Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1473-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1473-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Hamadou Balde
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique, Sorbonne
Université, IPSL, CNRS/L'École polytechnique, 91128 Palaiseau CEDEX,
France
Ecologie Systématique et Evolution, Université Paris-Saclay,
CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France
Centre national d'études spatiales (CNES), 18 av Edouard Belin,
31400 Toulouse, France
ACRI-ST, 260 Route du Pin Montard, BP 234, 06904 Sophia-Antipolis,
France
Gabriel Hmimina
Laboratoire de Météorologie Dynamique, Sorbonne
Université, IPSL, CNRS/L'École polytechnique, 91128 Palaiseau CEDEX,
France
Yves Goulas
Laboratoire de Météorologie Dynamique, Sorbonne
Université, IPSL, CNRS/L'École polytechnique, 91128 Palaiseau CEDEX,
France
Gwendal Latouche
Ecologie Systématique et Evolution, Université Paris-Saclay,
CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France
Kamel Soudani
Ecologie Systématique et Evolution, Université Paris-Saclay,
CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France
Related authors
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Cited articles
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared
reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244,
https://doi.org/10.1126/sciadv.1602244, 2017.
Baldocchi, D. D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S.,
Sanchez, C. R., Shortt, R., Szutu, D., Valach, A., Verfaillie, J., Badgley,
G., Zeng, Y., and Berry, J. A.: Outgoing Near-Infrared Radiation From
Vegetation Scales With Canopy Photosynthesis Across a Spectrum of Function,
Structure, Physiological Capacity, and Weather, J. Geophys.
Res.-Biogeo., 125, e2019JG005534, https://doi.org/10.1029/2019JG005534, 2020.
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 2018.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar,
N.-E., Li, L., and Tarko, A.: Copernicus Global Land Service: Land Cover
100 m: version 3 Globe 2015–2019: Product User Manual, Zenodo [data set],
https://doi.org/10.5281/ZENODO.3938963, 2020.
Cho, S., Kang, M., Ichii, K., Kim, J., Lim, J.-H., Chun, J.-H., Park, C.-W.,
Kim, H. S., Choi, S.-W., Lee, S.-H., Indrawati, Y. M., and Kim, J.:
Evaluation of forest carbon uptake in South Korea using the national flux
tower network, remote sensing, and data-driven technology, Agr.
Forest Meteorol., 311, 108653,
https://doi.org/10.1016/j.agrformet.2021.108653, 2021.
Chou, S., Chen, J., Yu, H., Chen, B., Zhang, X., Croft, H., Khalid, S., Li,
M., and Shi, Q.: Canopy-Level Photochemical Reflectance Index from
Hyperspectral Remote Sensing and Leaf-Level Non-Photochemical Quenching as
Early Indicators of Water Stress in Maize, Remote Sens., 9, 794,
https://doi.org/10.3390/rs9080794, 2017.
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn,
M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi,
D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K.,
Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A.,
Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa,
H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T.,
Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick,
K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E.,
Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E.
S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C.,
Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A.,
Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of
Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites,
Agr. Forest Meteorol., 301–302, 108350,
https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Damm, A., Elbers, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R.,
Kosvancova, M., Meroni, M., Miglietta, F., Moersch, A., Moreno, J.,
Schickling, A., Sonnenschein, R., Udelhoven, T., Van Der LINDEN, S.,
Hostert, P., and Rascher, U.: Remote sensing of sun-induced fluorescence to
improve modeling of diurnal courses of gross primary production (GPP): RS OF
SUN-INDUCED FLUORESCENCE TO IMPROVE MODELING OF GPP, Glob. Change Biol.,
16, 171–186, https://doi.org/10.1111/j.1365-2486.2009.01908.x, 2010.
Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A.,
Buchmann, N., Eugster, W., Ammann, C., and Schaepman, M. E.: Far-red
sun-induced chlorophyll fluorescence shows ecosystem-specific relationships
to gross primary production: An assessment based on observational and
modeling approaches, Remote Sens. Environ., 166, 91–105,
https://doi.org/10.1016/j.rse.2015.06.004, 2015.
Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A.,
and Moya, I.: Continuous Monitoring of Canopy Level Sun-Induced Chlorophyll
Fluorescence During the Growth of a Sorghum Field, IEEE T.
Geosci. Remote Sens., 50, 4292–4300,
https://doi.org/10.1109/TGRS.2012.2193131, 2012.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y.,
Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy
structure explains the relationship between photosynthesis and sun-induced
chlorophyll fluorescence in crops, Remote Sens. Environ., 241,
111733, https://doi.org/10.1016/j.rse.2020.111733, 2020.
Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca,
M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y.,
Frankenberg, C., and Berry, J. A.: NIRVP: A robust structural proxy for
sun-induced chlorophyll fluorescence and photosynthesis across scales,
Remote Sens. Environ., 268, 112763,
https://doi.org/10.1016/j.rse.2021.112763, 2022.
Doughty, R., Xiao, X., Köhler, P., Frankenberg, C., Qin, Y., Wu, X., Ma,
S., and Moore, B.: Global-scale consistency of spaceborne vegetation
indices, chlorophyll fluorescence, and photosynthesis, J. Geophys. Res.-Biogeo., 126, e2020JG006136, https://doi.org/10.1029/2020JG006136, 2021.
Drolet, G. G., Middleton, E. M., Huemmrich, K. F., Hall, F. G., Amiro, B.
D., Barr, A. G., Black, T. A., McCaughey, J. H., and Margolis, H. A.:
Regional mapping of gross light-use efficiency using MODIS spectral indices,
Remote Sens. Environ., 112, 3064–3078, 2008.
Drought 2018 Team and ICOS Ecosystem Thematic Centre: Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format, ICOS [data set], https://doi.org/10.18160/YVR0-4898, 2020.
Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A.,
Kraft, S., Middleton, E. M., Miglietta, F., Mohammed, G., Nedbal, L.,
Rascher, U., Schuttemeyer, D., and Verhoef, W.: The FLuorescence EXplorer
Mission Concept—ESA's Earth Explorer 8, IEEE T. Geosci. Remote
Sens., 55, 1273–1284, https://doi.org/10.1109/TGRS.2016.2621820, 2017.
Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier,
P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A.,
Goldstein, A. H., Grelle, A., Granier, A., Guðmundsson, J., Hollinger,
D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson,
R. K., Munger, J. W., Oechel, W., Paw U, K. T., Pilegaard, K., Rannik,
Ü., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S.:
Seasonality of ecosystem respiration and gross primary production as derived
from FLUXNET measurements, Agr. Forest Meteorol., 113, 53–74,
https://doi.org/10.1016/S0168-1923(02)00102-8, 2002.
Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., and Moya,
I.: Effect of canopy structure on sun-induced chlorophyll fluorescence,
ISPRS J. Photogram., 68, 112–120,
https://doi.org/10.1016/j.isprsjprs.2012.01.003, 2012.
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S.,
Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New
global observations of the terrestrial carbon cycle from GOSAT: Patterns of
plant fluorescence with gross primary productivity: CHLOROPHYLL FLUORESCENCE
FROM SPACE, Geophys. Res. Lett., 38, L17706, https://doi.org/10.1029/2011GL048738, 2011.
Gamon, J. A.: Reviews and Syntheses: optical sampling of the flux tower footprint, Biogeosciences, 12, 4509–4523, https://doi.org/10.5194/bg-12-4509-2015, 2015.
Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral
index that tracks diurnal changes in photosynthetic efficiency, Remote
Sens. Environ., 41, 35–44,
https://doi.org/10.1016/0034-4257(92)90059-S, 1992.
Gamon, J. A., Somers, B., Malenovský, Z., Middleton, E. M., Rascher, U.,
and Schaepman, M. E.: Assessing Vegetation Function with Imaging
Spectroscopy, Surv. Geophys., 40, 489–513,
https://doi.org/10.1007/s10712-019-09511-5, 2019.
