Articles | Volume 20, issue 13
https://doi.org/10.5194/bg-20-2707-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2707-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration
Kevin R. Wilcox
CORRESPONDING AUTHOR
Department of Ecosystem Science and Management, University of Wyoming,
Laramie, WY 82071, USA
Department of Biology, University of North Carolina Greensboro,
Greensboro, NC 27412, USA
Scott L. Collins
Department of Biology, University of New Mexico, Albuquerque, NM
87131, USA
Alan K. Knapp
Department of Biology & Graduate Degree Program in Ecology,
Colorado State University, Fort Collins, CO 80523, USA
William Pockman
Department of Biology, University of New Mexico, Albuquerque, NM
87131, USA
Zheng Shi
Department of Microbiology and Plant Biology, University of Oklahoma,
Norman, OK 73019, USA
Melinda D. Smith
Department of Biology & Graduate Degree Program in Ecology,
Colorado State University, Fort Collins, CO 80523, USA
School of Integrative Plant Science, Cornell University, Ithaca, NY
14853, USA
Related authors
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Aneesh Chandel, Mitra Cattry, Yu Zhou, Hang Duong, Marcy Litvak, William Pockman, and Yiqi Luo
EGUsphere, https://doi.org/10.5194/egusphere-2025-4608, https://doi.org/10.5194/egusphere-2025-4608, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Hydraulic redistribution (HR) is a passive process in which water can move between wet and dry regions in the root zone by flowing through plant root systems. In this modeling study, we showed that adding HR to a process-based model improved soil moisture predictions, particularly in the top 30 cm. HR rates declined with increasing rainfall magnitude and frequency, but HR rates were also influenced by the length of dry spells between rainfall events.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Cited articles
Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon, M. E.,
Hall, S. A., Burke, I. C., and Hart, S. C.: Simple threepool model
accurately describes patterns of longterm litter decomposition in diverse
climates, Global Change Biol., 14, 2636–2660, 2008.
Austin, A. T. and Vivanco, L.: Plant litter decomposition in a semi-arid
ecosystem controlled by photodegradation, Nature, 442, 555–558,
https://doi.org/10.1038/nature05038, 2006.
Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, challenges, and solutions, Science, 377, 603–608, https://doi.org/10.1126/science.abo2380, 2022.
Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.:
Evaluating 50 years of time-series soil radiocarbon data: towards routine
calculation of robust C residence times, Biogeochemistry, 112, 129–137,
https://doi.org/10.1007/s10533-011-9675-y, 2013.
Balesdent, J., Wagner, G. H., and Mariotti, A.: Soil organic matter turnover
in long-term field experiments as revealed by carbon-13 natural abundance,
Soil Sci. Soc. Am. J., 52, 118–124, 1988.
Bell, C., McIntyre, N., Cox, S., Tissue, D., and Zak, J.: Soil Microbial
Responses to Temporal Variations of Moisture and Temperature in a Chihuahuan
Desert Grassland, Microb. Ecol., 56, 153–167,
https://doi.org/10.1007/s00248-007-9333-z, 2008.
Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., and
Parra-Saldívar, R.: Soil carbon sequestration – An interplay between
soil microbial community and soil organic matter dynamics, Sci. Total Environ., 815, 152928,
https://doi.org/10.1016/j.scitotenv.2022.152928, 2022.
Bird, M. I., Chivas, A. R., and Head, J.: A latitudinal gradient in carbon
turnover times in forest soils, Nature, 381, 143–146, 1996.
Blume, E., Bischoff, M., Reichert, J. M., Moorman, T., Konopka, A., and
Turco, R. F.: Surface and subsurface microbial biomass, community structure
and metabolic activity as a function of soil depth and season, Appl. Soil
Ecol., 20, 171–181, https://doi.org/10.1016/S0929-1393(02)00025-2, 2002.
Blumenthal, D., Kray, J., Mueller, K., and Ocheltree, T.:
Shortgrass steppe and northern mixedgrass prairie plant species traits,
Dryad, [data set], https://doi.org/10.5061/dryad.8sf7m0cjr, 2020.
Bonan, G. B., Hartman, M. D., Parton, W. J., and Wieder, W. R.: Evaluating
litter decomposition in earth system models with longterm litterbag
experiments: an example using the Community Land Model version 4 (CLM 4),
Global Change Biol., 19, 957–974, 2013.
Bontti, E. E., Decant, J. P., Munson, S. M., Gathany, M. A., Przeszlowska, A.,
Haddix, M. L., Owens, S., Burke, I. C., Parton, W. J., and Harmon, M. E.:
Litter decomposition in grasslands of central North America (US Great
Plains). Global Change Biol., 15, 1356–1363, 2009.
Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G., and Sinsabaugh,
R. L.: The Role of Photodegradation in Surface Litter Decomposition Across a
Grassland Ecosystem Precipitation Gradient, Ecosystems, 13, 765–781,
https://doi.org/10.1007/s10021-010-9353-2, 2010.
Brovkin, V., van Bodegom, P. M., Kleinen, T., Wirth, C., Cornwell, W. K., Cornelissen, J. H. C., and Kattge, J.: Plant-driven variation in decomposition rates improves projections of global litter stock distribution, Biogeosciences, 9, 565–576, https://doi.org/10.5194/bg-9-565-2012, 2012.
Burke, I. C., Lauenroth, W. K., and Parton, W. J.: Regional and temporal
variation in net primary production and nitrogen mineralization in
grasslands, Ecology, 78, 1330–1340, 1997.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U.,
Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.:
Global covariation of carbon turnover times with climate in terrestrial
ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731,
2014.
Chambers, A., Lal, R., and Paustian, K.: Soil carbon sequestration
potential of US croplands and grasslands: Implementing the 4 per Thousand
Initiative, J. Soil Water Conserv., 71, 68–74, 2016.
Chapin III, F. S., Matson, P. A., and Mooney, H. A.: Principles of
Terrestrial Ecosystem Ecology, Springer-Verlag New York, Inc, New York, NY, https://doi.org/10.1007/978-1-4419-9504-9,
2002.
Chen, B., Ge, Q., Fu, D., Yu, G., Sun, X., Wang, S., and Wang, H.: A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling, Biogeosciences, 7, 2943–2958, https://doi.org/10.5194/bg-7-2943-2010, 2010.
Chen, S., Huang, Y., Zou, J., and Shi, Y.: Mean residence time of global
topsoil organic carbon depends on temperature, precipitation and soil
nitrogen, Global Planet. Change, 100, 99–108,
https://doi.org/10.1016/j.gloplacha.2012.10.006, 2013.
Collins, S. L., Sinsabaugh, R. L., Crenshaw, C., Green, L., Porras-Alfaro,
A., Stursova, M., and Zeglin, L. H.: Pulse dynamics and microbial processes
in aridland ecosystems: Pulse dynamics in aridland soils, J. Ecol., 96, 413–420, https://doi.org/10.1111/j.1365-2745.2008.01362.x,
2008.
Conant, R. T., Cerri, C. E., Osborne, B. B., and Paustian, K.: Grassland management impacts on
soil carbon stocks: a new synthesis, Ecol. Appl.
Ma., 27, 662–668, 2017.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M. and
Hyvönen, R.: Temperature and soil organic matter decomposition
rates–synthesis of current knowledge and a way forward, Global Change Biol., 17, 3392–3404, 2011.
CornellCALS: The Terrestrial ECOsystem (TECO) model, CornellCALS [code], https://ecolab.cals.cornell.edu/download/teco.php, last access: 21 June 2023.
Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A.,
Pejchar, L., Ricketts, T. H., Salzman, J., and Shallenberger, R.: Ecosystem
services in decision making: time to deliver, Front. Ecol.
Environ., 7, 21–28, https://doi.org/10.1890/080025, 2009.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Wang, Y., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind, D.,
Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao,
S., Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren, J.
M., Oren, R., and Norby, R. J.: Where does the carbon go?, A model–data
intercomparison of vegetation carbon allocation and turnover processes at
two temperate forest free-air CO2 enrichment sites, New Phytol., 203, 883–899, https://doi.org/10.1111/nph.12847, 2014.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova
Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E.,
and Boeckx, P.: Soil carbon storage controlled by interactions between
geochemistry and climate, Nat. Geosci., 8, 780–783,
https://doi.org/10.1038/ngeo2516, 2015.
Feng, J., Wang, J., Song, Y., and Zhu, B.: Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China, Biogeosciences, 15, 5329–5341, https://doi.org/10.5194/bg-15-5329-2018, 2018.
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M.,
De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K. D., and
Hoffman, F. M.: Beyond ecosystem modeling: A roadmap to community
cyberinfrastructure for ecological datamodel integration, Global Change Biol., 27, 13–26, 2021.
Fierer, N. and Schimel, J. P.: Effects of drying–rewetting frequency on
soil carbon and nitrogen transformations, Soil Biol. Biochem., 34,
777–787, https://doi.org/10.1016/S0038-0717(02)00007-X, 2002.
Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial
community composition through two soil depth profiles, Soil Biol.
