Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1753-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1753-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Shihan Sun
Earth System Science Programme and Graduate Division of Earth and
Atmospheric Sciences, Faculty of Science, The Chinese University of Hong
Kong, Sha Tin, Hong Kong SAR, China
Earth System Science Programme and Graduate Division of Earth and
Atmospheric Sciences, Faculty of Science, The Chinese University of Hong
Kong, Sha Tin, Hong Kong SAR, China
State Key Laboratory of Agrobiotechnology and Institute of
Environment, Energy and Sustainability, The Chinese University of Hong Kong,
Sha Tin, Hong Kong SAR, China
David H. Y. Yung
Earth System Science Programme and Graduate Division of Earth and
Atmospheric Sciences, Faculty of Science, The Chinese University of Hong
Kong, Sha Tin, Hong Kong SAR, China
Anthony Y. H. Wong
Earth System Science Programme and Graduate Division of Earth and
Atmospheric Sciences, Faculty of Science, The Chinese University of Hong
Kong, Sha Tin, Hong Kong SAR, China
Department of Earth and Environmental, Boston University, Boston, USA
Jason A. Ducker
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Christopher D. Holmes
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Related authors
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Anthony Y. H. Wong, Sebastian D. Eastham, Erwan Monier, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2663, https://doi.org/10.5194/egusphere-2025-2663, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a fast and accurate computer tool that predicts how air pollution levels will change around the world under different climate and policy choices. Using machine learning and real model data, our tool can estimate changes in harmful fine particulate pollution in seconds instead of thousands of hours. This makes it easier for researchers and policymakers to explore future air quality and health impacts under a wide range of scenarios.
Christopher D. Holmes, Joshua P. Schwarz, Charles H. Fite, Anxhelo Agastra, Holly K. Nowell, Katherine Ball, T. Paul Bui, Johnathan Dean-Day, Zachary C. J. Decker, Joshua P. DiGagni, Glenn S. Diskin, Emily M. Gargulinski, Hannah Halliday, Shobha Kondragunta, John B. Nowak, David A. Peterson, Michael A. Robinson, Amber J. Soja, Rebecca A. Washenfelder, Chuanyu Xu, and Robert J. Yokelson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-307, https://doi.org/10.5194/essd-2025-307, 2025
Preprint under review for ESSD
Short summary
Short summary
Smoke age is an important factor in the chemical and physical evolution of smoke. Two methods for determining the age of smoke are applied to the NASA-NOAA FIREX-AQ field campaign: one based on wind speed and distance, and another using an ensemble of modeled air parcel trajectories. Both methods are evaluated, with the trajectory method, which includes plume rise and uncertainty estimates, proving more accurate.
Tiangang Yuan, Tzung-May Fu, Aoxing Zhang, David H. Y. Yung, Jin Wu, Sien Li, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 4211–4232, https://doi.org/10.5194/acp-25-4211-2025, https://doi.org/10.5194/acp-25-4211-2025, 2025
Short summary
Short summary
This study utilizes a regional climate–air quality coupled model to first investigate the complex interaction between irrigation, climate and air quality in China. We found that large-scale irrigation practices reduce summertime surface ozone while raising secondary inorganic aerosol concentration via complicated physical and chemical processes. Our results emphasize the importance of making a tradeoff between air pollution controls and sustainable agricultural development.
Biao Luo, Lei Liu, David H. Y. Yung, Tiangang Yuan, Jingwei Zhang, Leo T. H. Ng, and Amos P. K. Tai
EGUsphere, https://doi.org/10.5194/egusphere-2025-72, https://doi.org/10.5194/egusphere-2025-72, 2025
Short summary
Short summary
Through a combination of emission models and air quality model, we aimed to address the pressing issue of poor nitrogen management while promoting sustainable food systems and public health in China. We discovered that improving nitrogen management of crop and livestock can substantially reduce air pollutant emissions, particularly in North China Plain. Our findings further provide the benefits of such interventions on PM2.5 reductions, offering valuable insights for policymakers.
Hemraj Bhattarai, Maria Val Martin, Stephen Sitch, David H. Y. Yung, and Amos P. K. Tai
EGUsphere, https://doi.org/10.5194/egusphere-2025-804, https://doi.org/10.5194/egusphere-2025-804, 2025
Short summary
Short summary
Wildfires are becoming more frequent and severe due to climate change, posing various risks. We explore how future climate conditions will influence global wildfire activity and carbon emissions by 2100. Using advanced computer modeling, we found that while some regions remain stable, boreal forests will see a major rise in burned area and emissions. These changes are driven by drier conditions and increased vegetation growth, highlighting the urgent need for better fire management strategies.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429, https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with 9 models at different land types worldwide. The input data stems from a database. The models estimated mostly reasonable summertime ozone deposition. The different results of the models varied by land cover which were mostly related to the moisture deficit. This is an important step for assessing the ozone impact on vegetation.
