Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4415-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4415-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
David S. McLagan
CORRESPONDING AUTHOR
Institute of Geoecology, Technische Universität Braunschweig,
Braunschweig, 38106, Germany
Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
School of Environmental Studies, Queen's University, Kingston, ON, K7L3J6, Canada
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L3N6, Canada
Harald Biester
Institute of Geoecology, Technische Universität Braunschweig,
Braunschweig, 38106, Germany
Tomas Navrátil
Institute of Geology of the Czech Academy of Sciences, Prague, 117 20, Czech Republic
Stephan M. Kraemer
Department for Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
Lorenz Schwab
Department for Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, 1090, Austria
Related authors
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402, https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assess at an ASGM processing site and Hg contamination observed at a farm ≈500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as is the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops were below reference dose levels and generally safe for consumption.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Alexander Land, Aleta Neugebauer, Jürgen Franzaring, Petra Schmidt, and Harald Biester
EGUsphere, https://doi.org/10.5194/egusphere-2025-2325, https://doi.org/10.5194/egusphere-2025-2325, 2025
Short summary
Short summary
Trees take up mercury through their leaves and enrich it in their tree-rings . We investigated tree-ring records of oak and Douglas fir in Germany reaching back ~120 years. We have found that the overall magnitude of mercury loads in trees are determined by local atmospheric Hg concentrations while changes in mercury uptake are controlled by climate. Oak and Douglas fir show different Hg records through time as a results of different adaptation strategies to high temperatures and drought.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402, https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assess at an ASGM processing site and Hg contamination observed at a farm ≈500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as is the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops were below reference dose levels and generally safe for consumption.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Laura Balzer, Carluvy Baptista-Salazar, Sofi Jonsson, and Harald Biester
Biogeosciences, 20, 1459–1472, https://doi.org/10.5194/bg-20-1459-2023, https://doi.org/10.5194/bg-20-1459-2023, 2023
Short summary
Short summary
Toxic methylmercury (MeHg) in lakes can be enriched in fish and is harmful for humans. Phytoplankton is the entry point for MeHg into the aquatic food chain. We investigated seasonal MeHg concentrations in plankton of a productive lake. Our results show that high amounts of MeHg occur in algae and suspended matter in lakes and that productive lakes are hot spots of MeHg formation, which is mainly controlled by decomposition of algae organic matter and water-phase redox conditions.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Cited articles
Abreu, S. N., Soares, A. M. V. M., Nogueira, A. J. A., and Morgado, F.: Tree rings, Populus nigra L.; as mercury data logger in aquatic environments: Case study of an historically contaminated environment, Bull. Environ. Contam. Toxicol., 80, 294–299, https://doi.org/10.1007/s00128-008-9366-0, 2008.
Arnold, J., Gustin, M. S., and Weisberg, P. J.: Evidence for nonstomatal
uptake of Hg by aspen and translocation of Hg from foliage to tree rings in
Austrian pine, Environ. Sci Technol., 52, 1174–1182, https://doi.org/10.1021/acs.est.7b04468, 2018.
Beauford, W., Barber, J., and Barringer, A. R.: Uptake and distribution of
mercury within higher plants, Physiol. Plant., 39, 261–265, https://doi.org/10.1111/j.1399-3054.1977.tb01880.x, 1977.
Becnel, J., Falgeust, C., Cavalier, T., Gauthreaux, K., Landry, F.,
Blanchard, M., Beck, M. J., and Beck, J. N.: Correlation of mercury
concentrations in tree core and lichen samples in southeastern Louisiana,
Microchem. J., 78, 205–210, https://doi.org/10.1016/j.microc.2004.06.002, 2004.
Bergquist, B. A. and Blum, J. D.: Mass-dependent and-independent
fractionation of Hg isotopes by photoreduction in aquatic systems, Science,
318, 417–420, https://doi.org/10.1126/science.1148050, 2007.
Bergquist, B. A. and Blum, J. D.: The odds and evens of mercury isotopes:
applications of mass-dependent and mass-independent isotope fractionation,
Elements, 5, 353–357, https://doi.org/10.2113/gselements.5.6.353, 2009.
