Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2699-2022
https://doi.org/10.5194/bg-19-2699-2022
Research article
 | 
01 Jun 2022
Research article |  | 01 Jun 2022

Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets

Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese

Related authors

Matching scales of eddy covariance measurements and process-based modeling – Assessing spatiotemporal dynamics of carbon and water fluxes in a mixed forest in Southern Germany
Hassane Moutahir, Markus Sulzer, Ralf Kiese, Andreas Christen, Markus Weiler, Lea Dedden, Julian Brzozon, Pia Labenski, Prajwal Khanal, Ladislav Šigut, and Rüdiger Grote
EGUsphere, https://doi.org/10.5194/egusphere-2025-4605,https://doi.org/10.5194/egusphere-2025-4605, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Effect of preceding integrated and organic farming on 15N recovery and the N balance, including emissions of NH3, N2O, and N2 and leaching of NO3
Fawad Khan, Samuel Franco Luesma, Frederik Hartmann, Michael Dannenmann, Rainer Gasche, Clemens Scheer, Andreas Gattinger, Wiebke Niether, Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Ralf Kiese, and Benjamin Wolf
Biogeosciences, 22, 5081–5102, https://doi.org/10.5194/bg-22-5081-2025,https://doi.org/10.5194/bg-22-5081-2025, 2025
Short summary
Grassland yield estimations – potentials and limitations of remote sensing in comparison to process-based modeling and field measurements
Sophie Reinermann, Carolin Boos, Andrea Kaim, Anne Schucknecht, Sarah Asam, Ursula Gessner, Sylvia H. Annuth, Thomas M. Schmitt, Thomas Koellner, and Ralf Kiese
Biogeosciences, 22, 4969–4992, https://doi.org/10.5194/bg-22-4969-2025,https://doi.org/10.5194/bg-22-4969-2025, 2025
Short summary
Spatiotemporal variability of CO2, N2O and CH4 fluxes from a semi-deciduous tropical forest soil in the Congo Basin
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025,https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864,https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary

Cited articles

Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P. J.: Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows, Remote Sens., 10, 1091, https://doi.org/10.3390/rs10071091, 2018. 
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proceedings of the 2nd International Symposium on Information Theory, Budapest, 267–281, 1973. 
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Statist. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2010. 
Asam, S.: Potential of high resolution remote sensing data for Leaf Area Index derivation using statistical and physical models, PHD thesis, Julius-Maximilians-University Würzburg, Würzburg, 228 pp., 2014. 
Assmann, J. J., Kerby, J. T., Cunliffe, A. M., and Myers-Smith, I. H.: Vegetation monitoring using multispectral sensors – best practices and lessons learned from high latitudes, J. Unmanned Veh. Sys., 7, 54–75, https://doi.org/10.1139/juvs-2018-0018, 2018. 
Download
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Share
Altmetrics
Final-revised paper
Preprint