Amos P. K. Tai, Lina Luo, and Biao Luo
Atmos. Chem. Phys., 25, 923–941, https://doi.org/10.5194/acp-25-923-2025, https://doi.org/10.5194/acp-25-923-2025, 2025
Short summary
Short summary
We discuss our current understanding of and knowledge gaps in how agriculture and food systems affect air quality and how agricultural emissions can be mitigated. We argue that scientists need to address these gaps, especially as the importance of fossil fuel emissions is fading. This will help guide food-system transformation in economically viable, socially inclusive, and environmentally responsible ways and is essential to help society achieve sustainable development.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Linia Tashmim, William C. Porter, Qianjie Chen, Becky Alexander, Charles H. Fite, Christopher D. Holmes, Jeffrey R. Pierce, Betty Croft, and Sakiko Ishino
Atmos. Chem. Phys., 24, 3379–3403, https://doi.org/10.5194/acp-24-3379-2024, https://doi.org/10.5194/acp-24-3379-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is mostly emitted from ocean surfaces and represents the largest natural source of sulfur for the atmosphere. Once in the atmosphere, DMS forms stable oxidation products such as SO2 and H2SO4, which can subsequently contribute to airborne particle formation and growth. In this study, we update the DMS oxidation mechanism in the chemical transport model GEOS-Chem and describe resulting changes in particle growth as well as the overall global sulfur budget.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
Atmos. Chem. Phys., 23, 15643–15654, https://doi.org/10.5194/acp-23-15643-2023, https://doi.org/10.5194/acp-23-15643-2023, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h, where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Christopher D. Holmes
Atmos. Chem. Phys., 22, 9011–9015, https://doi.org/10.5194/acp-22-9011-2022, https://doi.org/10.5194/acp-22-9011-2022, 2022
Short summary
Short summary
Cloud water and ice enable reactions that lead to acid rain and alter atmospheric oxidants, among other impacts. This work develops and evaluates an efficient method of simulating cloud chemistry within global and regional atmospheric models in order to better understand the role of clouds in atmospheric chemistry.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Nicole Jacobs, William R. Simpson, Kelly A. Graham, Christopher Holmes, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Debra Wunch, Rigel Kivi, Pauli Heikkinen, Justus Notholt, Christof Petri, and Thorsten Warneke
Atmos. Chem. Phys., 21, 16661–16687, https://doi.org/10.5194/acp-21-16661-2021, https://doi.org/10.5194/acp-21-16661-2021, 2021
Short summary
Short summary
Spatial patterns of carbon dioxide seasonal cycle amplitude and summer drawdown timing derived from the OCO-2 satellite over northern high latitudes agree well with corresponding estimates from two models. The Asian boreal forest is anomalous with the largest amplitude and earliest seasonal drawdown. Modeled land contact tracers suggest that accumulated CO2 exchanges during atmospheric transport play a major role in shaping carbon dioxide seasonality in northern high-latitude regions.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Lang Wang, Amos P. K. Tai, Chi-Yung Tam, Mehliyar Sadiq, Peng Wang, and Kevin K. W. Cheung
Atmos. Chem. Phys., 20, 11349–11369, https://doi.org/10.5194/acp-20-11349-2020, https://doi.org/10.5194/acp-20-11349-2020, 2020
Short summary
Short summary
We investigate the effects of future land use and land cover change (LULCC) on surface ozone air quality worldwide and find that LULCC can significantly influence ozone in North America and Europe via modifying surface energy balance, boundary-layer meteorology, and regional circulation. The strength of such “biogeophysical effects” of LULCC is strongly dependent on forest type and generally greater than the “biogeochemical effects” via changing deposition and emission fluxes alone.
Cited articles
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)?, A meta-analytic review of the responses
of photosynthesis, canopy, New Phytol., 165, 351–371, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson,
L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change, Annu. Rev. Plant Biol., 63, 637–661,
https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Bai, Y., Li, X. Y., Zhou, S., Yang, X. F., Yu, K. L., Wang, M. J., Liu, S.
M., Wang, P., Wu, X. C., Wang, X. C., Zhang, C. C., Shi, F. Z., Wang, Y.,
and Wu, Y. N.: Quantifying plant transpiration and canopy conductance using
eddy flux data: An underlying water use efficiency method, Agr. Forest
Meteorol., 271, 375–384, https://doi.org/10.1016/j.agrformet.2019.02.035, 2019.
Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: Measuring
Biosphere-Atmosphere Exchanges of Biologically Related Gases with
Micrometeorological Methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631, 1988.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal
conductance and its contribution to the control of photosynthesis under
different environmental conditions, edited by: Biggins, J., in: Progress in
Photosynthesis Research, Springer, Dordrecht, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos, 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Bonan, G. B.: Climate Change and Terrestrial Ecosystem Modeling, 1st Edn., Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/9781107339217, 2019.
Bourtsoukidis, E., Behrendt, T., Yanez-Serrano, A. M., Hellen, H.,
Diamantopoulos, E., Catao, E., Ashworth, K., Pozzer, A., Quesada, C. A.,
Martins, D. L., Sa, M., Araujo, A., Brito, J., Artaxo, P., Kesselmeier, J.,
Lelieveld, J., and Williams, J.: Strong sesquiterpene emissions from
Amazonian soils, Nat. Commun., 9, 2226, https://doi.org/10.1038/s41467-018-04658-y, 2018.