Gitelson, A. A., Gamon, J. A., and Solovchenko, A.: Multiple drivers of
seasonal change in PRI: Implications for photosynthesis 2. Stand level,
Remote Sens. Environ., 190, 198–206,
https://doi.org/10.1016/j.rse.2016.12.015, 2017.
Goulas, Y., Fournier, A., Daumard, F., Champagne, S., Ounis, A., Marloie,
O., and Moya, I.: Gross Primary Production of a Wheat Canopy Relates
Stronger to Far Red Than to Red Solar-Induced Chlorophyll Fluorescence,
Remote Sens., 9, 97, https://doi.org/10.3390/rs9010097, 2017.
Gu, L., Wood, J. D., Chang, C. Y.-Y., Sun, Y., and Riggs, J. S.: Advancing
Terrestrial Ecosystem Science With a Novel Automated Measurement System for
Sun-Induced Chlorophyll Fluorescence for Integration With Eddy Covariance
Flux Networks, J. Geophys. Res.-Biogeo., 124,
127–146, https://doi.org/10.1029/2018JG004742, 2019a.
Gu, L., Han, J., Wood, J. D., Chang, C. Y., and Sun, Y.: Sun-induced Chl
fluorescence and its importance for biophysical modeling of photosynthesis
based on light reactions, New Phytol., 223, 1179–1191,
https://doi.org/10.1111/nph.15796, 2019b.
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J.,
Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of
terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote
Sens. Environ., 121, 236–251,
https://doi.org/10.1016/j.rse.2012.02.006, 2012.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111,
E1327–E1333, https://doi.org/10.1073/pnas.1320008111, 2014.
Guanter, L., Bacour, C., Schneider, A., Aben, I., van Kempen, T. A., Maignan, F., Retscher, C., Köhler, P., Frankenberg, C., Joiner, J., and Zhang, Y.: The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission, Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, 2021.
Hao, D., Asrar, G. R., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen,
J., Xiao, Q., Berry, J. A., and Chen, M.: Potential of hotspot solar-induced
chlorophyll fluorescence for better tracking terrestrial photosynthesis,
Glob. Change Biol., 27, 2144–2158, https://doi.org/10.1111/gcb.15554, 2021.
Hayek, M. N., Longo, M., Wu, J., Smith, M. N., Restrepo-Coupe, N., Tapajós, R., da Silva, R., Fitzjarrald, D. R., Camargo, P. B., Hutyra, L. R., Alves, L. F., Daube, B., Munger, J. W., Wiedemann, K. T., Saleska, S. R., and Wofsy, S. C.: Carbon exchange in an Amazon forest: from hours to years, Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018, 2018.
He, L., Magney, T., Dutta, D., Yin, Y., Köhler, P., Grossmann, K.,
Stutz, J., Dold, C., Hatfield, J., Guan, K., Peng, B., and Frankenberg, C.:
From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to
Estimate Crop Productivity, Geophys. Res. Lett., 47, e2020GL087474,
https://doi.org/10.1029/2020GL087474, 2020.
Hilker, T., Coops, N. C., Nesic, Z., Wulder, M. A., and Black, A. T.:
Instrumentation and approach for unattended year round tower based
measurements of spectral reflectance, Computers and Electronics in
Agriculture, 56, 72–84, https://doi.org/10.1016/j.compag.2007.01.003, 2007.
Hilker, T., Lyapustin, A., Hall, F. G., Wang, Y., Coops, N. C., Drolet, G.,
and Black, T. A.: An assessment of photosynthetic light use efficiency from
space: Modeling the atmospheric and directional impacts on PRI reflectance,
Remote Sens. Environ., 13, 24632475, https://doi.org/10.1016/j.rse.2009.07.012, 2009.
Hmimina, G., Merlier, E., Dufrêne, E., and Soudani, K.: Deconvolution of
pigment and physiologically related photochemical reflectance index
variability at the canopy scale over an entire growing season: Towards an
understanding of canopy PRI variability, Plant Cell Environ, 38, 1578–1590,
https://doi.org/10.1111/pce.12509, 2015.
