Articles | Volume 19, issue 1
https://doi.org/10.5194/bg-19-165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Versatile soil gas concentration and isotope monitoring: optimization and integration of novel soil gas probes with online trace gas detection
Juliana Gil-Loaiza
School of Natural Resources and the Environment, University of Arizona,
Tucson, AZ 85721, USA
Joseph R. Roscioli
Aerodyne Research Inc., Billerica, MA 01821, USA
Joanne H. Shorter
Aerodyne Research Inc., Billerica, MA 01821, USA
Till H. M. Volkmann
Biosphere 2, University of Arizona, Oracle, AZ 85623, USA
Applied Intelligence, Accenture, 61476 Kronberg im Taunus, Hesse, Germany
Wei-Ren Ng
Biosphere 2, University of Arizona, Oracle, AZ 85623, USA
Jordan E. Krechmer
Aerodyne Research Inc., Billerica, MA 01821, USA
Laura K. Meredith
CORRESPONDING AUTHOR
School of Natural Resources and the Environment, University of Arizona,
Tucson, AZ 85721, USA
Biosphere 2, University of Arizona, Oracle, AZ 85623, USA
Related authors
No articles found.
John W. Halfacre, Lewis Marden, Marvin D. Shaw, Lucy J. Carpenter, Emily Matthews, Thomas J. Bannan, Hugh Coe, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Patrick R. Veres, Michael A. Robinson, Steven S. Brown, and Pete M. Edwards
Atmos. Meas. Tech., 18, 3799–3818, https://doi.org/10.5194/amt-18-3799-2025, https://doi.org/10.5194/amt-18-3799-2025, 2025
Short summary
Short summary
Nitryl chloride (ClNO2) is a reservoir of chlorine atoms and nitrogen oxides, both of which play important roles in atmospheric chemistry. However, all ambient ClNO2 observations so far have been made by a single technique, mass spectrometry, which needs complex calibrations. Here, we present a laser-based method that detects ClNO2 (TD-TILDAS – thermal dissociation–tunable infrared laser direct absorption spectrometry) without the need for complicated calibrations. The results show excellent agreement between these two methods from both laboratory and ambient samples.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Tara I. Yacovitch, Christoph Dyroff, Joseph R. Roscioli, Conner Daube, J. Barry McManus, and Scott C. Herndon
Atmos. Meas. Tech., 16, 1915–1921, https://doi.org/10.5194/amt-16-1915-2023, https://doi.org/10.5194/amt-16-1915-2023, 2023
Short summary
Short summary
Ethylene oxide is a toxic, carcinogenic compound used in the medical and bulk sterilization industry. Here we describe a precise and fast laser-based ethylene oxide monitor. We report months-long concentrations at a Massachusetts site, and we show how they suggest a potential emission source 35 km away. This source, and another, is confirmed by driving the instrument downwind of the sites, where concentrations were tens to tens of thousands of times greater than background levels.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023, https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis, enhancement of dimers in particles was observed. We conducted experiments wherein the dimer to monomer (D / M) ratios of HOMs in the gas phase were modified (adding CO / NO) to investigate the effects of the corresponding D / M ratios in the particles. These results are important for a better understanding of secondary organic aerosol formation in the atmosphere.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, https://doi.org/10.5194/acp-21-8455-2021, 2021
Short summary
Short summary
We performed measurements of gaseous and particulate organic compounds using a state-of-the-art online mass spectrometer in urban air. Using the dataset, we provide a holistic chemical characterization of oxygenated organic compounds in the polluted urban atmosphere, which can serve as a reference for the future field measurements of organic compounds in cities.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Arttu Ylisirniö, Luis M. F. Barreira, Iida Pullinen, Angela Buchholz, John Jayne, Jordan E. Krechmer, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Meas. Tech., 14, 355–367, https://doi.org/10.5194/amt-14-355-2021, https://doi.org/10.5194/amt-14-355-2021, 2021
Short summary
Short summary
FIGAERO-ToF-CIMS enables online volatility measurements of chemical compounds in ambient aerosols. Previously published volatility calibration results however differ from each other significantly. In this study we investigate the reason for this discrepancy. We found a major source of error in the widely used syringe deposition method and propose a new method for volatility calibration by using atomized calibration compounds.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Cited articles
Abis, L., Loubet, B., Ciuraru, R., Lafouge, F., Houot, S.,
Nowak, V., Tripied, J., Dequiedt, S., Maron, P. A., and Sadet-Bourgeteau,
S.: Reduced microbial diversity induces larger volatile organic compound
emissions from soils, Sci. Rep., 10, 6104, https://doi.org/10.1038/s41598-020-63091-8, 2020.