Bertaud, F. and Holmbom, B.: Chemical composition of earlywood and latewood
in Norway spruce heartwood, sapwood and transition zone wood, Wood Sci.
Technol., 38, 245–256, https://doi.org/10.1007/s00226-004-0241-9, 2004.
Binda, G., Di Lorio, A., and Monticelli, D.: The what, how, why, and when of
dendrochemistry: (paleo)environmental information from the chemical analysis
of tree rings, Sci. Total Environ., 758, 143672, https://doi.org/10.1016/j.scitotenv.2020.143672, 2021.
Bishop, K. H., Lee, Y. H., Munthe, J., and Dambrine, E.: Xylem sap as a
pathway for total mercury and methylmercury transport from soils to tree
canopy in the boreal forest, Biogeochem., 40, 101–113, https://doi.org/10.1023/A:1005983932240, 1998.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury isotopes in earth
and environmental sciences, Annu. Rev. Earth Planet. Sci., 42, 249–269, https://doi.org/10.1146/annurev-earth-050212-124107, 2014.
Browne, C. L. and Fang, S. C.: Uptake of mercury vapor by wheat: an
assimilation model, Plant Physiol., 61, 430–433, https://doi.org/10.1104/pp.61.3.430, 1978.
Chen, J., Hintelmann, H., Feng, X., and Dimock, B.: Unusual fractionation of
both odd and even mercury isotopes in precipitation from Peterborough, ON,
Canada, Geochim. Cosmochim. Acta, 90, 33–46, https://doi.org/10.1016/j.gca.2012.05.005,
2012.
Chiarantini, L., Rimondi, V., Benvenuti, M., Beutel, M. W., Costagliola, P.,
Gonnelli, C., Lattanzi, P., and Paolieri, M.: Black pine (Pinus nigra) barks
as biomonitors of airborne mercury pollution, Sci. Total Environ., 569,
105–113, https://doi.org/10.1016/j.scitotenv.2016.06.029, 2016.
Chiarantini, L., Rimondi, V., Bardelli, F., Benvenuti, M., Cosio, C.,
Costagliola, P., Di Benedetto, F., Lattanzi, P., and Sarret, G.: Mercury
speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray
absorption spectroscopy study, Environ. Pollut., 227, 83–88, https://doi.org/10.1016/j.envpol.2017.04.038, 2017.
Clackett, S. P., Porter, T. J., and Lehnherr, I.: 400-year record of
atmospheric mercury from tree-rings in Northwestern Canada, Environ. Sci
Technol., 52, 9625–9633, https://doi.org/10.1021/acs.est.8b01824, 2018.
Cozzolino, V., De Martino, A., Nebbioso, A., Di Meo, V., Salluzzo, A., and
Piccolo, A.: Plant tolerance to mercury in a contaminated soil is enhanced
by the combined effects of humic matter addition and inoculation with
arbuscular mycorrhizal fungi, Environ. Sci. Pollut. Res., 23,
11312–11322, https://doi.org/10.1007/s11356-016-6337-6, 2016.
Cui, L., Feng, X., Lin, C. J., Wang, X., Meng, B., Wang, X., and Wang, H.:
Accumulation and translocation of 198Hg in four crop species, Environ.
Toxicol. Chem., 33, 334–340, https://doi.org/10.1002/etc.2443, 2014.
Cutter, B. E. and Guyette, R. P.: Anatomical, chemical, and ecological
factors affecting tree species choice in dendrochemistry studies, J.
Environ. Qual., 22, 611–619, https://doi.org/10.2134/jeq1993.00472425002200030028x,
1993.
Dastoor, A., Angot, H., Bieser, J., Christensen, J., Douglas, T.,
Heimbürger-Boavida,. L. E., Jiskra, M., Mason, R., McLagan, D. S.,
Obrist, D., Outridge, P., Petrova, M., Ryjkov, A., St. Pierre, K., Schartup,
A., Soerensen, A., Travnikov, O., Toyota, K., Wilson, S., and Zdanowicz, C.:
Arctic mercury cycling, Nat. Rev. Earth Environ., 3, 270–286, https://doi.org/10.1038/s43017-022-00269-w, 2022.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle, Global Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/gbc.20021, 2013.