Hornero, A., North, P. R. J., Zarco-Tejada, P. J., Rascher, U., Martín,
M. P., Migliavacca, M., and Hernandez-Clemente, R.: Assessing the
contribution of understory sun-induced chlorophyll fluorescence through 3-D
radiative transfer modelling and field data, Remote Sens. Environ.,
253, 112195, https://doi.org/10.1016/j.rse.2020.112195, 2021.
ICOS RI: Ecosystem final quality (L2) product in ETC-Archive format – release 2022-1, ICOS [data set], https://doi.org/10.18160/PAD9-HQHU, 2022.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jonard, F., De Cannière, S., Brüggemann, N., Gentine, P., Short
Gianotti, D. J., Lobet, G., Miralles, D. G., Montzka, C., Pagán, B. R.,
Rascher, U., and Vereecken, H.: Value of sun-induced chlorophyll
fluorescence for quantifying hydrological states and fluxes: Current status
and challenges, Agr. Forest Meteorol., 291, 108088,
https://doi.org/10.1016/j.agrformet.2020.108088, 2020.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H. S., Kornfeld, A., and Berry,
J. A.: Solar-induced chlorophyll fluorescence is non-linearly related to
canopy photosynthesis in a temperate evergreen needleleaf forest during the
fall transition, Remote Sens. Environ., 258, 112362,
https://doi.org/10.1016/j.rse.2021.112362, 2021.
Kimm, H., Guan, K., Jiang, C., Miao, G., Wu, G., Suyker, A. E., Ainsworth,
E. A., Bernacchi, C. J., Montes, C. M., Berry, J. A., Yang, X., Frankenberg,
C., Chen, M., and Köhler, P.: A physiological signal derived from
sun-induced chlorophyll fluorescence quantifies crop physiological response
to environmental stresses in the U.S. Corn Belt, Environ. Res. Lett., 16,
124051, https://doi.org/10.1088/1748-9326/ac3b16, 2021.
Koehler, P. and Frankenberg, C.: Ungridded TROPOMI SIF (at 740 nm) (1.0), CaltechDATA [data set], https://doi.org/10.22002/D1.1347, 2020.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf, J.: Global Retrievals of Solar-Induced Chlorophyll Fluorescence
With TROPOMI: First Results and Intersensor Comparison to OCO-2, Geophys.
Res. Lett., 45, 10456–10463, https://doi.org/10.1029/2018GL079031,
2018.
Köhler, P., Fischer, W. W., Rossman, G. R., Grotzinger, J. P., Doughty,
R., Wang, Y., Yin, Y., and Frankenberg, C.: Mineral Luminescence Observed
From Space, Geophys. Res. Lett., 48, e2021GL095227, https://doi.org/10.1029/2021GL095227,
2021.
Kong, J., Ryu, Y., Liu, J., Dechant, B., Rey-Sanchez, C., Shortt, R., Szutu,
D., Verfaillie, J., Houborg, R., and Baldocchi, D. D.: Matching high
resolution satellite data and flux tower footprints improves their agreement
in photosynthesis estimates, Agr. Forest Meteorol., 316,
108878, https://doi.org/10.1016/j.agrformet.2022.108878, 2022.
Li, J., Zhang, Y., Gu, L., Li, Z., Li, J., Zhang, Q., Zhang, Z., and Song,
L.: Seasonal variations in the relationship between sun-induced chlorophyll
fluorescence and photosynthetic capacity from the leaf to canopy level in a
rice crop, J. Exp. Bot., 71, 7179–7197,
https://doi.org/10.1093/jxb/eraa408, 2020.
Li, X. and Xiao, J.: TROPOMI observations allow for robust exploration of
the relationship between solar-induced chlorophyll fluorescence and
terrestrial gross primary production, Remote Sens. Environ., 268,
112748, https://doi.org/10.1016/j.rse.2021.112748, 2022.
Li, X., Xiao, J., and He, B.: Chlorophyll fluorescence observed by OCO-2 is
strongly related to gross primary productivity estimated from flux towers in
temperate forests, Remote Sens. Environ., 204, 659–671,
https://doi.org/10.1016/j.rse.2017.09.034, 2018a.
Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R.,
Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I., Noe, S. M.,
Ortiz, P. S., Rey-Sanchez, A. C., Rocha, A. V., and Varlagin, A.:
Solar-induced chlorophyll fluorescence is strongly correlated with
terrestrial photosynthesis for a wide variety of biomes: First global
analysis based on OCO-2 and flux tower observations, Glob. Change Biol.,
24, 3990–4008, https://doi.org/10.1111/gcb.14297, 2018b.
Li, X., Xiao, J., Fisher, J. B., and Baldocchi, D. D.: ECOSTRESS estimates
gross primary production with fine spatial resolution for different times of
day from the International Space Station, Remote Sens. Environ.,
258, 112360, https://doi.org/10.1016/j.rse.2021.112360, 2021.
Lin, S., Li, J., Liu, Q., Li, L., Zhao, J., and Yu, W.: Evaluating the
Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from
Sentinel-2 to Estimate Gross Primary Productivity, Remote Sens., 11, 1303,
https://doi.org/10.3390/rs11111303, 2019.
Lu, X., Liu, Z., Zhao, F., and Tang, J.: Comparison of total emitted
solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in
estimating photosynthesis, Remote Sens. Environ., 251, 112083,
https://doi.org/10.1016/j.rse.2020.112083, 2020.
Madani, N., Parazoo, N. C., Kimball, J. S., Ballantyne, A. P., Reichle, R.
H., Maneta, M., Saatchi, S., Palmer, P. I., Liu, Z., and Tagesson, T.:
Recent Amplified Global Gross Primary Productivity Due to Temperature
Increase Is Offset by Reduced Productivity Due to Water Constraints, AGU
Advances, 1, e2020AV000180, https://doi.org/10.1029/2020AV000180, 2020.
Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J.,
Blanken, P. D., Burns, S. P., Cheng, R., Garcia, M. A., K?hler, P., Lopez,
S., Parazoo, N. C., Raczka, B., Schimel, D., and Frankenberg, C.:
Mechanistic evidence for tracking the seasonality of photosynthesis with
solar-induced fluorescence, P. Natl. Acad. Sci. USA,
201900278, https://doi.org/10.1073/pnas.1900278116, 2019.
Maguire, A. J., Eitel, J. U. H., Griffin, K. L., Magney, T. S., Long, R. A.,
Vierling, L. A., Schmiege, S. C., Jennewein, J. S., Weygint, W. A., Boelman,
N. T., and Bruner, S. G.: On the Functional Relationship Between
Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf
Canopies, Geophys. Res. Lett., 47, e2020GL087858,
https://doi.org/10.1029/2020GL087858, 2020.
Marrs, J. K., Reblin, J. S., Logan, B. A., Allen, D. W., Reinmann, A. B.,
Bombard, D. M., Tabachnik, D., and Hutyra, L. R.: Solar-Induced Fluorescence
Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal
Closure, Geophys. Res. Lett., 47, e2020GL087956, https://doi.org/10.1029/2020GL087956,
2020.
Mengistu, A. G., Mengistu Tsidu, G., Koren, G., Kooreman, M. L., Boersma, K. F., Tagesson, T., Ardö, J., Nouvellon, Y., and Peters, W.: Sun-induced fluorescence and near-infrared reflectance of vegetation track the seasonal dynamics of gross primary production over Africa, Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, 2021.
Meroni, M., Picchi, V., Rossini, M., Cogliati, S., Panigada, C., Nali, C.,
Lorenzini, G., and Colombo, R.: Leaf level early assessment of ozone
injuries by passive fluorescence and photochemical reflectance index,
Int. J. Remote Sens., 29, 5409–5422,
https://doi.org/10.1080/01431160802036292, 2008.
Miao, G., Guan, K., Yang, X., Bernacchi, C. J., Berry, J. A., DeLucia, E.
