Articles | Volume 19, issue 19
https://doi.org/10.5194/bg-19-4811-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4811-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Department of Agroecology, iClimate, Aarhus University, Tjele, Denmark
Wenxin Zhang
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden
Per-Erik Jansson
Department of Sustainable Development, Environmental Science and
Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
Søren O. Petersen
Department of Agroecology, iClimate, Aarhus University, Tjele, Denmark
Related authors
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data, 17, 1191–1216, https://doi.org/10.5194/essd-17-1191-2025, https://doi.org/10.5194/essd-17-1191-2025, 2025
Short summary
Short summary
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to complex parameterizations. To tackle this issue, we developed a novel framework based on maximum entropy production (MEP) theory. By incorporating heat storage effects and refining the Bowen ratio, we enhanced the MEP method's accuracy. This research derives a new long-term global ocean latent heat flux dataset that offers high accuracy, enhancing our understanding of ocean energy dynamics.
Jianting Zhao, Lin Zhao, Ze Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3956, https://doi.org/10.5194/egusphere-2024-3956, 2025
Short summary
Short summary
The thermal regime is a key indicator of permafrost evolution. We quantitatively analyzed the spatiotemporal dynamics of the permafrost status in western Tibet since the 1980s, based on numerical simulations using the enhanced, model-forcing-driven Moving-Grid Permafrost Model. Our simulated results indicated that slow and lagged response of permafrost to climate warming, which closely linked to historical thermal conditions.
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci., 29, 613–625, https://doi.org/10.5194/hess-29-613-2025, https://doi.org/10.5194/hess-29-613-2025, 2025
Short summary
Short summary
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil moisture data, we found that recovery takes about 37.5 d on average (longer in central and southern regions) in China. Factors like post-drought radiation and temperature affect recovery, with extreme temperatures prolonging it. Herbaceous plants recover faster than forests. Our findings aid water resource management and drought monitoring on a large scale, offering insights into ecosystem resilience.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Hongxing He, Per-Erik Jansson, and Annemieke I. Gärdenäs
Geosci. Model Dev., 14, 735–761, https://doi.org/10.5194/gmd-14-735-2021, https://doi.org/10.5194/gmd-14-735-2021, 2021
Short summary
Short summary
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled C, N, and P dynamics for terrestrial ecosystems. Simulations from the new Coup-CNP model provide strong evidence that P fluxes need to be further considered in studies of how ecosystems and C turnover react to climate change.
Cited articles
Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., and Williams,
M.: Testing DayCent and DNDC model simulations of N2O fluxes and
assessing the impacts of climate change on the gas flux and biomass
production from a humid pasture, Atmos. Environ., 44, 2961–2970,
https://doi.org/10.1016/j.atmosenv.2010.05.018, 2010.
Angers, D. A. and Recous, S.: Decomposition of wheat straw and rye residues
as affected by particle size, Plant Soil, 189, 197–203,
https://doi.org/10.1023/A:1004207219678, 1997.
Aulakh, M. S., Walters, D. T., Doran, J. W., Francis, D. D., and Mosier, A.
R.: Crop residue type and placement effects on denitrification and
mineralization, Soil Sci. Soc. Am. J., 55, 1020–1025,
https://doi.org/10.2136/SSSAJ1991.03615995005500040022X, 1991.
Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/HYP.3360060305, 1992.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29,
https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R.,
Dorich, C. D., Doro, L., Ehrhardt, F., Farina, R., Ferrise, R., Fitton, N.,
Francaviglia, R., Grace, P., Iocola, I., Klumpp, K., Léonard, J.,
Martin, R., Massad, R. S., Recous, S., Seddaiu, G., Sharp, J., Smith, P.,
Smith, W. N., Soussana, J.-F., and Bellocchi, G.: Review and analysis of
strengths and weaknesses of agro-ecosystem models for simulating C and N
fluxes, Sci. Total Environ., 598, 445–470,
https://doi.org/10.1016/j.scitotenv.2017.03.208, 2017.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Chen, D., Li, Y., Grace, P., and Mosier, A. R.: N2O emissions from
agricultural lands: a synthesis of simulation approaches, Plant Soil, 309,
169–189, https://doi.org/10.1007/s11104-008-9634-0, 2008.
Davidson, E. A. and Kanter, D.: Inventories and scenarios of nitrous oxide
emissions, Environ. Res. Lett., 9, 105012,
https://doi.org/10.1088/1748-9326/9/10/105012, 2014.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis – Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Glob. Change Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil
organic matter turnover is governed by accessibility not recalcitrance,
Glob. Change Biol., 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x,
2012.
Eusterhues, K., Rumpel, C., Kleber, M., and Kögel-Knabner, I.:
Stabilisation of soil organic matter by interactions with minerals as
revealed by mineral dissolution and oxidative degradation, Org. Geochem.,
34, 1591–1600, https://doi.org/10.1016/j.orggeochem.2003.08.007, 2003.