Brook, J. R., Zhang, L. M., Di-Giovanni, F., and Padro, J.: Description and
evaluation of a model of deposition velocities for routine estimates of air
pollutant dry deposition over North America, Part I: Model Development,
Atmos. Environ., 33, 5037–5051, https://doi.org/10.1016/S1352-2310(99)00250-2, 1999.
Buckley, T. N., Sack, L., and Farquhar, G. D.: Optimal plant water economy,
Plant Cell Environ., 40, 881–896, https://doi.org/10.1111/pce.12823, 2017.
Büker, P., Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Jacobs, C.
M. J., Massman, W. J., Muller, J., Nikolov, N., Novak, K., Oksanen, E.,
Schaub, M., and de la Torre, D.: Comparison of different stomatal
conductance algorithms for ozone flux modelling, Environ. Pollut., 146,
726–735, https://doi.org/10.1016/j.envpol.2006.04.007, 2007.
Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S.,
Elvira, S., Gerosa, G., Karlsson, P. E., Le Thiec, D., Marzuoli, R., Mills,
G., Oksanen, E., Wieser, G., Wilkinson, M., and Emberson, L. D.: New flux
based dose-response relationships for ozone for European forest tree
species, Environ. Pollut., 206, 163–174, 2015.
Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modelling system, U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-99/030 (NTIS PB2000-100561), 1999.
Caird, M. A., Richards, J. H., and Donovan, L. A.: Nighttime stomatal
conductance and transpiration in C-3 and C-4 plants, Plant Physiol., 143,
4–10, https://doi.org/10.1104/pp.106.092940, 2007.
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone
in urban areas and their use in assessing ozone trends, Atmos. Environ., 41,
7127–7137, https://doi.org/10.1016/j.atmosenv.2007.04.061,
2007.
Centoni, F.: Global scale modelling of ozone deposition processes
and interaction between surface ozone and climate change, Doctoral
dissertation, The University of Edinburgh, https://isni.org/isni/0000000464211966 (last access: 21 March 2022), 2017.
Clifton, O. E., Fiore, A. M., Munger, J. W., and Wehr, R.: Spatiotemporal
controls on observed daytime ozone deposition velocity over Northeastern
U.S. forests during summer, J. Geophys.
Res.-Atmos, 124, 5612–5628, https://doi.org/10.1029/2018JD029073, 2019.
Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M.,
Emberson, L., Fares, S., Farmer, D. K., Gentine, P., Gerosa, G., Guenther,
A. B., Helmig, D., Lombardozzi, D. L., Munger, J. W., Patton, E. G., Pusede,
S. E., Schwede, D. B., Silva, S. J., Sorgel, M., Steiner, A. L., and Tai, A.
P. K.: Dry Deposition of Ozone Over Land: Processes, Measurement, and
Modeling, Rev. Geophys., 58, e2019RG000670, https://doi.org/10.1029/2019RG000670, 2020a.
Clifton, O. E., Paulot, F., Fiore, A. M., Horowitz, L. W., Correa, G.,
Baublitz, C. B., Fares, S., Goded, I., Goldstein, A. H., Gruening, C., Hogg,
A. J., Loubet, B., Mammarella, I., Munger J. W., Neil, L., Stella, P.,
Uddling, J., Vesala, T., and Weng, E.: Influence of dynamic ozone dry deposition
on ozone pollution, J. Geophys. Res.-Atmos, 125, e2020JD032398, https://doi.org/10.1029/2020JD032398, 2020b.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M.,
Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F.,
Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M.,
Thouret, V., Wang, Y., and Zbinden, R. M.: Global distribution and trends of
tropospheric ozone: An observation-based review, Elementa, 2,
000029, https://doi.org/10.12952/journal.elementa.000029, 2014.
Cowan, I. R. and Farquhar, G. D.: Stomatal function in relation to leaf
metabolism and environment, Symp. Soc. Exp. Biol., 31, 471–505, 1977.
Ducker, J. A., Holmes, C. D., Keenan, T. F., Fares, S., Goldstein, A. H., Mammarella, I., Munger, J. W., and Schnell, J.: Synthetic ozone deposition and stomatal uptake at flux tower sites, Biogeosciences, 15, 5395–5413, https://doi.org/10.5194/bg-15-5395-2018, 2018.
Elvira, S., Bermejo, V., Manrique, E., and Gimeno, B. S.: On the response of
two populations of Quercus coccifera to ozone and its relationship with
ozone uptake, Atmos. Environ., 38, 2305–2311, https://doi.org/10.1016/j.atmosenv.2003.10.064, 2004.
Emberson, L., Simpson, D., Tuovinen, J., Ashmore, M., and Cambridge, H.:
Towards a model of ozone deposition and stomatal uptake over Europe, EMEP
MSC-W Note 6/2000, EMEP MSC-W Note, 6, 1–57, 2000a.
Emberson, L., Wieser, G., and Ashmore, M.: Modelling of stomatal conductance
and ozone flux of Norway spruce: comparison with field data, Environ. Poll.,
109, 393–402, https://doi.org/10.1016/S0269-7491(00)00042-7,
2000b.
Emberson, L., Ashmore, M., Simpson, D., Tuovinen, J.-P., and Cambridge, H.:
Modelling and mapping ozone deposition in Europe, Water Air Soil Pollut.,
130, 577–582, https://doi.org/10.1023/A:1013851116524, 2001.
