKendry, I. G., and Bertram, A. K.: Ice
nucleation properties of rust and bunt fungal spores and their transport to
high altitudes, where they can cause heterogeneous freezing, J. Geophys.
Res.-Atmos., 118, 7260–7272,
https://doi.org/10.1002/jgrd.50556, 2013.
Haga, D. I., Burrows, S. M., Iannone, R., Wheeler, M. J., Mason, R. H., Chen, J., Polishchuk, E. A., Pöschl, U., and Bertram, A. K.: Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores, Atmos. Chem. Phys., 14, 8611–8630, https://doi.org/10.5194/acp-14-8611-2014, 2014.
Hancock, R. D. and Tarbet, B. J.: The Other Double Helix – The Fascinating
Chemistry of Starch, J. Chem. Educ., 77, 988,
https://doi.org/10.1021/ed077p988, 2000.
Hedstrom, L.: Serine protease mechanism and specificity, Chem. Rev.,
102, 4501–4524, https://doi.org/10.1021/cr000033x, 2002.
Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev,
A., Hoffmann, N., Hoose, C., Jantsch, E., Koop, T., and Murakami, M.: Ice
nucleation by cellulose and its potential contribution to ice formation in
clouds, Nat. Geosci., 8, 273–277,
https://doi.org/10.1038/ngeo2374, 2015.
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019.
Hoidn, C., Puchner, E., Pertl, H., Holztrattner, E., and Obermeyer, G.: Non
diffusional release of allergens from pollen grains of Artemisia vulgaris
and Lilium longiflorum depends mainly on the type of the allergen,
Int. Arch. Allergy. Imm., 137, 27–36,
https://doi.org/10.1159/000084610, 2005.
Hoose, C., Kristjánsson, J. E., and Burrows, S. M.: How important is
biological ice nucleation in clouds on a global scale?, Environ. Res. Lett., 5, 024009,
https://doi.org/10.1088/1748-9326/5/2/024009, 2010a.
Hoose, C., Kristjánsson, J. n. E., Chen, J.-P., and Hazra, A.: A
Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by
Mineral Dust, Soot, and Biological Particles in a Global Climate Model,
J. Atmos. Sci., 67, 2483–2503,
https://doi.org/10.1175/2010jas3425.1, 2010b.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Hughes, D. D., Mampage, C. B. A., Jones, L. M., Liu, Z., and Stone, E. A.:
Characterization of Atmospheric Pollen Fragments during Springtime
Thunderstorms, Environ. Sci. Tech. Lett., 7, 409–414,
https://doi.org/10.1021/acs.estlett.0c00213, 2020.
Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G.,
Traidl-Hoffmann, C., Schmidt-Weber, C., Buters, J. T. M., and Menzel, A.:
Seasonal variation of birch and grass pollen loads and allergen release at
two sites in the German Alps, Atmos. Environ., 122, 83–93,
https://doi.org/10.1016/j.atmosenv.2015.08.031,
2015.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteor. Mon., 58, 1.1–1.33.
https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017.
Knackstedt, K., Moffett, B. F., Hartmann, S., Wex, H., Hill, T. C. J.,
Glasgo, E., Reitz, L., Augustin-Bauditz, S., Beall, B., Bullerjahn, G. S.,
Fröhlich-Nowoisky, J., Grawe, S., Lubitz, J., Stratmann, F., and McKay,
R. M.: A terrestrial origin for abundant riverine nanoscale ice-nucleating
particles, Environ. Sci. Technol., 52, 12358–12367, https://doi.org/10.1021/acs.est.8b03881, 2018.
Kozloff, L. M., Turner, M. A., and Arellano, F.: Formation of bacterial
membrane ice-nucleating lipoglycoprotein complexes, J. Bacteriol.,
173, 6528–6536,
https://doi.org/10.1128/jb.173.20.6528-6536.1991, 1991.
Kunert, A. T., Lamneck, M., Helleis, F., Pöschl, U., Pöhlker, M. L., and Fröhlich-Nowoisky, J.: Twin-plate Ice Nucleation Assay (TINA) with infrared detection for high-throughput droplet freezing experiments with biological ice nuclei in laboratory and field samples, Atmos. Meas. Tech., 11, 6327–6337, https://doi.org/10.5194/amt-11-6327-2018, 2018.
Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale III, D. G., Pöschl, U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing, Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, 2019.
Ling, M. L., Wex, H., Grawe, S., Jakobsson, J., Löndahl, J., Hartmann,
S., Finster, K., Boesen, T., and Šantlâ Temkiv, T.: Effects of Ice
Nucleation Protein Repeat Number and Oligomerization Level on Ice Nucleation
Activity, J. Geophys. Res.-Atmos., 123, 1802–1810,
https://doi.org/10.1002/2017JD027307, 2018.
Lloyd, G., Choularton, T., Bower, K., Crosier, J., Gallagher, M., Flynn, M., Dorsey, J., Liu, D., Taylor, J. W., Schlenczek, O., Fugal, J., Borrmann, S., Cotton, R., Field, P., and Blyth, A.: Small ice particles at slightly supercooled temperatures in tropical maritime convection, Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, 2020.
Maki, L. R., Galyan, E. L., Chang-Chien, M.-M., and Caldwell, D. R.: Ice
nucleation induced by Pseudomonas syringae, Appl. Microbiol., 28,
456–459, https://doi.org/10.1128/am.28.3.456-459.1974, 1974.
Matsushima, R., Maekawa, M., Kusano, M., Tomita, K., Kondo, H., Nishimura,
H., Crofts, N., Fujita, N., and Sakamoto, W.: Amyloplast Membrane Protein
SUBSTANDARD STARCH GRAIN Controls Starch Grain Size in Rice Endosperm,
Plant. Physiol., 170, 1445–1459,
https://doi.org/10.1104/pp.15.01811, 2016.
Mikhailov, E., Ivanova, O., Nebosko, E. Y., Vlasenko, S., and Ryshkevich,
T.: Subpollen particles as atmospheric cloud condensation nuclei. Izvestiya,
Atmos. Ocean. Phys., 55, 357–364,
https://doi.org/10.1134/S000143381904008X, 2019.
Möhler, O., DeMott, P. J., Vali, G., and Levin, Z.: Microbiology and atmospheric processes: the role of biological particles in cloud physics, Biogeosciences, 4, 1059–1071, https://doi.org/10.5194/bg-4-1059-2007, 2007.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519–6554,
https://doi.org/10.1039/C2CS35200A, 2012.
O'Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H.
C., Atkinson, J. D., Umo, N. S., and Webb, M. E.: The relevance of nanoscale
biological fragments for ice nucleation in clouds, Sci. Rep.-UK., 5,
8082, https://doi.org/10.1038/srep08082, 2015.
Papadopoulou, A., Green, R. J., and Frazier, R. A.: Interaction of
flavonoids with bovine serum albumin: a fluorescence quenching study,
J. Agr. Food. Chem., 53, 158–163,
https://doi.org/10.1021/jf048693g, 2005.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Pope, F. D.: Pollen grains are efficient cloud condensation nuclei,
Environ. Res. Lett., 5, 044015,
https://doi.org/10.1088/1748-9326/5/4/044015, 2010.
Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541–2550, https://doi.org/10.5194/acp-12-2541-2012, 2012.
Pummer, B. G., Bauer, H., Bernardi, J., Chazallon, B., Facq, S., Lendl, B.,
Whitmore, K., and Grothe, H.: Chemistry and morphology of dried-up pollen
suspension residues, J. Raman. Spectrosc., 44, 1654–1658,
https://doi.org/10.1002/jrs.4395, 2013.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Qiu, Y., Hudait, A., and Molinero, V.: How size and aggregation of
ice-binding proteins control their ice nucleation efficiency, J. Am. Chem. Soc., 141, 7439–7452,
https://doi.org/10.1021/jacs.9b01854, 2019.
Rawlings, N. D., Barrett, A. J., and Bateman, A.: MEROPS: the peptidase
database, Nucleic Acids Res., 38(suppl_1), D227–D233,
https://doi.org/10.1093/nar/gkp971, 2010.
Rathnayake, C. M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P. S., O'Shaughnessy, P. T., and Stone, E. A.: Influence of rain on the abundance of bioaerosols in fine and coarse particles, Atmos. Chem. Phys., 17, 2459–2475, https://doi.org/10.5194/acp-17-2459-2017, 2017.