Fang, Q. X., Ma, L., Halvorson, A. D., Malone, R. W., Ahuja, L. R., Del
Grosso, S. J., and Hatfield, J. L.: Evaluating four nitrous oxide emission
algorithms in response to N rate on an irrigated corn field, Environ. Model.
Softw., 72, 56–70, https://doi.org/10.1016/j.envsoft.2015.06.005, 2015.
Firestone, M. K. and Davidson, E. A.: Microbiological basis of NO and
N2O production and consumption in soil, Life Sci. R., 47, 7–21, 1989.
Flury, M. and Gimmi, T. F.: 6.2 Solute Diffusion, in: Methods of Soil
Analysis: Part 4 Physical Methods, edited by: Dane, J. H. and Topp, C. G.,
1323–1351, Soil Science Society of America, Inc., Madison, US, 1323–1351, https://doi.org/10.2136/sssabookser5.4.c55, 2018.
Fuchs, K., Merbold, L., Buchmann, N., Bretscher, D., Brilli, L., Fitton, N.,
Topp, C. F. E., Klumpp, K., Lieffering, M., Martin, R., Newton, P. C. D.,
Rees, R. M., Rolinski, S., Smith, P., and Snow, V.: Multimodel evaluation of
nitrous oxide emissions from an intensively managed grassland, J. Geophys.
Res.-Biogeo, 125, 1–21, https://doi.org/10.1029/2019JG005261, 2020.
Gaillard, R. K., Jones, C. D., Ingraham, P., Collier, S., Izaurralde, R. C.,
Jokela, W., Osterholz, W., Salas, W., Vadas, P., and Ruark, M. D.:
Underestimation of N2O emissions in a comparison of the DayCent, DNDC,
and EPIC models, Ecol. Appl., 28, 694–708, https://doi.org/10.1002/eap.1674, 2018.
Gijsman, A. J., Hoogenboom, G., Parton, W. J., and Kerridge, P. C.: Modifying
DSSAT crop models for low-input agricultural systems using a soil organic
matter–residue module from CENTURY, Agron. J., 94, 462–474,
https://doi.org/10.2134/agronj2002.4620, 2002.
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W.,
and Watson, S. W.: Production of NO and N2O by nitrifying
bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40,
526–532, https://doi.org/10.1128/aem.40.3.526-532.1980, 1980.
Grandy, A. S. and Robertson, G. P.: Initial cultivation of a
temperate-region soil immediately accelerates aggregate turnover and
CO2 and N2O fluxes, Glob. Chang. Biol., 12, 1507–1520,
https://doi.org/10.1111/j.1365-2486.2006.01166.x, 2006.
Grosz, B., Well, R., Dechow, R., Köster, J. R., Khalil, M. I., Merl, S.,
Rode, A., Ziehmer, B., Matson, A., and He, H.: Evaluation of denitrification
and decomposition from three biogeochemical models using laboratory
measurements of N2, N2O and CO2, Biogeosciences, 18,
5681–5697, https://doi.org/10.5194/bg-18-5681-2021, 2021.
He, H., Jansson, P. E., Svensson, M., Meyer, A., Klemedtsson, L., and
Kasimir, Å.: Factors controlling Nitrous Oxide emission from a spruce
forest ecosystem on drained organic soil, derived using the CoupModel, Ecol.
Modell., 321, 46–63, https://doi.org/10.1016/j.ecolmodel.2015.10.030, 2016.
Jansson, P.-E.: CoupModel: model use, calibration, and validation, Trans.
ASABE, 55, 1335–1344, https://doi.org/10.13031/2013.42245, 2012.
Jansson, P.-E. and Karlberg, L.: Coupled heat and mass transfer model for
soil-plant-atmosphere systems,
https://www.coupmodel.com/documentation (last access: 10 February 2022), 2010.
Jansson, P.-E. and Moon, D. S.: A coupled model of water, heat and mass
transfer using object orientation to improve flexibility and functionality,
Environ. Model. Softw., 16, 37–46, https://doi.org/10.1016/S1364-8152(00)00062-1, 2001.
Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M.,
Holzworth, D., Huth, N., Hargreaves, J. N., Meinke, H., Hochman, Z.,
McLean, G., Verburg, K., Snow, V., Dimes, J., Silburn, M., Wang, E.,
Brown, S., Bristow, K., Asseng, S., Chapman, S., McCown, R., Freebairn,
D., and Smith, C.: An overview of APSIM, a model designed for farming
systems simulation, Eur. J. Agron., 18, 267–288,
https://doi.org/10.1016/S1161-0301(02)00108-9, 2003.