Emberson, L., Büker, P., and Ashmore, M.: Assessing the risk caused by
ground level ozone to European forest trees: A case study in pine, beech and
oak across different climate regions, Environ. Poll., 147, 454–466,
https://doi.org/10.1016/j.envpol.2006.10.026, 2007.
Emmerichs, T., Kerkweg, A., Ouwersloot, H., Fares, S., Mammarella, I., and Taraborrelli, D.: A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54, Geosci. Model Dev., 14, 495–519, https://doi.org/10.5194/gmd-14-495-2021, 2021.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D.
R.: Atmosphere-Biosphere Exchange of CO2 and O3 in the central
Amazon Forest, J. Geophys. Res.-Atmos., 95, 16851–16864, https://doi.org/10.1029/JD095iD10p16851, 1990.
Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a
Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence
from long-term continuous measurements, Agr. Forest Meteorol., 150, 420–431,
https://doi.org/10.1016/j.agrformet.2010.01.007, 2010.
Fares, S., Weber, R., Park, J.-H., Gentner, D., Karlik, J., and Goldstein,
A. H.: Ozone deposition to an orange orchard: Partitioning between stomatal
and non-stomatal sinks, Environ. Pollut., 169, 258–266, https://doi.org/10.1016/j.envpol.2012.01.030, 2012
Fatichi, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling
carbon sources and sinks in terrestrial vegetation, New Phytol., 221,
652–668, https://doi.org/10.1111/nph.15451, 2019.
Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal responses to
increased CO2: implications from the plant to the global scale, Plant
Cell Environ., 18, 1214–1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x, 1995.
Flechard, C. R. and Fowler, D.: Atmospheric ammonia at a moorland site. I:
The meteorological control of ambient ammonia concentrations and the
influence of local sources, Q. J. Roy. Meteor. Soc., 124, 733–757,
https://doi.org/10.1002/qj.49712454705, 1998.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C.,
Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt,
J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G.,
Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti,
E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horvath, L.,
Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz,
E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U.,
Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C.,
Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions,
Atmos. Environ., 43, 5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A.,
Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N.,
Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to
changing atmospheric CO2 concentration: from the geological past to the
next century, New Phytol., 197, 1077–1094, https://doi.org/10.1111/nph.12104, 2013.
Franks, P. J., Berry, J. A., Lombardozzi, D. L., and Bonan, G. B.: Stomatal
Function across Temporal and Spatial Scales: Deep-Time Trends,
Land-Atmosphere Coupling and Global Models, Plant Physiol., 174, 583–602,
https://doi.org/10.1104/pp.17.00287, 2017.
Franks, P. J., Bonan, G. B., Berry, J. A., Lombardozzi, D. L., Holbrook, N.
M., Herold, N., and Oleson, K. W.: Comparing optimal and empirical stomatal
conductance models for application in Earth system models, Global Change
Biol., 24, 5708–5723, https://doi.org/10.1111/gcb.14445, 2018.
Foken, T.: 50 years of the Monin-Obukhov similarity theory, Boundary-Layer
Meteorol., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/Jcli-D-16-0758.1, 2017.
Gerosa, G., Derghi, F., and Cieslik, S.: Comparison of different algorithms
for stomatal ozone flux determination from micrometeorological measurements,
Water Air Soil Poll., 179, 309–321, https://doi.org/10.1007/s11270-006-9234-7, 2007.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15, 6419–6436, https://doi.org/10.5194/acp-15-6419-2015, 2015.
Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger, C. M., Canadell, J. G., and Cuntz, M.: A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis, Geosci. Model Dev., 11, 2995–3026, https://doi.org/10.5194/gmd-11-2995-2018, 2018.
Herrick, J. D., Maherali, H., and Thomas, R. B.: Reduced stomatal
conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment, New
Phytol, 162, 387–396, https://doi.org/10.1111/j.1469-8137.2004.01045.x, 2004.
Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P., and Matt, D.
R.: A preliminary multiple resistance routine for deriving dry deposition
velocities from measured quantities, Water Air Soil Poll., 36, 311–330,
https://doi.org/10.1007/BF00229675, 1987.
Hogg, A., Uddling, J., Ellsworth, D., Carroll, M. A., Pressley, S., Lamb,
B., and Vogel, C.: Stomatal and non-stomatal fluxes of ozone to a northern
mixed hardwood forest, Tellus B, 59, 514–525, https://doi.org/10.1111/j.1600-0889.2007.00269.x, 2007.
Holmes, C. D. and Ducker, J. A.: SynFlux: a sythetic dataset of atmospheric deposition and stomatal uptake at flux tower sites (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.1402054, 2018.
Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A.,
Sicard, P., and Paoletti, E.: Stomatal conductance models for ozone risk
assessment at canopy level in two Mediterranean evergreen forests, Agr.
Forest Meteorol., 234, 212–221, https://doi.org/10.1016/j.agrformet.2017.01.005, 2017.
Jarvis, P.: The interpretation of the variations in leaf water potential and
stomatal conductance found in canopies in the field, Philos. T. Roy. Soc. B, 273,
593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Karnosky, D. F., Skelly, J. M., Percy, K. E., and Chappelka, A. H.:
Perspectives regarding 50 years of research on effects of tropospheric ozone
air pollution on US forests, Environ. Pollut., 147, 489–506, https://doi.org/10.1016/j.envpol.2006.08.043, 2007.