Šantl-Temkiv, T., Sahyoun, M., Finster, K., Hartmann, S.,
Augustin-Bauditz, S., Stratmann, F., Wex, H., Clauss, T., Nielsen, N. W.,
Sørensen, J. H., Korsholm, U. S., Wick, L. Y., and Karlson, U. G.:
Characterization of airborne ice-nucleation-active bacteria and bacterial
fragments, Atmo. Environ., 109, 105–117, https:/doi.org/10.1016/j.atmosenv.2015.02.060, 2015.
Schäppi, G. F., Taylor, P. E., Staff, I. A., Suphioglu, C., and Knox, R.
B.: Source of Bet v 1 loaded inhalable particles from birch revealed, Sex. Plant. Reprod., 10, 315–323,
https://doi.org/10.1007/s004970050105, 1997.
Schäppi, G., Taylor, P., Staff, I., Rolland, J., and Suphioglu, C.:
Immunologic significance of respirable atmospheric starch granules
containing major birch allergen Bet v 1, Allergy, 54, 478–483,
https://doi.org/10.1034/j.1398-9995.1999.00838.x, 1999.
Seifried, T. M., Bieber, P., Felgitsch, L., Vlasich, J., Reyzek, F., Schmale III, D. G., and Grothe, H.: Surfaces of silver birch (Betula pendula) are sources of biological ice nuclei: in vivo and in situ investigations, Biogeosciences, 17, 5655–5667, https://doi.org/10.5194/bg-17-5655-2020, 2020.
Sénéchal, H., Visez, N., Charpin, D., Shahali, Y., Peltre, G.,
Biolley, J.-P., Lhuissier, F., Couderc, R., Yamada, O., Malrat-Domenge, A.,
Pham-Thi, N., Poncet, P., and Sutra, J.-P.: A Review of the Effects
of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and
Allergenicity, The Scientific World Journal, 2015, 940243,
https://doi.org/10.1155/2015/940243, 2015.
Šikoparija, B., Mimić, G., Panić, M., Marko, O.,
Radišić, P., Pejak-Šikoparija, T., and Pauling, A.: High
temporal resolution of airborne Ambrosia pollen measurements above the
source reveals emission characteristics, Atmos. Environ., 192,
13–23, https://doi.org/10.1016/j.atmosenv.2018.08.040, 2018.
Skjøth, C. A., Sommer, J., Stach, A., Smith, M., and Brandt, J.: The
long-range transport of birch (Betula) pollen from Poland and Germany causes
significant pre-season concentrations in Denmark, Clin. Exp. Allergy., 37, 1204–1212.
https://doi.org/10.1111/j.1365-2222.2007.02771.x, 2007.
Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl,
Å., and Siljamo, P.: Airborne pollen transport, in: Allergenic Pollen, edited by: Sofiev, M. and Bergmann, K. C., Springer, Dordrecht, 127–159, https://doi.org/10.1007/978-94-007-4881-1_5, 2012.
Staff, I., Schäppi, G., and Taylor, P.: Localisation of allergens in
ryegrass pollen and in airborne micronic particles, Protoplasma, 208,
47–57, https://doi.org/10.1007/BF01279074, 1999.
Steiner, A. L., Brooks, S. D., Deng, C., Thornton, D. C. O., Pendleton, M.
W., and Bryant, V.: Pollen as atmospheric cloud condensation nuclei,
Geophys. Res. Lett., 42, 3596–3602.
https://doi.org/10.1002/2015GL064060, 2015.
Suphioglu, C., Singh, M. B., Taylor, P., Knox, R., Bellomo, R., Holmes, P.,
and Puy, R.: Mechanism of grass-pollen-induced asthma, Lancet,
339, 569–572,
https://doi.org/10.1016/0140-6736(92)90864-Y, 1992.
Taylor, P. E. and Jonsson, H.: Thunderstorm asthma, Curr. Allergy
Asthm. Reports, 4, 409–413,
https://doi.org/10.1007/s11882-004-0092-3, 2004.
Taylor, P. E., Flagan, R., Miguel, A. G., Valenta, R., and Glovsky, M.:
Birch pollen rupture and the release of aerosols of respirable allergens,
Clin. Exp. Allergy, 34, 1591–1596, https://doi.org/10.1111/j.1365-2222.2004.02078.x, 2004.