Khalil, K., Renault, P., Guerin, N., and Mary, B.: Modelling denitrification
including the dynamics of denitrifiers and their progressive ability to
reduce nitrous oxide: comparison with batch experiments, Eur. J. Soil Sci.,
56, 491–504, https://doi.org/10.1111/j.1365-2389.2004.00681.x, 2005.
Kravchenko, A. N., Toosi, E. R., Guber, A. K., Ostrom, N. E., Yu, J., Azeem,
K., Rivers, M. L., and Robertson, G. P.: Hotspots of soil N2O emission
enhanced through water absorption by plant residue, Nat. Geosci., 10,
496–500, https://doi.org/10.1038/ngeo2963, 2017.
Kravchenko, A. N., Fry, J. E., and Guber, A. K.: Water absorption capacity of
soil-incorporated plant leaves can affect N2O emissions and soil
inorganic N concentrations, Soil Biol. Biochem., 121, 113–119,
https://doi.org/10.1016/J.SOILBIO.2018.03.013, 2018.
Kuzyakov, Y.: Priming effects: interactions between living and dead organic
matter, Soil Biol. Biochem., 42, 1363–1371,
https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in
soil: concept & review, Soil Biol. Biochem., 83, 184–199,
https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Lam, P. S., Sokhansanj, S., Bi, X., Lim, C. J., Naimi, L. J., Hoque, M.,
Mani, S., Womac, A. R., Narayan, S., and Ye, X. P.: Bulk density of wet and
dry wheat straw and switchgrass particles, Appl. Eng. Agr., 24, 351–358,
https://doi.org/10.13031/2013.24490, 2008.
Lashermes, G., Recous, S., Alavoine, G., Janz, B., Butterbach-Bahl, K.,
Ernfors, M., and Laville, P.: N2O emissions from decomposing crop
residues are strongly linked to their initial soluble fraction and early C
mineralization, Sci. Total Environ., 806, 150883,
https://doi.org/10.1016/j.scitotenv.2021.150883, 2022.
Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous oxide evolution
from soil driven by rainfall events: 1. model structure and sensitivity, J.
Geophys. Res.-Atmos., 97, 9759–9776, https://doi.org/10.1029/92JD00509, 1992.
Li, C., Aber, J., Stange, F., Butterbach-Bahl, K., and Papen, H.: A
process-oriented model of N2O and NO emissions from forest soils: 1.
model development, J. Geophys. Res.-Atmos., 105, 4369–4384,
https://doi.org/10.1029/1999JD900949, 2000.
Markfoged, R., Nielsen, L. P., Nyord, T., Ottosen, L. D. M., and Revsbech, N.
P.: Transient N2O accumulation and emission caused by O2 depletion
in soil after liquid manure injection, Eur. J. Soil Sci., 62, 541–550,
https://doi.org/10.1111/j.1365-2389.2010.01345.x, 2011.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991.
Nielsen, T. H., Nielsen, L. P., and Revsbech, N. P.: Nitrification and
coupled nitrification-denitrification associated with a soil-manure
interface, Soil Sci. Soc. Am. J., 60, 1829–1840,
https://doi.org/10.2136/sssaj1996.03615995006000060031x, 1996.
Norman, J., Jansson, P.-E., Farahbakhshazad, N., Butterbach-Bahl, K., Li, C.,
and Klemedtsson, L.: Simulation of NO and N2O emissions from a spruce
forest during a freeze/thaw event using an N-flux submodel from the
PnET-N-DNDC model integrated to CoupModel, Ecol. Modell., 216, 18–30,
https://doi.org/10.1016/j.ecolmodel.2008.04.012, 2008.
Parkin, T. B.: Soil microsites as a source of denitrification variability,
Soil Sci. Soc. Am. J., 51, 1194–1199,
https://doi.org/10.2136/sssaj1987.03615995005100050019x, 1987.
Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D.
S., Weier, K., and Kulmala, A. E.: Generalized model for N2 and N2O
production from nitrification and denitrification, Global Biogeochem.
Cy., 10, 401–412, https://doi.org/10.1029/96GB01455, 1996.
Paul, E. A. (Ed.): Soil microbiology, ecology and biochemistry, 3rd Edn.,
Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/C2009-0-02816-5, 2007.
Petersen, S. O., Nielsen, T. H., Frostegård, Å., and Olesen, T.:
O2 uptake, C metabolism and denitrification associated with manure
hot-spots, Soil Biol. Biochem., 28, 341–349,
https://doi.org/10.1016/0038-0717(95)00150-6, 1996.
Ratto, M., Tarantola, S., and Saltelli, A.: Sensitivity analysis in model
calibration: GSA-GLUE approach, Comput. Phys. Commun., 136, 212–224,
https://doi.org/10.1016/S0010-4655(01)00159-X, 2001.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Sierra, C. A., Harmon, M. E., and Perakis, S. S.: Decomposition of
heterogeneous organic matter and its long-term stabilization in soils, Ecol.