Katul, G., Manzoni, S., Palmroth, S., and Oren, R.: A stomatal optimization
theory to describe the effects of atmospheric CO2 on leaf
photosynthesis and transpiration, Ann. Bot.-London, 105, 431–442, https://doi.org/10.1093/aob/mcp292, 2010.
Kavassalis, S. C. and Murphy, J. G.: Understanding ozone-meteorology
correlations: A role for dry deposition, Geophys. Res. Lett., 44, 2922–2931,
https://doi.org/10.1002/2016gl071791, 2017.
Keronen, P., Reissell, A., Rannik, Ü., Pohja, T., Siivola, E., Hiltunen,
V., Hari, P., Kulmala, M., and Vesala, T.: Ozone flux measurements over a
Scots pine forest using eddy covariance method: performance evaluation and
comparison with flux-profile method, Boreal Environ. Res., 8, 425–443, 2003.
Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their
atmospheric drought response in a land surface scheme: A multibiome
analysis, J. Geophys. Res.-Biogeo., 120, 1894–1911, https://doi.org/10.1002/2015jg003114, 2015.
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A.,
Migliavacca, M., De Kauwe, M. G., Werner, C., Keitel, C., Kolari, P.,
Limousin, J. M., and Linderson, M. L.: Towards physiologically meaningful
water-use efficiency estimates from eddy covariance data, Global Change
Biol., 24, 694–710, https://doi.org/10.1111/gcb.13893, 2018.
Knauer, J., Zaehle, S., De Kauwe, M. G., Haverd, V., Reichstein, M., and
Sun, Y.: Mesophyll conductance in land surface models: effects on
photosynthesis and transpiration, Plant J., 101, 858–873,
https://doi.org/10.1111/tpj.14587, 2020
Kurpius, M. R. and Goldstein, A. H.: Gas-phase chemistry dominates O3
loss to a forest, implying a source of aerosols and hydroxyl radicals to the
atmosphere, Geophys. Res. Lett., 30, 1371, https://doi.org/10.1029/2002GL016785, 2003.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H. Y., Lombardozzi, D., Riley, W.
J., Sacks, W. J., Shi, M. J., Vertenstein, M., Wieder, W. R., Xu, C. G.,
Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A.,
Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B.,
Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F.,
Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb,
W. H., Lu, Y. Q., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J.
T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J.
Y., Thomas, R. Q., Martin, M. V., and Zeng, X. B.: The Community Land Model
Version 5: Description of New Features, Benchmarking, and Impact of Forcing
Uncertainty, J. Adv. Model Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo.,
112, G01023, https://doi.org/10.1029/2006jg000168, 2007.
Lei, Y., Yue, X., Liao, H., Gong, C., and Zhang, L.: Implementation of Yale Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a tool for biosphere–chemistry interactions, Geosci. Model Dev., 13, 1137–1153, https://doi.org/10.5194/gmd-13-1137-2020, 2020.
Lin, M. Y., Malyshev, S., Shevliakova, E., Paulot, F., Horowitz, L. W.,
Fares, S., Mikkelsen, T. N., and Zhang, L. M.: Sensitivity of Ozone Dry
Deposition to Ecosystem-Atmosphere Interactions: A Critical Appraisal of
Observations and Simulations, Global Biogeochem. Cy., 33, 1264–1288,
https://doi.org/10.1029/2018gb006157, 2019.
Lin, Y. S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig,
S., Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., Op de Beeck,
M., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M. L., Cernusak, L.
A., Nippert, J. B., Ocheltree, T., Tissue, D. T., Martin-St Paul, N. K.,
Rogers, A., Warren, J. M., De Angelis, P., Hikosaka, K., Han, Q. M., Onoda,
Y., Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal, D., Bosc, A., Low,
M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tausz-Posch,
S., Zaragoza-Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M.,
Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama,
K., Limousin, J. M., Meir, P., da Costa, A. C. L., Mikkelsen, T. N.,
Salinas, N., Sun, W., and Wingate, L.: Optimal stomatal behaviour around the
world, Nat. Clim. Change, 5, 459–464, https://doi.org/10.1038/nclimate2550, 2015.
Liu, X., Tai, A. P., Chen, Y., Zhang, L., Shaddick, G., Yan, X., and Lam, H. M.: Dietary shifts can reduce premature deaths related to particulate matter pollution in China, Nat. Food, 2, 997–1004, https://doi.org/10.1038/s43016-021-00430-6, 2021.
Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The
influence of chronic ozone exposure on global carbon and water cycle, J.
Climate, 28, 292–305, https://doi.org/10.1175/Jcli-D-14-00223.1, 2015.
Lu, Y. J., Duursma, R. A., and Medlyn, B. E.: Optimal stomatal behaviour
under stochastic rainfall, J. Theor. Biol., 394, 160–171, https://doi.org/10.1016/j.jtbi.2016.01.003, 2016.