Birch, H. F.: The effect of soil drying on humus decomposition
and nitrogen availability, Plant Soil, 10, 9–31, 1958.
Burton, D. L. and Beauchamp, E. G.: Profile nitrous oxide and
carbon dioxide concentrations in a soil subject to freezing, Soil Sci. Soc.
Am. J., 58, 115–122, 1994.
Bzowski, J., Kestin, J., Mason, E. A., and Uribe, F. J.:
Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven
Polyatomic Gases and Five Noble Gases, J. Phys. Chem. Ref. Data, 19,
1179–1232, 1990.
Citron, C. A., Gleitzmann, J., Laurenzano, G., Pukall, R., and
Dickschat, J. S.: Terpenoids are widespread in actinomycetes: a correlation
of secondary metabolism and genome data, Chembiochem, 13, 202–214, 2012.
Clough, T. J., Kelliher, F. M., Wang, Y. P., and Sherlock, R.
R.: Diffusion of 15N-labelled N2O into soil columns: a promising method to
examine the fate of N2O in subsoils, Soil Biol. Biochem., 38, 1462–1468,
2006.
Conrad, R.: Quantification of methanogenic pathways using stable
carbon isotopic signatures: a review and a proposal, Org. Geochem., 36,
739–752, 2005.
DeSutter, T. M., Sauer, T. J., and Parkin, T. B.: Porous tubing
for use in monitoring soil CO2 concentrations, Soil Biol. Biochem., 38,
2676–2681, 2006.
Dhanumalayan, E. and Joshi, G. M.: Performance properties and
applications of polytetrafluoroethylene (PTFE) – a review Adv. Compos. Hybr.
Mater., 1, 247–268, 2018.
Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., Leifeld,
J., and Fuhrer, J.: Temporal changes in soil pore space CO2 concentration
and storage under permanent grassland, Agr. Forest Meteorol., 142, 66–84,
2007.
Gangi, L., Rothfuss, Y., Ogée, J., Wingate, L., Vereecken,
H., and Brüggemann, N.: A New Method for In Situ Measurements of Oxygen
Isotopologues of Soil Water and Carbon Dioxide with High Time Resolution,
Vadose Zone J., 14, vzj2014.11.0169, https://doi.org/10.2136/vzj2014.11.0169, 2015.
Gonzalez-Meler, M. A., Rucks, J. S., and Aubanell, G.:
Mechanistic insights on the responses of plant and ecosystem gas exchange to
global environmental change: lessons from Biosphere 2, Plant Sci., 226,
14–21, 2014.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A.
J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., and Vidon, P.:
Challenges to incorporating spatially and temporally explicit phenomena
(hotspots and hot moments) in denitrification models, Biogeochemistry, 93,
49–77, 2009.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C.,
Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T.,
Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman,
P.: A global model of natural volatile organic compound emissions, J.
Geophys. Res., 100, 8873, https://doi.org/10.1029/94JD02950, 1995.
Gut, A., Blatter, A., Fahrni, M., Lehmann, B. E., Neftel, A.,
and Staffelbach, T.: A new membrane tube technique (METT) for continuous gas
measurements in soils, Plant Soil, 198, 79–88, 1998.
Hirsch, A. I., Trumbore, S. E., and Goulden, M. L.: The surface
CO2 gradient and pore-space storage flux in a high-porosity litter layer,
Tellus B, 56, 312–321,
https://doi.org/10.3402/tellusb.v56i4.16449, 2004.
Holter, P.: Sampling air from dung pats by silicone rubber
diffusion chambers, Soil Biol. Biochem., 22, 995–997, 1990.
Honeker, L. K., Graves, K. R., Tfaily, M. M., Krechmer, J. E.,
and Meredith, L. K.: The volatilome: A vital piece of the complete soil
metabolome, Front. Environ. Sci., 9, 649905,
https://doi.org/10.3389/fenvs.2021.649905, 2021.
Insam, H. and Seewald, M. S. A.: Volatile organic compounds
(VOCs) in soils, Biol. Fertil. Soils, 46, 199–213, 2010.
Jacinthe, P.-A. and Dick, W. A.: Use of silicone tubing to
sample nitrous oxide in the soil atmosphere, Soil Biol. Biochem., 28,
721–726, 1996.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., and Wei, G.: Soil
microbiomes with distinct assemblies through vertical soil profiles drive
the cycling of multiple nutrients in reforested ecosystems, Microbiome, 6,
1–13, 2018.