H., Wu, J., Moore, C. E., Meacham, K., Cai, Y., Peng, B., Kimm, H., and
Masters, M. D.: Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and
Light Use Efficiency of a Soybean Field from Seasonally Continuous
Measurements, J. Geophys. Res.-Biogeo., 123,
610–623, https://doi.org/10.1002/2017JG004180, 2018.
Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol,
C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M.,
Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z.,
Gastellu-Etchegorry, J.-P., Miller, J. R., Guanter, L., Moreno, J., Moya,
I., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J.: Remote sensing
of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of
progress, Remote Sens. Environ., 231, 111177,
https://doi.org/10.1016/j.rse.2019.04.030, 2019.
Moureaux, C., Bodson, B., and Aubinet, M.: Mesure des flux de CO2 et bilan
carboné de grandes cultures: état de la question et
méthodologie, Biotechnol. Agron. Soc. Environ., 12, 303–315, 2008.
Nadeau, C. and Bengio, Y.: Inference for the Generalization Error, Mach. Learn., 52, 239–281, https://doi.org/10.1023/A:1024068626366, 2003.
Pabon-Moreno, D. E., Migliavacca, M., Reichstein, M., and Mahecha, M. D.: On
the potential of Sentinel-2 for estimating Gross Primary Production, IEEE
T. Geosci. Remote Sens., 60, 4409412,
https://doi.org/10.1109/TGRS.2022.3152272, 2022.
Paul-Limoges, E., Damm, A., Hueni, A., Liebisch, F., Eugster, W., Schaepman,
M. E., and Buchmann, N.: Effect of environmental conditions on sun-induced
fluorescence in a mixed forest and a cropland, Remote Sens.
Environ., 219, 310–323, https://doi.org/10.1016/j.rse.2018.10.018, 2018.
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C.,
Flexas, J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry, J.
A.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing
applications: mechanisms and challenges, J. Exp. Bot., 65,
4065–4095, https://doi.org/10.1093/jxb/eru191, 2014.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, BioScience, 54, 547,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M.,
and Frank, D.: Drought, Heat, and the Carbon Cycle: a Review, Curr. Clim.
Change Rep., 4, 266–286, https://doi.org/10.1007/s40641-018-0103-4, 2018.
Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J. P., He, M.,
Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., MacBean, N., Fox, A. M.,
and Litvak, M. E.: Chlorophyll Fluorescence Better Captures Seasonal and
Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of
Southwestern North America, Geophys. Res. Lett., 45, 748–757,
https://doi.org/10.1002/2017GL075922, 2018.
Soudani, K., Hmimina, G., Dufrêne, E., Berveiller, D., Delpierre, N.,
Ourcival, J.-M., Rambal, S., and Joffre, R.: Relationships between
photochemical reflectance index and light-use efficiency in deciduous and
evergreen broadleaf forests, Remote Sens. Environ., 144, 73–84,
https://doi.org/10.1016/j.rse.2014.01.017, 2014.
Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P.,
and Magney, T.: Overview of Solar-Induced chlorophyll Fluorescence (SIF)
from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison,
and global monitoring for GPP, Remote Sens. Environ., 209, 808–823,
https://doi.org/10.1016/j.rse.2018.02.016, 2018.
Tagliabue, G., Panigada, C., Dechant, B., Baret, F., Cogliati, S., Colombo,
R., Migliavacca, M., Rademske, P., Schickling, A., Schüttemeyer, D.,
Verrelst, J., Rascher, U., Ryu, Y., and Rossini, M.: Exploring the spatial
relationship between airborne-derived red and far-red sun-induced
fluorescence and process-based GPP estimates in a forest ecosystem, Remote
Sens. Environ., 231, 111272,
https://doi.org/10.1016/j.rse.2019.111272, 2019.
Toloşi, L. and Lengauer, T.: Classification with correlated
features: unreliability of feature ranking and solutions, Bioinformatics,
27, 1986–1994, https://doi.org/10.1093/bioinformatics/btr300, 2011.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Tucker, C. J.: Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Vermote, E. and Wolfe, R.: MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD09GA.006, 2015a.