Manzoni, S., Vico, G., Katul, G., Fay, P. A., Polley, W., Palmroth, S., and
Porporato, A.: Optimizing stomatal conductance for maximum carbon gain under
water stress: a meta-analysis across plant functional types and climates,
Funct. Ecol., 25, 456–467, https://doi.org/10.1111/j.1365-2435.2010.01822.x, 2011.
Martin, M. V., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to
vegetation phenology in the Community Earth SystemModel: Implications for
the simulation of surface O3, Geophys. Res. Lett., 41, 2988–2996,
https://doi.org/10.1002/2014gl059651, 2014.
Matheny, A. M., Bohrer, G., Stoy, P. C., Baker, I. T., Black, A. T., Desai,
A. R., Dietze, M. C., Gough, C. M., Ivanov, V. Y., Jassal, R. S., Novick, K.
A., Schafer, K. V. R., and Verbeeck, H.: Characterizing the diurnal patterns
of errors in the prediction of evapotranspiration by several land-surface
models: An NACP analysis, J. Geophys. Res.-Biogeo., 119, 1458–1473,
https://doi.org/10.1002/2014jg002623, 2014.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., and Wingate,
L.: Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Global Change Biol., 17, 2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Medlyn, B. E., De Kauwe, M. G., Lin, Y. S., Knauer, J., Duursma, R. A.,
Williams, C. A., Arneth, A., Clement, R., Isaac, P., Limousin, J. M.,
Linderson, M. L., Meir, P., Martin-StPaul, N., and Wingate, L.: How do leaf
and ecosystem measures of water-use efficiency compare?, New Phytol., 216,
758–770, https://doi.org/10.1111/nph.14626, 2017.
Meyers, T. P., Finkelstein, P., Clarke, J., Ellestad, T. G., and Sims, P.
F.: A multilayer model for inferring dry deposition using standard
meteorological measurements, J. Geophys. Res.-Atmos., 103, 22645–22661,
https://doi.org/10.1029/98jd01564, 1998.
Mikkelsen, T. N., Ro-Poulsen, H., Pilegaard, K., Hovmand, M. F., Jensen, N.
O., Christensen, C. S., and Hummelshoej, P.: Ozone uptake by an evergreen
forest canopy: temporal variation and possible mechanisms, Environ. Pollut.,
109, 423–429, https://doi.org/10.1016/S0269-7491(00)00045-2,
2000.
Miner, G. L., Bauerle, W. L., and Baldocchi, D. D.: Estimating the
sensitivity of stomatal conductance to photosynthesis: A review, Plant Cell
Environ., 40, 1214–1238, 2017.
Misson, L., Panek, J. A., and Goldstein, A. H.: A comparison of three
approaches to modeling leaf gas exchange in annually drought-stressed
ponderosa pine forests, Tree Physiol., 24, 529–541, https://doi.org/10.1093/treephys/24.5.529, 2004.
Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR,
151, e187, 1954.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, 2017.
Niyogi, D., Alapaty, K., Raman, S., and Chen, F.: Development and Evaluation
of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model
(GEM) for Mesoscale Weather Forecasting Applications, J. Appl. Meteorol.
Clim., 48, 349–368, https://doi.org/10.1175/2008JAMC1662.1,
2009.
Niyogi, D. S., Raman, S., and Alapaty, K.: Comparison of four different
stomatal resistance schemes using FIFE data. Part II: Analysis of
terrestrial biospheric-atmospheric interactions, J. Appl. Meteorol., 37,
1301–1320, https://doi.org/10.1175/1520-0450(1998)037<
1301:Cofdsr>2.0.Co;2, 1998.
Nopmongcol, U., Koo, B., Tai, E., Jung, J., Piyachaturawat, P., Emery, C.,
Yarwood, G., Pirovano, G., Mitsakou, C., and Kallos, G.: Modeling Europe
with CAMx for the Air Quality Model Evaluation International Initiative
(AQMEII), Atmos. Environ., 53, 177–185, https://doi.org/10.1016/j.atmosenv.2011.11.023, 2012.
Otu-Larbi, F.: Understanding the role of abiotic stress in
biosphere-atmosphere exchange of reactive trace gases (Doctoral
dissertation), Lancaster University, https://doi.org/10.17635/lancaster/thesis/1345, 2021.
Paschalis, A., Katul, G. G., Fatichi, S., Palmroth, S., and Way, D.: On the
variability of the ecosystem response to elevated atmospheric CO2
across spatial and temporal scales at the Duke Forest FACE experiment, Agr.
Forest Meteorol., 232, 367–383, https://doi.org/10.1016/j.agrformet.2016.09.003, 2017.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac,
P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard,
N., Zhang, L., Amiro, B., Ammann, C., and Papale, D.: The
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance
data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Pio, C. A., Feliciano, M. S., Vermeulen, A. T., and Sousa, E. C.: Seasonal
variability of ozone dry deposition under southern European climate
conditions, in Portugal, Atmos. Environ., 34, 195–205, https://doi.org/10.1016/S1352-2310(99)00276-9, 2000.
Rannik, Ü., Altimir, N., Mammarella, I., Bäck, J., Rinne, J., Ruuskanen, T. M., Hari, P., Vesala, T., and Kulmala, M.: Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables, Atmos. Chem. Phys., 12, 12165–12182, https://doi.org/10.5194/acp-12-12165-2012, 2012.
