Articles | Volume 19, issue 5
https://doi.org/10.5194/bg-19-1335-2022
https://doi.org/10.5194/bg-19-1335-2022
Research article
 | 
04 Mar 2022
Research article |  | 04 Mar 2022

Physiological and climate controls on foliar mercury uptake by European tree species

Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra

Related authors

A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020,https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023,https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023,https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023,https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023,https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023,https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary

Cited articles

Adams, M. B., Campbell, R. G., Allen, H. L., and Davey, C. B.: Root and foliar nutrient concentrations in loblolly pine: effects of season, site, and fertilization, Forest Sci., 33, 984–996, https://academic.oup.com/forestscience/article/33/4/984/4641975?login=true (last access: 16 February 2022), 1987. 
AMAP and UNEP: Technical background report to the global mercury assessment 2018. Arctic Monitoring and Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland, https://www.amap.no/documents/ (last access: 16 February 2022), 2019. 
Austrian Bio-Indicator Grid: https://bfw.ac.at/rz/bfwcms2.web?dok=3687 (last access: 16 February 2022), 2016. 
BFW: Official Homepage to: Austrian Bio-Indicator Grid, https://bfw.ac.at/rz/bfwcms.web?dok=3687, last access: 16 February 2022. 
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling, Sci. Total Environ., 721, 137647, https://doi.org/10.1016/j.scitotenv.2020.137647, 2020. 
Download
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Altmetrics
Final-revised paper
Preprint