Deming, W. E.: Statistical adjustment of data, Wiley, New Jersey, USA, https://archive.org/details/in.ernet.dli.2015.18293 (last access: 1 September 2022), 1943.
Dennis, K. K., Uppal, K., Liu, K. H., Ma, C., Liang, B., Go, Y. M., and
Jones, D. P.: Phytochelatin database: a resource for phytochelatin complexes
of nutritional and environmental metals, Database, 2019, baz083, https://doi.org/10.1093/database/baz083, 2019.
Eisele, G.: Arbeitshilfe Absicherbarkeit von Risiken beim
Flächenrecycling, Forschungsbericht FZKA-BWPLUS, Landesanstalt für
Umwelt Baden-Württemberg, Baden-Württemberg, Germany, 102,
https://pd.lubw.de/99447 (last access: 1 September 2022), 2004.
EMEP: Co-operative Programme for Monitoring and Evaluation of the Long-Range
Transmissions of Air Pollutants in Europe, European Monitoring and
Evaluation Programme (EMEP), Kjeller, Norway, https://projects.nilu.no/ccc/reports.html, last access: 9 February 2022.
Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.
E., Claustres, A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric mercury
transfer to peat bogs dominated by gaseous elemental mercury dry deposition,
Environ. Sci Technol., 50, 2405–2412, https://doi.org/10.1021/acs.est.5b06058, 2016.
Friedli, H. R., Arellano, A. F., Cinnirella, S., and Pirrone, N.: Initial
estimates of mercury emissions to the atmosphere from global biomass
burning, Environ. Sci Technol., 43, 3507–3513, https://doi.org/10.1021/es802703g,
2009.
Gratz, L. E., Keeler, G. J., Blum, J. D., and Sherman, L. S.: Isotopic
composition and fractionation of mercury in Great Lakes precipitation and
ambient air, Environ. Sci Technol., 44, 7764–7770, https://doi.org/10.1021/es100383w, 2010.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E.,
Sandilands, K. A., Rudd, J. W., Kelly, C. A., Tate, M. T., Krabbenhoft, D.
P., and Lehnherr, I.: Investigation of uptake and retention of atmospheric
Hg (II) by boreal forest plants using stable Hg isotopes, Environ. Sci
Technol., 2009, 43, 4960–4966, https://doi.org/10.1021/es900357s, 2009.
Grigg, A. R., Kretzschmar, R., Gilli, R. S., and Wiederhold, J. G.: Mercury
isotope signatures of digests and sequential extracts from industrially
contaminated soils and sediments, Sci. Total Environ., 636, 1344–1354,
https://doi.org/10.1016/j.scitotenv.2018.04.261, 2018.
Gustin, M. S., Ingle, B., and Dunham-Cheatham, S. M.: Further investigations
into the use of tree rings as archives of atmospheric mercury
concentrations, Biogeochem., 158, 167–180, https://doi.org/10.1007/s10533-022-00892-1,
2022.
Hojdová, M., Navrátil, T., Rohovec, J., Žák, K., Vaněk,
A., Chrastný, V., Bače, R., and Svoboda, M.: Changes in mercury
deposition in a mining and smelting region as recorded in tree rings, Water
Air Soil Pollut., 216, 73–82, https://doi.org/10.1007/s11270-010-0515-9, 2011.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D., and
Martin, L. G.: A vegetation control on seasonal variations in global
atmospheric mercury concentrations, Nat. Geosci., 11, 244–250, https://doi.org/10.1038/s41561-018-0078-8, 2018.
Jiskra, M., Marusczak, N., Leung, K. H., Hawkins, L., Prestbo, E., and
Sonke, J. E.: Automated stable isotope sampling of gaseous elemental mercury
(ISO-GEM): Insights into GEM emissions from building surfaces, Environ. Sci
Technol., 53, 4346–4354, https://doi.org/10.1021/acs.est.8b06381, 2019.
Kahle, H.: Response of roots of trees to heavy metals, Environ. Exp. Bot.,
33, 99–119, https://doi.org/10.1016/0098-8472(93)90059-o, 1993.