Jochheim, H., Wirth, S., and von Unold, G.: A multi-layer,
closed-loop system for continuous measurement of soil CO2 concentration, J.
Plant Nutr. Soil Sci., 181, 61–68, 2018.
Kammann, C., Grünhage, L., and Jäger, H.-J.: A new
sampling technique to monitor concentrations of CH4, N2O and CO2 in air at
well-defined depths in soils with varied water potential, Eur. J. Soil Sci., 52, 297–303,
https://doi.org/10.1046/j.1365-2389.2001.00380.x, 2001.
Karbin, S., Guillet, C., Kammann, C. I., and Niklaus, P. A.:
Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the
Spatial Micro-Distribution of Methanotrophic Bacteria, PLoS One, 10,
e0131665, https://doi.org/10.1371/journal.pone.0131665, 2015.
Krämer, H. and Conrad, R.: Measurement of dissolved H2
concentrations in methanogenic environments with a gas diffusion probe, FEMS
Microbiol. Ecol., 12, 149–158, 1993.
Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M.,
Stoermer, C., Deming, B., Kimmel, J., Warneke, C., Holzinger, R., Jayne, J.,
Worsnop, D., Fuhrer, K., Gonin, M., and de Gouw, J.: Evaluation of a New
Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in
Proton-Transfer-Reaction Mass Spectrometry, Anal. Chem., 90, 12011–12018,
2018.
Laemmel, T., Maier, M., Schack-Kirchner, H., and Lang, F.: An in
situ method for real-time measurement of gas transport in soil : Monitoring
of gas transport in soil, Eur. J. Soil Sci., 68, 156–166, 2017.
Leitner, S., Homyak, P. M., Blankinship, J. C., Eberwein, J.,
Jenerette, G. D., Zechmeister-Boltenstern, S., and Schimel, J. P.: Linking
NO and N2O emission pulses with the mobilization of mineral and organic N
upon rewetting dry soils, Soil Biol. Biochem., 115, 461–466, 2017.
Lin, Y., Campbell, A. N., Bhattacharyya, A., DiDonato, N.,
Thompson, A. M., Tfaily, M. M., Nico, P. S., Silver, W. L., and Pett-Ridge,
J.: Differential effects of redox conditions on the decomposition of litter
and soil organic matter, Biogeochemistry, 154, 1–15,
https://doi.org/10.1007/s10533-021-00790-y, 2021.
Maier, M., Schack-Kirchner, H., Aubinet, M., Goffin, S.,
Longdoz, B., and Parent, F.: Turbulence Effect on Gas Transport in Three
Contrasting Forest Soils, Soil Sci. Soc. Am. J., 76, 1518–1528, 2012.
Massman, W. J.: A review of the molecular diffusivities of H2O,
CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP,
Atmos. Environ., 32, 1111–1127, https://doi.org/10.1016/s1352-2310(97)00391-9, 1998.
MATLAB: 9.7.0.1190202, R2019b, Natick, Massachusetts, The MathWorks
Inc., 2018.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A.,
Kim, E.-H., Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G.
W., and Saleska, S. R.: Methane dynamics regulated by microbial community
response to permafrost thaw, Nature, 514, 478–481, 2014.
McClellan, M. J.: Estimating regional nitrous oxide emissions
using isotopic ratio observations and a Bayesian inverse framework, Ph.D,
Massachusetts Institute of Technology, available at:
https://dspace.mit.edu/handle/1721.1/119986 (last access: 8 September 2020),
2018.
McManus, J. B., Nelson, D. D., and Zahniser, M. S.: Design and
performance of a dual-laser instrument for multiple isotopologues of carbon
dioxide and water, Opt. Express, 23, 6569–6586, 2015.
McSharry, C., Faulkner, R., Rivers, S., Shaffer, M. S. P., and
Welton, T.: The chemistry of East Asian lacquer: A review of the scientific
literature, Stud. Conserv., 52, 29–40, 2007.
Mohn, J., Wolf, B., Toyoda, S., Lin, C.-T., Liang, M.-C.,
Brüggemann, N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L.,
Ostrom, N. E., Casciotti, K. L., Forbes, M., Giesemann, A., Well, R.,
Doucett, R. R., Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N.:
Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope
ratio mass spectrometry and laser spectroscopy: current status and
perspectives, Rapid Commun. Mass Spectrom., 28, 1995–2007, 2014.