Ronan, A. C., Ducker, J. A., Schnell, J. L., and Holmes, C. D.: Have improvements in ozone air quality reduced ozone uptake into plants? Elem. Sci. Anth., 8, 2, https://doi.org/10.1525/elementa.399, 2000.
Rummel, U., Ammann, C., Kirkman, G. A., Moura, M. A. L., Foken, T., Andreae, M. O., and Meixner, F. X.: Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia, Atmos. Chem. Phys., 7, 5415–5435, https://doi.org/10.5194/acp-7-5415-2007, 2007.
Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks, Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, 2017.
Sanderson, M. G., Collins, W. J., Hemming, D. L., and Betts, R. A.: Stomatal
conductance changes due to increasing carbon dioxide levels: Projected
impact on surface ozone levels, Tellus B, 59, 404–411, https://doi.org/10.1111/j.1600-0889.2007.00277.x, 2007.
Schwede, D., Zhang, L. M., Vet, R., and Lear, G.: An intercomparison of the
deposition models used in the CASTNET and CAPMoN networks, Atmos. Environ.,
45, 1337–1346, https://doi.org/10.1016/j.atmosenv.2010.11.050,
2011.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land
surface parameterization (SiB2) for atmospheric GCMs, 1. Model formulation,
J. Climate, 9, 676–705, https://doi.org/10.1175/1520-0442(1996)009< 0676:Arlspf>2.0.Co;2, 1996.
Sigler, J. M., Fuentes, J. D., Heitz, R. C., Garstang, M., and Fisch, G.:
Ozone dynamics and deposition processes at a deforested site in the Amazon
Basin, Ambio, 31, 21–27, https://doi.org/10.1579/0044-7447-31.1.21, 2002.
Silva, S. J. and Heald, C. L.: Investigating Dry Deposition of Ozone to
Vegetation, J. Geophys. Res.-Atmos., 123, 559–573, https://doi.org/10.1002/2017JD027278, 2018.
Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect
radiative forcing of climate change through ozone effects on the land-carbon
sink, Nature, 448, 791–794, https://doi.org/10.1038/nature06059, 2007.
Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay,
D. S., Wang, Y. J., and Love, D. M.: Predicting stomatal responses to the
environment from the optimization of photosynthetic gain and hydraulic cost,
Plant Cell Environ., 40, 816–830, https://doi.org/10.1111/pce.12852, 2017.
Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije,
T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N.,
Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent,
R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M.,
Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C.,
Lamarque, J. F., Lawrence, M. G., Montanaro, V., Muller, J. F., Pitari, G.,
Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G.,
Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.:
Multimodel ensemble simulations of present-day and near-future tropospheric
ozone, J. Geophys. Res.-Atmos., 111, D08301, https://doi.org/10.1029/2005jd006338, 2006.
Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., Klosterhalfen, A., Liu, S., Miralles, D. G., Perez-Priego, O., Rigden, A. J., Skaggs, T. H., Wohlfahrt, G., Anderson, R. G., Coenders-Gerrits, A. M. J., Jung, M., Maes, W. H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J. A., Poyatos, R., Reichstein, M., Scott, R. L., and Wolf, S.: Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities, Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, 2019.
Szinyei, D., Gelybo, G., Guenther, A. B., Turnipseed, A. A., Toth, E., and
Builtjes, P. J. H.: Evaluation of ozone deposition models over a subalpine
forest in Niwot Ridge, Colorado, Idojaras, 122, 119–143, https://doi.org/10.28974/idojaras.2018.2.2, 2018.
Tai, A. P. K., Mickley, L. J., Heald, C. L., and Wu, S. L.: Effect of
CO2 inhibition on biogenic isoprene emission: Implications for air
quality under 2000 to 2050 changes in climate, vegetation, and land use,
Geophys. Res. Lett., 40, 3479–3483, https://doi.org/10.1002/grl.50650, 2013.
Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y., and Feng, Z.: Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2, Front. Sustain. Food Syst., 5, 534616, https://doi.org/10.3389/fsufs.2021.534616, 2021.
Tai, A. P. K., Yung, D. H. Y., Pang, Y. S., and Ma, P. H. L.: amospktai/TEMIR: TEMIR v1.0 Public Release (v1.0), Zenodo [software], https://doi.org/10.5281/zenodo.6380828, 2022.
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G.,
Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M.,
Staehelin, J., Vigouroux, C., Hannigan, J. W., Garcia, O., Foret, G., Zanis,
P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J.,
Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M.,
Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl,
T., and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone
from 1877 to 2016, observed levels, trends and uncertainties, Elem. Sci.
Anth., 7, 72 pp., https://doi.org/10.1525/elementa.376, 2019.
Travis, K. R. and Jacob, D. J.: Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02, Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019, 2019.
Tricker, P. J., Pecchiari, M., Bunn, S. M., Vaccari, F. P., Peressotti, A.,
Miglietta, F., and Taylor, G.: Water use of a bioenergy plantation increases
in a future high CO2 world, Biomass Bioenerg., 33, 200–208, https://doi.org/10.1016/j.biombioe.2008.05.009, 2009.