Vermote, E. and Wolfe, R.: MYD09GQ MODIS/Aqua Surface Reflectance Daily L2G Global 250 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MYD09GQ.006, 2015b.
Vermote, P. E. F., Roger, J. C., and Ray, J. P.: MODIS Land Surface
Reflectance Science Computing Facility Principal Investigator: Dr. Eric F.
Vermote, http://modis-sr.ltdri.org (last access: 18 October 2021), 2015.
Wang, N., Suomalainen, J., Bartholomeus, H., Kooistra, L., Masiliûnas,
D., and Clevers, J. G. P. W.: Diurnal variation of sun-induced chlorophyll
fluorescence of agricultural crops observed from a point-based spectrometer
on a UAV, Int. J. Appl. Earth Obs., 96, 102276, https://doi.org/10.1016/j.jag.2020.102276, 2021.
Wang, X., Chen, J. M., and Ju, W.: Photochemical reflectance index (PRI) can
be used to improve the relationship between gross primary productivity (GPP)
and sun-induced chlorophyll fluorescence (SIF), Remote Sens.
Environ., 246, 111888, https://doi.org/10.1016/j.rse.2020.111888, 2020.
Wang, X., Biederman, J. A., Knowles, J. F., Scott, R. L., Turner, A. J.,
Dannenberg, M. P., Köhler, P., Frankenberg, C., Litvak, M. E.,
Flerchinger, G. N., Law, B. E., Kwon, H., Reed, S. C., Parton, W. J.,
Barron-Gafford, G. A., and Smith, W. K.: Satellite solar-induced chlorophyll
fluorescence and near-infrared reflectance capture complementary aspects of
dryland vegetation productivity dynamics, Remote Sens. Environ.,
270, 112858, https://doi.org/10.1016/j.rse.2021.112858, 2022.
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., and
Rascher, U.: Airborne based spectroscopy of red and far-red sun-induced
chlorophyll fluorescence: Implications for improved estimates of gross
primary productivity, Remote Sens. Environ., 184, 654–667,
https://doi.org/10.1016/j.rse.2016.07.025, 2016.
Wieneke, S., Burkart, A., Cendrero-Mateo, M. P., Julitta, T., Rossini, M.,
Schickling, A., Schmidt, M., and Rascher, U.: Linking photosynthesis and
sun-induced fluorescence at sub-daily to seasonal scales, Remote Sens.
Environ., 219, 247–258, https://doi.org/10.1016/j.rse.2018.10.019, 2018.
Wolanin, A., Camps-Valls, G., Gómez-Chova, L., Mateo-García, G.,
van der Tol, C., Zhang, Y., and Guanter, L.: Estimating crop primary
productivity with Sentinel-2 and Landsat 8 using machine learning methods
trained with radiative transfer simulations, Remote Sens. Environ.,
225, 441–457, https://doi.org/10.1016/j.rse.2019.03.002, 2019.
Wood, J. D., Griffis, T. J., Baker, J. M., Frankenberg, C., Verma, M., and
Yuen, K.: Multiscale analyses of solar-induced florescence and gross primary
production: Multiscale GPP-SIF RELATIONS, Geophys. Res. Lett., 44, 533–541,
https://doi.org/10.1002/2016GL070775, 2017.
Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., Yang, X., Wang,
S., Suyker, A. E., Bernacchi, C. J., Moore, C. E., Zeng, Y., Berry, J. A.,
and Cendrero-Mateo, M. P.: Radiance-based NIRv as a proxy for GPP of
corn and soybean, Environ. Res. Lett., 15, 034009,
https://doi.org/10.1088/1748-9326/ab65cc, 2020.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang,
L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review
of advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xiao, X.: Modeling gross primary production of temperate deciduous broadleaf
forest using satellite images and climate data, Remote Sens.
Environ., 91, 256–270, https://doi.org/10.1016/j.rse.2004.03.010, 2004.