Khan, T. R., Obrist, D., Agnan, Y., Selin, N. E., and Perlinger, J. A.:
Atmosphere-terrestrial exchange of gaseous elemental mercury:
parameterization improvement through direct comparison with measured
ecosystem fluxes, Environ. Sci. Process. Impacts, 21, 1699–1712, https://doi.org/10.1039/C9EM00341J, 2019.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake
dynamics of mercury in leaves of common deciduous tree species in Minnesota,
USA, Environ. Sci Technol., 47, 10462–10470, https://doi.org/10.1021/es401357z,
2013.
Lin, C. J. and Pehkonen, S. O.: The chemistry of atmospheric mercury: a
review, Atmos. Environ., 33, 2067–2079, https://doi.org/10.1016/S1352-2310(98)00387-2, 1999.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X.,
Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of
progress and uncertainties in attributing the sources of mercury in
deposition, Ambio, 36, 19–32, https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2, 2007.
Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M.
J., and Lund, J. R.: Atmospheric emission and plant uptake of mercury from
agricultural soils near the Almaden mercury mine, J. Environ. Qual., 8,
572–578, https://doi.org/10.2134/jeq1979.00472425000800040026x, 1979.
Liu, Y., Lin, C. J., Yuan, W., Lu, Z., and Feng, X.: Translocation and
distribution of mercury in biomasses from subtropical forest ecosystems:
Evidence from stable mercury isotopes, Acta Geochim., 40, 42–50, https://doi.org/10.1007/s11631-020-00441-3, 2021.
Mao, H. and Talbot, R.: Speciated mercury at marine, coastal, and inland sites in New England – Part 1: Temporal variability, Atmos. Chem. Phys., 12, 5099–5112, https://doi.org/10.5194/acp-12-5099-2012, 2012.
McLagan, D. S., Monaci, F., Huang, H., Lei, Y. D., Mitchell, C. P. J., and
Wania, F.: Characterization and quantification of atmospheric mercury
sources using passive air samplers, J. Geophys. Res.-Atmos., 124,
2351–2362, https://doi.org/10.1029/2018JD029373, 2019.
McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K., and Steffen, A.: Where there is smoke there is mercury: Assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates, Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, 2021a.
McLagan, D. S., Osterwalder, S., and Biester, H.: Temporal and spatial
assessment of gaseous elemental mercury concentrations and emissions at
contaminated sites using active and passive measurements, Environ. Res.
Commun., 3, 051004, https://doi.org/10.1088/2515-7620/abfe02, 2021b.
McLagan, D. S., Schwab, L., Wiederhold, J. G., Chen, L., Pietrucha, J.,
Kraemer, S. M., and Biester, H.: Demystifying mercury geochemistry in
contaminated soil–groundwater systems with complementary mercury stable
isotope, concentration, and speciation analyses, Environ. Sci. Process.
Impacts, https://doi.org/10.1039/D1EM00368B, online first, 2022.
Metsä-Kortelainen, S., Antikainen, T., and Viitaniemi, P.: The water
absorption of sapwood and heartwood of Scots pine and Norway spruce
heat-treated at 170 C, 190 C, 210 C and 230 C, Holz Roh Werkst.,
64, 192–197, https://doi.org/10.1007/s00107-005-0063-y, 2006.
Millhollen, A. G., Gustin, M. S., and Obrist, D.: Foliar mercury
accumulation and exchange for three tree species, Environ. Sci Technol.,
40, 6001–6006, https://doi.org/10.1021/es0609194, 2006.
Moreno, F. N., Anderson, C. W., Stewart, R. B., Robinson, B. H., Ghomshei,
M., and Meech, J. A.: Induced plant uptake and transport of mercury in the
presence of sulphur-containing ligands and humic acid, New Phytol., 166,
445–454, https://doi.org/10.1111/j.1469-8137.2005.01361.x, 2005.
Moreno-Jiménez, E., Gamarra, R., Carpena-Ruiz, R. O., Millán, R.,
Peñalosa, J. M., and Esteban, E.: Mercury bioaccumulation and
phytotoxicity in two wild plant species of Almadén area, Chemosphere,
63, 1969–1973, https://doi.org/10.1016/j.chemosphere.2005.09.043, 2006.
Mowat, L. D., St. Louis, V. L., Graydon, J. A., and Lehnherr, I.: Influence
of forest canopies on the deposition of methylmercury to boreal ecosystem
watersheds, Environ. Sci Technol., 45, 5178–5185, https://doi.org/10.1021/es104377y, 2011.