Uddling, J., Hall, M., Wallin, G., and Karlsson, P. E.: Measuring and
modelling stomatal conductance and photosynthesis in mature birch in Sweden,
Agr. Forest Meteorol., 132, 115–131, https://doi.org/10.1016/j.agrformet.2005.07.004, 2005.
Vingarzan, R.: A review of surface ozone background levels and trends,
Atmos. Environ., 38, 3431–3442, https://doi.org/10.1016/j.atmosenv.2004.03.030, 2004.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of
tropospheric O3-NOx-hydrocarbon chemistry 1. Model formulation, J.
Geophys. Res.-Atmos., 103, 10713–10725, https://doi.org/10.1029/98jd00158, 1998.
Warren, J. M., Norby, R. J., and Wullschleger, S. D.: Elevated CO2
enhances leaf senescence during extreme drought in a temperate forest, Tree
Physiol., 31, 117–130, https://doi.org/10.1093/treephys/tpr002,
2011.
Wesely, M. L.: Parameterization of Surface Resistances to Gaseous Dry
Deposition in Regional-Scale Numerical-Models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wesely, M. L. and Hicks, B. B.: A review of the current status of knowledge
on dry deposition, Atmos. Environ., 34, 2261–2282, https://doi.org/10.1016/S1352-2310(99)00467-7, 2000.
Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J.,
Goodale, C. L., Grandy, A. S., Koven, C. D., Lombardozzi, D. L., Oleson, K.
W., and Thomas, R. Q.: Beyond Static Benchmarking: Using Experimental
Manipulations to Evaluate Land Model Assumptions, Global Biogeochem. Cy.,
33, 1289–1309, https://doi.org/10.1029/2018gb006141, 2019.
Wild, O.: Modelling the global tropospheric ozone budget: exploring the variability in current models, Atmos. Chem. Phys., 7, 2643–2660, https://doi.org/10.5194/acp-7-2643-2007, 2007.
Wong, A. Y. H., Geddes, J. A., Tai, A. P. K., and Silva, S. J.: Importance of dry deposition parameterization choice in global simulations of surface ozone, Atmos. Chem. Phys., 19, 14365–14385, https://doi.org/10.5194/acp-19-14365-2019, 2019.
Wu, Z. Y., Wang, X. M., Chen, F., Turnipseed, A. A., Guenther, A. B.,
Niyogi, D., Charusombat, U., Xia, B. C., Munger, J. W., and Alapaty, K.:
Evaluating the calculated dry deposition velocities of reactive nitrogen
oxides and ozone from two community models over a temperate deciduous
forest, Atmos. Environ., 45, 2663–2674, https://doi.org/10.1016/j.atmosenv.2011.02.063, 2011.
Wu, Z. Y., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R.,
and Zhang, L. M.: Evaluation and Intercomparison of Five North American Dry
Deposition Algorithms at a Mixed Forest Site, J. Adv. Model Earth Sy., 10,
1571–1586, https://doi.org/10.1029/2017ms001231, 2018.
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu,
J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O.,
Zhang, L., Ziemke, J., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C.,
Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer,
D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and
Zeng, G.: Tropospheric Ozone Assessment Report: Assessment of global-scale
model performance for global and regional ozone distributions, variability,
and trends, Elem. Sci. Anth., 6, p. 10, https://doi.org/10.1525/elementa.265, 2018.
Yu, S. C., Eder, B., Dennis, R., Chu, S. H., and Schwartz, S. E.: New
unbiased symmetric metrics for evaluation of air quality models, Atmos. Sci.
Lett., 7, 26–34, https://doi.org/10.1002/asl.125, 2006.
Zhang, L., Vet, R., O'Brien, J. M., Mihele, C., Liang, Z., and Wiebe, A.:
Dry deposition of individual nitrogen species at eight Canadian rural sites,
J. Geophys. Res.-Atmos., 114, D02301, https://doi.org/10.1029/2008jd010640, 2009.
Zhang, Q., Manzoni, S., Katul, G., Porporato, A., and Yang, D. W.: The
hysteretic evapotranspiration- Vapor pressure deficit relation, J. Geophys.
Res.-Biogeo., 119, 125–140, https://doi.org/10.1002/2013jg002484, 2014.
Zhao, Y., Zhang, L., Tai, A. P. K., Chen, Y., and Pan, Y.: Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere, Atmos. Chem. Phys., 17, 9781–9796, https://doi.org/10.5194/acp-17-9781-2017, 2017.
Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health, Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, 2018.
Zhu, J., Tai, A. P. K., and Hung Lam Yim, S.: Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model, Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, 2022.
Zhu, Z. C., Piao, S. L., Myneni, R. B., Huang, M. T., Zeng, Z. Z., Canadell,
J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C. X.,
Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y. W., Liu, R. G.,
Mao, J. F., Pan, Y. Z., Peng, S. S., Penuelas, J., Poulter, B., Pugh, T. A.
M., Stocker, B. D., Viovy, N., Wang, X. H., Wang, Y. P., Xiao, Z. Q., Yang,
H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nat.
Clim. Change, 6, 791, https://doi.org/10.1038/nclimate3004,
2016.
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
We developed and used a terrestrial biosphere model to compare and evaluate widely used...
Altmetrics
Final-revised paper
Preprint