Yang, H., Yang, X., Zhang, Y., Heskel, M. A., Lu, X., Munger, J. W., Sun,
S., and Tang, J.: Chlorophyll fluorescence tracks seasonal variations of
photosynthesis from leaf to canopy in a temperate forest, Glob. Change
Biol., 23, 2874–2886, https://doi.org/10.1111/gcb.13590, 2017.
Yang, P., van der Tol, C., Campbell, P. K. E., and Middleton, E. M.: Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop, Biogeosciences, 18, 441–465, https://doi.org/10.5194/bg-18-441-2021, 2021.
Yang, X., Tang, J., Mustard, J. F., Lee, J.-E., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced
chlorophyll fluorescence that correlates with canopy photosynthesis on
diurnal and seasonal scales in a temperate deciduous forest: Fluorescence
and photosynthesis, Geophys. Res. Lett., 42, 2977–2987,
https://doi.org/10.1002/2015GL063201, 2015.
Yazbeck, T., Bohrer, G., Gentine, P., Ye, L., Arriga, N., Bernhofer, C.,
Blanken, P. D., Desai, A. R., Durden, D., Knohl, A., Kowalska, N., Metzger,
S., Mölder, M., Noormets, A., Novick, K., Scott, R. L., Šigut, L.,
Soudani, K., Ueyama, M., and Varlagin, A.: Site Characteristics Mediate the
Relationship Between Forest Productivity and Satellite Measured Solar
Induced Fluorescence, Front. For. Glob. Change, 4, 695269,
https://doi.org/10.3389/ffgc.2021.695269, 2021.
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J. A.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232,
111209, https://doi.org/10.1016/j.rse.2019.05.028, 2019.
Zhang, J., Xiao, J., Tong, X., Zhang, J., Meng, P., Li, J., Liu, P., and Yu,
P.: NIRv and SIF better estimate phenology than NDVI and EVI: Effects of
spring and autumn phenology on ecosystem production of planted forests,
Agr. Forest Meteorol., 315, 108819,
https://doi.org/10.1016/j.agrformet.2022.108819, 2022.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165,
2017.
Zhang, Y., Xiao, X., Zhang, Y., Wolf, S., Zhou, S., Joiner, J., Guanter, L.,
Verma, M., Sun, Y., Yang, X., Paul-Limoges, E., Gough, C. M., Wohlfahrt, G.,
Gioli, B., van der Tol, C., Yann, N., Lund, M., and de Grandcourt, A.: On
the relationship between sub-daily instantaneous and daily total gross
primary production: Implications for interpreting satellite-based SIF
retrievals, Remote Sens. Environ., 205, 276–289,
https://doi.org/10.1016/j.rse.2017.12.009, 2018.
Zhang, Y., Migliavacca, M., Penuelas, J., and Ju, W.: Advances in
hyperspectral remote sensing of vegetation traits and functions, Remote
Sens. Environ., 252, 112121,
https://doi.org/10.1016/j.rse.2020.112121, 2021a.
Zhang, Y., Zhang, Q., Liu, L., Zhang, Y., Wang, S., Ju, W., Zhou, G., Zhou,
L., Tang, J., Zhu, X., Wang, F., Huang, Y., Zhang, Z., Qiu, B., Zhang, X.,
Wang, S., Huang, C., Tang, X., and Zhang, J.: ChinaSpec: a Network for
Long-term Ground-based Measurements of Solar-induced Fluorescence in China,
J. Geophys. Res.-Biogeo., 126, e2020JG006042, https://doi.org/10.1029/2020JG006042, 2021b.
Zhang, Z., Zhang, Y., Porcar-Castell, A., Joiner, J., Guanter, L., Yang, X.,
Migliavacca, M., Ju, W., Sun, Z., Chen, S., Martini, D., Zhang, Q., Li, Z.,
Cleverly, J., Wang, H., and Goulas, Y.: Reduction of structural impacts and
distinction of photosynthetic pathways in a global estimation of GPP from
space-borne solar-induced chlorophyll fluorescence, Remote Sens.
Environ., 240, 111722, https://doi.org/10.1016/j.rse.2020.111722, 2020.
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and...
Altmetrics
Final-revised paper
Preprint