Nagy, N. E., Sikora, K., Krokene, P., Hietala, A. M., Solheim, H., and
Fossdal, C. G.: Using laser micro-dissection and qRT-PCR to analyze cell
type-specific gene expression in Norway spruce phloem, PeerJ, 2, e362, https://doi.org/10.7717/peerj.362, 2014.
Navrátil, T., Šimeček, M., Shanley, J. B., Rohovec, J.,
Hojdová, M., and Houška, J.: The history of mercury pollution near
the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by
Scots pine tree rings and other bioindicators, Sci. Total Environ., 586,
1182–1192, https://doi.org/10.1016/j.scitotenv.2017.02.112, 2017.
Navrátil, T., Nováková, T., Shanley, J. B., Rohovec, J., Matoušková, Š., Vaňková, M., and Norton, S. A.: Larch tree rings as a tool for reconstructing 20th century Central European atmospheric mercury trends, Environ. Sci Technol., 52, 11060–11068, https://doi.org/10.1021/acs.est.8b02117, 2018.
Nováková, T., Navrátil, T., Demers, J. D., Roll, M., and
Rohovec, J.: Contrasting tree ring Hg records in two conifer species:
Multi-site evidence of species-specific radial translocation effects in
Scots pine versus European larch, Sci. Total Environ., 762, 144022, https://doi.org/10.1016/j.scitotenv.2020.144022, 2021.
Nováková, T., Navrátil, T., Schütze, M., Rohovec, J.,
Matoušková, Š., Hošek, M., and Matys Grygar, T.: Reconstructing atmospheric Hg levels near the oldest chemical factory in central Europe using a tree ring archive, Environ. Pollut., 304, 119215, https://doi.org/10.1016/j.envpol.2022.119215, 2022.
Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber,
J., Moore, C. W., Sonke, J. E., and Helmig, D.: Tundra uptake of atmospheric
elemental mercury drives Arctic mercury pollution, Nature, 547,
201–204, https://doi.org/10.1038/nature22997, 2017.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S.,
Tack, F. M., and Rinklebe, J.: Mercury speciation, transformation, and
transportation in soils, atmospheric flux, and implications for risk
management: A critical review, Environ. Int., 126, 747–761, https://doi.org/10.1016/j.envint.2019.03.019, 2019.
Odabasi, M., Tolunay, D., Kara, M., Falay, E. O., Tuna, G., Altiok, H.,
Dumanoglu, Y., Bayram, A., and Elbir, T.: Investigation of spatial and
historical variations of air pollution around an industrial region using
trace and macro elements in tree components, Sci. Total Environ., 550,
1010–1021, https://doi.org/10.1016/j.scitotenv.2016.01.197, 2016.
Peckham, M. A., Gustin, M. S., Weisberg, P. J., and Weiss-Penzias, P.:
Results of a controlled field experiment to assess the use of tree tissue
concentrations as bioindicators of air Hg, Biogeochem., 142, 265–279,
https://doi.org/10.1007/s10533-018-0533-z, 2019a.
Peckham, M. A., Gustin, M. S., and Weisberg, P. J.: Assessment of the
suitability of tree rings as archives of global and regional atmospheric
mercury pollution, Environ. Sci Technol., 53, 3663–3671, https://doi.org/10.1021/acs.est.8b06786, 2019b.
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., and
Gardea-Torresdey, J.: The biochemistry of environmental heavy metal uptake
by plants: implications for the food chain, Int. J. Biochem. Cell Biol.,
41, 1665–1677, https://doi.org/10.1016/j.biocel.2009.03.005, 2009.
Pfautsch, S., Hölttä, T., and Mencuccini, M.: Hydraulic functioning
of tree stems–fusing ray anatomy, radial transfer and capacitance, Tree
Physiol., 35, 706–722, https://doi.org/10.1093/treephys/tpv058, 2015.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 2 September 2022), 2021.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition
and foliar leaching of mercury and selected trace elements based on washed
foliar and surrogate surfaces. Environ. Sci Technol., 34, 2418–2425,
https://doi.org/10.1021/es991305k, 2000.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Dry deposition and foliar
leaching of mercury and selected trace elements in deciduous forest
throughfall. Atmos. Environ., 35, 3453–3462, https://doi.org/10.1016/S1352-2310(01)00133-9, 2001.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury
accumulation in foliage over time in two northern mixed-hardwood forests,
Water Air Soil Pollut., 133, 49–67, https://doi.org/10.1023/A:1012919731598, 2002.