Munksgaard, N. C., Wurster, C. M., and Bird, M. I.: Continuous
analysis of δ18 O and δD values of
water by diffusion sampling cavity ring-down spectrometry: a novel sampling
device for unattended field monitoring of precipitation, ground and surface
waters, Rapid Commun. Mass Spectrom., 25, 3706–3712, https://doi.org/10.1002/rcm.5282,
2011.
Panikov, N. S., Mastepanov, M. A., and Christensen, T. R.:
Membrane probe array: Technique development and observation of CO2 and CH4
diurnal oscillations in peat profile, Soil Biol. Biochem., 39, 1712–1723,
2007.
Parent, F., Plain, C., Epron, D., Maier, M., and Longdoz, B.: A
new method for continuously measuring the δ13C of soil
CO2 concentrations at different depths by laser spectrometry, Eur. J. Soil
Sci., 64, 516–525, https://doi.org/10.1111/ejss.12047, 2013.
Penger, J., Conrad, R., and Blaser, M.: Stable carbon isotope
fractionation by methylotrophic methanogenic archaea, Appl. Environ.
Microbiol., 78, 7596–7602, 2012.
Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz,
M., Piechulla, B., and Schnitzler, J. P.: Biogenic volatile emissions from
the soil, Plant Cell Environ., 37, 1866–1891, 2014.
Petersen, S. O.: Diffusion probe for gas sampling in undisturbed
soil, Eur. J. Soil Sci., 65, 663–671, 2014.
R Core Team: R: A language and environment
for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 17 November 2020), 2017.
Raza, W., Mei, X., Wei, Z., Ling, N., Yuan, J., Wang, J., Huang,
Q., and Shen, Q.: Profiling of soil volatile organic compounds after
long-term application of inorganic, organic and organic-inorganic mixed
fertilizers and their effect on plant growth, Sci. Total Environ., 607/608,
326–338, 2017.
Rock, L., Ellert, B. H., Mayer, B., and Norman, A. L.: Isotopic
composition of tropospheric and soil N2O from successive depths of
agricultural plots with contrasting crops and nitrogen amendments, J.
Geophys. Res. D-Atmos., 112, D18, https://doi.org/10.1029/2006JD008330, 2007.
Roscioli, J. R., Yacovitch, T. I., Floerchinger, C., Mitchell, A. L., Tkacik, D. S., Subramanian, R., Martinez, D. M., Vaughn, T. L., Williams, L., Zimmerle, D., Robinson, A. L., Herndon, S. C., and Marchese, A. J.: Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods, Atmos. Meas. Tech., 8, 2017–2035, https://doi.org/10.5194/amt-8-2017-2015, 2015.
Rothfuss, F. and Conrad, R.: Development of a gas diffusion
probe for the determination of methane concentrations and diffusion
characteristics in flooded paddy soil, FEMS Microbiol. Ecol., 14, 307–318,
1994.
Rothfuss, Y., Vereecken, H., and Brüggemann, N.: Monitoring
water stable isotopic composition in soils using gas-permeable tubing and
infrared laser absorption spectroscopy, Water Resour. Res., 49, 3747–3755,
https://doi.org/10.1002/wrcr.20311, 2013.
Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken, H., and Brüggemann, N.: Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, 2015.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Benner,
D. C., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R.,
Campargu, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant.
Spectrosc. Radiat. Transf., 130, 4–50, 2013.
Saleska, S. R., Shorter, J. H., Herndon, S., Jiménez, R.,
Barry McManus, J., William Munger, J., Nelson, D. D., and Zahniser, M. S.:
What are the instrumentation requirements for measuring the isotopic
composition of net ecosystem exchange of CO2 using eddy covariance methods?,
Isot. Environ. Health Stud., 42, 115–133, https://doi.org/10.1080/10256010600672959,
2006.
Schimel, J. P.: Life in Dry Soils: Effects of Drought on Soil
Microbial Communities and Processes, Annu. Rev. Ecol. Evol. Syst., 49, 409–432,
https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Schulz-Bohm, K., Zweers, H., de Boer, W., and Garbeva, P.: A
fragrant neighborhood: volatile mediated bacterial interactions in soil,
Front. Microbiol., 6, 1212, https://doi.org/10.3389/fmicb.2015.01212, 2015.
Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de
Boer, W., and Garbeva, P.: Calling from distance: attraction of soil
bacteria by plant root volatiles, ISME J., 12, 1252–1262, 2018.
Snider, D. M., Venkiteswaran, J. J., Schiff, S. L., and
Spoelstra, J.: From the Ground Up: Global Nitrous Oxide Sources are
Constrained by Stable Isotope Values, PLOS ONE, 10, e0118954,
https://doi.org/10.1371/journal.pone.0118954, 2015.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A.,
Gandhi, H., Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production
from nitrification and denitrification on the basis of isotopomer
abundances, Appl. Environ. Microbiol., 72, 638–644, 2006.
Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of
biologically produced nitrous oxide in various environments, Mass Spectrom.
Rev., 36, 135–160, 2017.
Van Haren, J. L. M., Handley, L. L., Biel, K. Y., Kudeyarov, V.
N., McLain, J. E. T., Martens, D. A., and Colodner, D. C.: Drought-induced
nitrous oxide flux dynamics in an enclosed tropical forest, Glob. Change
Biol., 11, 1247–1257, 2005.
Voglar, G. E., Zavadlav, S., Levanič, T., and Ferlan, M.:
Measuring techniques for concentration and stable isotopologues of CO2 in a
terrestrial ecosystem: A review, Earth-Sci. Rev., 199, 102978, https://doi.org/10.1016/j.earscirev.2019.102978, 2019.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Volkmann, T. H. M., Kühnhammer, K., Herbstritt, B., Gessler,
A., and Weiler, M.: A method for in situ monitoring of the isotope
composition of tree xylem water using laser spectroscopy, Plant Cell
Environ., 39, 2055–2063, https://doi.org/10.1111/pce.12725, 2016a.
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.:
High-resolution isotope measurements resolve rapid ecohydrological dynamics
at the soil plant interface, New Phytol., 210, 839–849, 2016b.
Volkmann, T. H. M., Sengupta, A., Pangle, L. A., Dontsova, K., Barron-Gafford, G. A., Harman, C. J., Niu, G. Y., Meredith, L. K., Abramson, N., Meira Neto, A. A., Wang, Y., Adams, J. R., Breshears, D. D., Bugaj, A., Chorover, J., Cueva, A., DeLong, S. B., Durcik, M., Ferre, T. P. A., Hunt, E. A., Huxman, T. E., Kim, M., Maier, R. M., Monson, R. K., Pelletier, J. D., Pohlmann, M., Rasmussen, C., Ruiz, J., Saleska, S. R., Schaap, M. G., Sibayan, M., Tuller, M., van Haren, J. L. M., Zeng, X., and Troch, P. A.: Controlled experiments of hillslope
coevolution at the Biosphere 2 Landscape Evolution Observatory: Toward
prediction of coupled hydrological, biogeochemical, and ecological change,
in: Hydrology of Artificial and Controlled Experiments, edited by: Jiu-Fu
Liu, W.-Z. G., IntechOpen, 25–74, 2018.
Wang, Y., Hu, C., Ming, H., Oenema, O., Schaefer, D. A., Dong,
W., Zhang, Y., and Li, X.: Methane, Carbon Dioxide and Nitrous Oxide Fluxes
in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North
China Plain, PLoS ONE, 9, e98445, https://doi.org/10.1371/journal.pone.0098445, 2014.
Wei, J., Ibraim, E., Brüggemann, N., Vereecken, H., and
Mohn, J.: First real-time isotopic characterisation of N2O from
chemodenitrification, Geochim. Cosmochim. Ac., 267, 17–32, 2019.
Werle, P., Mucke, R., and Slemr, F.: The limits of signal
averaging in atmospheric trace-gas monitoring by tunable diode-laser
absorption spectroscopy (TDLAS), Appl. Phys. B, 57, 131–139,
https://doi.org/10.1007/bf00425997, 1993.
Wester-Larsen, L., Kramshøj, M., Albers, C. N., and Rinnan,
R.: Biogenic Volatile Organic Compounds in Arctic Soil: A Field Study of
Concentrations and Variability With Vegetation Cover, J. Geophys. Res.
Biogeosci., 125, e2019JG005551, https://doi.org/10.1029/2019JG005551, 2020.
Yoshida, N. and Toyoda, S.: Constraining the atmospheric N2O
budget from intramolecular site preference in N2O isotopomers, Nature, 405,
330–334, 2000.
Short summary
We evaluated a new diffusive soil probe integrated with high-resolution gas analyzers to measure soil gases in real time at a centimeter scale. Using columns with simple silica and soil, we captured changes in carbon dioxide (CO2), volatile organic compounds (VOCs), and nitrous oxide (N2O) with its isotopes to distinguish potential nutrient sources and microbial metabolism. This approach will advance the use of soil gases as important signals to understand and monitor soil fertility and health.
We evaluated a new diffusive soil probe integrated with high-resolution gas analyzers to measure...
Altmetrics
Final-revised paper
Preprint