Taylor, P. E., Jacobson, K. W., House, J. M., and Glovsky, M. M.: Links
between pollen, atopy and the asthma epidemic, Int. Arch. Allergy. Imm., 144, 162–170,
https://doi.org/10.1159/000103230, 2007.
Thien, F.: Melbourne epidemic thunderstorm asthma event 2016: Lessons learnt
from the perfect storm, Respirology, 23, 976–977, https://doi.org/10.1111/resp.13410, 2018.
Tong, H.-J., Ouyang, B., Nikolovski, N., Lienhard, D. M., Pope, F. D., and Kalberer, M.: A new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols, Atmos. Meas. Tech., 8, 1183–1195, https://doi.org/10.5194/amt-8-1183-2015, 2015.
Vali, G.: Quantitative Evaluation of Experimental Results and the
Heterogeneous Freezing Nucleation of Supercooled Liquids, J.
Atmos. Sci., 28, 402–409,
https://doi.org/10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2, 1971.
Visez, N., Chassard, G., Azarkan, N., Naas, O., Sénéchal, H., Sutra,
J.-P., Poncet, P., and Choël, M.: Wind-induced mechanical rupture of
birch pollen: Potential implications for allergen dispersal, J. Aerosol. Sci., 89, 77–84,
https://doi.org/10.1016/j.jaerosci.2015.07.005, 2015.
von Blohn, N., Mitra, S. K., Diehl, K., and Borrmann, S.: The ice nucleating
ability of pollen: Part III: New laboratory studies in immersion and contact
freezing modes including more pollen types, Atmos. Res., 78,
182–189,
https://doi.org/10.1016/j.atmosres.2005.03.008, 2005.
Vrtala, S., Grote, M., Duchêne, M., Kraft, D., Scheiner, O., and
Valenta, R.: Properties of tree and grass pollen allergens: reinvestigation
of the linkage between solubility and allergenicity, Int. Arch. Allergy Imm., 102, 160–169,
https://doi.org/10.1159/000236567, 1993.
Williams, C. G. and Després, V.: Northern Hemisphere forests at
temperate and boreal latitudes are substantial pollen contributors to
atmospheric bioaerosols, Forest. Ecol. Manag., 401, 187–191,
https://doi.org/10.1016/j.foreco.2017.06.040,
2017.
Wilson, S. L., Kelley, D. L., and Walker, V. K.: Ice-active characteristics
of soil bacteria selected by ice-affinity, Environ. Microbiol.,
8, 1816–1824,
https://doi.org/10.1111/j.1462-2920.2006.01066.x, 2006.
Wozniak, M. C., Solmon, F., and Steiner, A. L.: Pollen Rupture and Its
Impact on Precipitation in Clean Continental Conditions, Geophys. Res. Lett., 45, 7156–7164,
https://doi.org/10.1029/2018GL077692, 2018.
Xi, Y., Mercier, A., Kuang, C., Yun, J., Christy, A., Melo, L., Maldonado,
M. T., Raymond, J. A., and Bertram, A. K.: Concentrations and properties of
ice nucleating substances in exudates from Antarctic sea-ice diatoms,
Environ. Sci. Process. Impacts, 23, 323–334,
https://doi.org/10.1039/D0EM00398K, 2021.
Zachariassen, K. E. and Kristiansen, E.: Ice nucleation and antinucleation
in nature, Cryobiology, 41, 257–279,
https://doi.org/10.1006/cryo.2000.2289, 2000.
Zolles, T., Burkart, J., Häusler, T., Pummer, B.,
Hitzenberger, R., and Grothe, H.: Identification of ice nucleation active
sites on feldspar dust particles, The Journal of Physical Chemistry A,
119, 2692-2700, https://doi.org/10.1021/jp509839x, 2015.
Short summary
Extracts of birch pollen grains are known to be ice nucleation active and thus impact cloud formation and climate. In this study we develop an extraction method to separate subpollen particles from ice nucleating macromolecules. Our results thereby illustrate that ice nucleating macromolecules can be washed off the subpollen particles and that the ice activity is linked to the presence of proteins.
Extracts of birch pollen grains are known to be ice nucleation active and thus impact cloud...
Altmetrics
Final-revised paper
Preprint