Richard, J. H., Bischoff, C., Ahrens, C. G., and Biester, H.: Mercury (II)
reduction and co-precipitation of metallic mercury on hydrous ferric oxide
in contaminated groundwater, Sci. Total Environ., 539, 36–44, https://doi.org/10.1016/j.scitotenv.2015.08.116, 2016.
Scanlon, T. M., Riscassi, A. L., Demers, J. D., Camper, T. D., Lee, T. R.,
and Druckenbrod, D. L.: Mercury accumulation in tree rings: observed trends
in quantity and isotopic composition in Shenandoah National Park, Virginia,
J. Geophys. Res.-Biogeosci., 125, e2019JG005445, https://doi.org/10.1029/2019JG005445, 2020.
Schrenk, V. and Hiester, U.: Analysis of Subsurface Remediation
Technologies for Brownfield Redevelopments, REVIT: revitalising industrial
sites, City of Stuttgart, Stuttgart, Germany, P042/0702, 97, https://www.researchgate.net/publication/283082200_Analysis_of_Subsurface_Remediation_Technologies_for_Brownfield_Redevelopments (last access: 1 September 2022), 2007.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – an overview, Atmos.
Environ., 32, 809–822, https://doi.org/10.1016/S1352-2310(97)00293-8, 1998.
Selin, N. E.: Global biogeochemical cycling of mercury: a review, Annu. Rev.
Environ. Resour., 34, 43–63, https://doi.org/10.1146/annurev.environ.051308.084314,
2009.
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaeglé, L., and
Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for mercury:
Present-day versus preindustrial cycles and anthropogenic enrichment factors
for deposition, Global Biogeochem. Cy., 22, GB2011, https://doi.org/10.1029/2007GB003040, 2008.
Siwik, E. I., Campbell, L. M., and Mierle, G.: Distribution and trends of
mercury in deciduous tree cores, Environ. Pollut., 158, 2067–2073, https://doi.org/10.1016/j.envpol.2010.03.002, 2010.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Sun, R., Streets, D. G., Horowitz, H. M., Amos, H. M., Liu, G., Perrot, V.,
Toutain, J. P., Hintelmann, H., Sunderland, E. M., Sonke, J. E., and Blum,
J. D.: Historical (1850–2010) mercury stable isotope inventory from
anthropogenic sources to the atmosphere, Elementa Sci. Anth.,
4, 000091, https://doi.org/10.12952/journal.elementa.000091, 2016.
Szponar, N., McLagan, D. S., Kaplan, R. J., Mitchell, C. P., Wania, F.,
Steffen, A., Stupple, G. W., Monaci, F., and Bergquist, B. A.: Isotopic
characterization of atmospheric gaseous elemental mercury by passive air
sampling, Environ. Sci. Technol., 54, 10533–10543, https://doi.org/10.12952/journal.elementa.000091, 2020.
Taylor, A. M., Gartner, B. L., and Morrell, J. J.: Heartwood formation and
natural durability – a review, Wood Fibre Sci., 34, 587–611, 2002.
Vermeesch, P.: IsoplotR: a free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018 (code available at: https://CRAN.R-project.org/package=IsoplotR, last access: 13 September 2022).
Wang, X., Luo, J., Yin, R., Yuan, W., Lin, C. J., Sommar, J., Feng, X., Wang,
H., and Lin, C.: Using mercury isotopes to understand mercury accumulation
in the montane forest floor of the Eastern Tibetan Plateau, Environ. Sci
Technol., 51, 801–809, 2017.
Wang, X., Yuan, W., Lin, C. J., Luo, J., Wang, F., Feng, X., Fu, X., and
Liu, C.: Underestimated sink of atmospheric mercury in a deglaciated forest
chronosequence, Environ. Sci. Technol., 54, 8083–8093, https://doi.org/10.1021/acs.est.0c01667, 2020.