Monogr., 81, 619–634, https://doi.org/10.1890/11-0811.1, 2011.
Sihi, D., Davidson, E. A., Savage, K. E., and Liang, D.: Simultaneous
numerical representation of soil microsite production and consumption of
carbon dioxide, methane, and nitrous oxide using probability distribution
functions, Glob. Change Biol., 26, 200–218, https://doi.org/10.1111/gcb.14855, 2020.
Sin, G., Gernaey, K. V., and Lantz, A. E.: Good modeling practice for PAT
applications: propagation of input uncertainty and sensitivity analysis,
Biotechnol. Prog., 25, 1043–1053, https://doi.org/10.1021/bp.166, 2009.
Spohn, M.: Microbial respiration per unit microbial biomass depends on
litter layer carbon-to-nitrogen ratio, Biogeosciences, 12, 817–823,
https://doi.org/10.5194/bg-12-817-2015, 2015.
Surey, R., Schimpf, C. M., Sauheitl, L., Mueller, C. W., Rummel, P. S.,
Dittert, K., Kaiser, K., Böttcher, J., and Mikutta, R.: Potential
denitrification stimulated by water-soluble organic carbon from plant
residues during initial decomposition, Soil Biol. Biochem., 147, 107841,
https://doi.org/10.1016/j.soilbio.2020.107841, 2020.
Syakila, A. and Kroeze, C.: The global nitrous oxide budget revisited,
Greenh. Gas Meas. Manag., 1, 17–26, https://doi.org/10.3763/ghgmm.2010.0007, 2011.
Taghizadeh-Toosi, A., Janz, B., Labouriau, R., Olesen, J. E.,
Butterbach-Bahl, K., and Petersen, S. O.: Nitrous oxide emissions from red
clover and winter wheat residues depend on interacting effects of
distribution, soil N availability and moisture level, Plant Soil, 466,
121–138, https://doi.org/10.1007/s11104-021-05030-8, 2021.
U.S. Environmental Protection Agency: Guidance on the development,
evaluation, and application of environmental models (report no.
EPA/100/K-09/003),
https://www.epa.gov/sites/default/files/2015-04/documents/cred_guidance_0309.pdf (last access: 9 February 2022), 2009.
Uzoma, K. C., Smith, W., Grant, B., Desjardins, R. L., Gao, X., Hanis, K.,
Tenuta, M., Goglio, P., and Li, C.: Assessing the effects of agricultural
management on nitrous oxide emissions using flux measurements and the DNDC
model, Agr. Ecosyst. Environ., 206, 71–83,
https://doi.org/10.1016/j.agee.2015.03.014, 2015.
Vezzaro, L. and Mikkelsen, P. S.: Application of global sensitivity analysis
and uncertainty quantification in dynamic modelling of micropollutants in
stormwater runoff, Environ. Model. Softw., 27/28, 40–51,
https://doi.org/10.1016/j.envsoft.2011.09.012, 2012.
Vezzaro, L., Eriksson, E., Ledin, A., and Mikkelsen, P. S.: Quantification of
uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in
a stormwater retention pond and a biofilter, Water Res., 46, 6891–6903,
https://doi.org/10.1016/j.watres.2011.08.047, 2012.
Wijler, J. and Delwiche, C. C.: Investigations on the denitrifying process
in soil, Plant Soil, 5, 155–169, https://doi.org/10.1007/BF01343848, 1954.
World Meteorological Organization: WMO Greenhouse gas bulletin: the state of
greenhouse gases in the atmosphere based on global observations through
2020,
https://library.wmo.int/index.php?lvl=notice_display&id=21975#.YgFFTrrMJaQ (last access: 7 February 2022), 2021.
Xing, H., Wang, E., Smith, C. J., Rolston, D., and Yu, Q.: Modelling nitrous
oxide and carbon dioxide emission from soil in an incubation experiment,
Geoderma, 167/168, 328–339, https://doi.org/10.1016/j.geoderma.2011.07.003, 2011.
Xu, X., Thornton, P. E., and Post, W. M.: A global analysis of soil microbial
biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, Glob.
Ecol. Biogeogr., 22, 737–749, https://doi.org/10.1111/geb.12029, 2013.
Zhang, Y., Ghaly, A. E., and Li, B.: Physical properties of wheat straw
varieties cultivated under different climatic and soil conditions in three
continents, Am. J. Eng. Appl. Sci., 5, 98–106,
https://doi.org/10.3844/ajeassp.2012.98.106, 2012.
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
In this study, we relied on a properly controlled laboratory experiment to test the model’s...
Altmetrics
Final-revised paper
Preprint