Wang, X., Yuan, W., Lin, C. J., Wu, F., and Feng, X.: Stable mercury
isotopes stored in Masson Pinus tree rings as atmospheric mercury archives,
J. Hazard. Mater., 415, 125678, https://doi.org/10.1016/j.jhazmat.2021.125678, 2021.
Weis, R.: Vor 100 Jahren brannte in Titisee-Neustadt das Dampfsäge- und
Holzwerk Himmelsbach, Badische Zeitung BZ,
https://www.badische-zeitung.de/vor-100-jahren-brannte-in-titisee-neustadt-das-dampfsaege-und-holzwerk-himmelsbach–188906523.html (last access: 1 September 2022), 2020.
Wiederhold, J. G., Christopher J. C., Daniel, K., Infante, I., Bourdon D.,
and Kretzschmar, R.: Equilibrium Mercury Isotope Fractionation between
Dissolved Hg(II) Species and Thiol-Bound Hg, Environ. Sci. Technol., 44,
4191–4197, https://doi.org/10.1021/es100205t, 2010.
Wohlgemuth, L., Osterwalder, S., Joseph, C., Kahmen, A., Hoch, G., Alewell, C., and Jiskra, M.: A bottom-up quantification of foliar mercury uptake fluxes across Europe, Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, 2020.
Wright, G., Woodward, C., Peri, L., Weisberg, P. J., and Gustin, M. S.:
Application of tree rings [dendrochemistry] for detecting historical trends
in air Hg concentrations across multiple scales, Biogeochem., 120,
149–162, https://doi.org/10.1007/s10533-014-9987-9, 2014.
Yamakawa, A., Amouroux, D., Tessier, E., Bérail, S., Fettig, I., Barre,
J. P., Koschorreck, J., Rüdel, H., and Donard, O. F.: Hg isotopic
composition of one-year-old spruce shoots: Application to long-term Hg
atmospheric monitoring in Germany, Chemosphere, 279, 130631, https://doi.org/10.1016/j.chemosphere.2021.130631, 2021.
Yanai, R. D., Yang, Y., Wild, A. D., Smith, K. T., and Driscoll, C. T.: New
Approaches to Understand Mercury in Trees: Radial and Longitudinal Patterns
of Mercury in Tree Rings and Genetic Control of Mercury in Maple Sap, Water
Air Soil Pollut., 231, 1–10, https://doi.org/10.1007/s11270-020-04601-2, 2020.
York, D., Evensen, N. M., Martınez, M. L., and De Basabe Delgado, J.:
Unified equations for the slope, intercept, and standard errors of the best
straight line, Am. J. Phys., 72, 367–375, https://doi.org/10.1119/1.1632486, 2004.
Yuan, W., Sommar, J., Lin, C. J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu,
Z., Wu, C., and Feng, X.: Stable isotope evidence shows re-emission of
elemental mercury vapor occurring after reductive loss from foliage,
Environ. Sci Technol., 53, 651–660, https://doi.org/10.1021/acs.est.8b04865, 2018.
Zhang, L., Wright, L. P., and Blanchard, P.: A review of current knowledge
concerning dry deposition of atmospheric mercury, Atmos. Environ., 43,
5853–5864, https://doi.org/10.1016/j.atmosenv.2009.08.019, 2009.
Zheng, W. and Hintelmann, H.: Mercury isotope fractionation during
photoreduction in natural water is controlled by its Hg/DOC ratio, Geochim.
Cosmochim. Acta, 73, 6704–6715, https://doi.org/10.1016/j.gca.2009.08.016, 2009.
Zhou, J., Wang, Z., Zhang, X., and Gao, Y.: Mercury concentrations and pools
in four adjacent coniferous and deciduous upland forests in Beijing, China,
J. Geophys. Res.-Biogeosci., 122, 1260–1274, https://doi.org/10.1002/2017JG003776,
2017.
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. and Ryjkov, A.: Vegetation
uptake of mercury and impacts on global cycling, Nature Reviews Earth & Environment, 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y, 2021.
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Spruce and larch trees are effective archiving species for historical atmospheric mercury using...
Altmetrics
Final-revised paper
Preprint