Biochem., 35, 167–176, https://doi.org/10.1016/S0038-0717(02)00251-1,
2003.
Freckleton, R. P.: The problems of prediction and scale in applied ecology:
the example of fire as a management tool: Editorial, J. Appl.
Ecol., 41, 599–603, https://doi.org/10.1111/j.0021-8901.2004.00941.x,
2004.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule,
P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana,
R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R.,
Peylin, P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., and
Woodward, F. I.: Carbon residence time dominates uncertainty in terrestrial
vegetation responses to future climate and atmospheric CO2, P. Natl. Acad. Sci. USA, 111, 3280–3285,
https://doi.org/10.1073/pnas.1222477110, 2014.
García-Palacios, P., Shaw, E. A., Wall, D. H., and Hättenschwiler,
S.: Temporal dynamics of biotic and abiotic drivers of litter decomposition,
Ecol. Lett., 19, 554–563, https://doi.org/10.1111/ele.12590, 2016.
Guzman, J. G. and Al-Kaisi, M. M.: Soil Carbon Dynamics and Carbon Budget of
Newly Reconstructed Tall-grass Prairies in South Central Iowa, J. Environ.
Qual., 39, 136–146, https://doi.org/10.2134/jeq2009.0063, 2010.
Harmon, M. E., Silver, W.L., Fasth, B., Chen, H.U.A., Burke, I.C., Parton,
W. J., Hart, S. C., Currie, W. S., and Lidet: Longterm patterns of mass
loss during the decomposition of leaf and fine root litter: an intersite
comparison, Global Change Biol., 15, 1320–1338, 2009.
Holguin, J., Collins, S. L., and McLaren, J. R.: Belowground responses to
altered precipitation regimes in two semi-arid grasslands, Soil Biol.
Biochem., 171, 108725, https://doi.org/10.1016/j.soilbio.2022.108725, 2022.
Hou, E., Rudgers, J. A., Collins, S. L., Litvak, M. E., White, C. S., Moore,
D. I., and Luo, Y.: Sensitivity of soil organic matter to climate and
fire in a desert grassland, Biogeochemistry, 156, 59–74, 2021.
Hu, Z., Song, X., Wang, M., Ma, J., Zhang, Y., Xu, H.-J., Hu, Z., Zhu, X.,
Liu, H., Ma, J., Yu, Q., Ostle, N. J., Li, Y., and Yue, C.: Aridity
influences root versus shoot contributions to steppe grassland soil carbon
stock and its stability, Geoderma, 413, 115744,
https://doi.org/10.1016/j.geoderma.2022.115744, 2022.
Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin, F. S., Mooney, H.
A., and Field, C. B.: The fate of carbon in grasslands under carbon dioxide
enrichment, Nature, 388, 576–579, https://doi.org/10.1038/41550, 1997.
Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M.
E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T.,
Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small,
E. E., and Williams, D. G.: Convergence across biomes to a common rain-use
efficiency, Nature, 429, 651–654, https://doi.org/10.1038/nature02561,
2004.
IPCC, 2022: Summary for Policymakers, in: Climate
Change 2022: Impacts, Adaptation and Vulnerability, edited by: Pörtner, H.-O., Roberts, D. C., Poloczanska, E. S.,
Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S.,
Löschke, S., Möller, V., and Okem, A., Contribution of Working
Group II to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University
Press, Cambridge, UK and New York, NY, USA, 3–33,
https://doi.org/10.1017/9781009325844.001, 2022.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol.
Appl., 10, 423–436, https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.
Johnson, L. C. and Matchett, J. R.: Fire and grazing regulate belowground
processes in tallgrass prairie, Ecology, 82, 3377–3389,
https://doi.org/10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2, 2001.
Knapp, A. K., Briggs, J. M., Hartnett, D. C., and Collins, S. L.: Grassland
dynamics: Long-term ecological research in tallgrass prairie, Oxford
University Press, Inc., New York, NY, 1998.
Knapp, A. K., Carroll, C. J. W., Denton, E. M., La Pierre, K. J., Collins,
S. L., and Smith, M. D.: Differential sensitivity to regional-scale drought
in six central US grasslands, Oecologia, 177, 949–957,
https://doi.org/10.1007/s00442-015-3233-6, 2015.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396,
2004.
Leppälammi-Kujansuu, J., Aro, L., Salemaa, M., Hansson, K., Kleja, D.
B., and Helmisaari, H.-S.: Fine root longevity and carbon input into soil
from below- and aboveground litter in climatically contrasting forests,
Forest Ecol. Manage., 326, 79–90,
https://doi.org/10.1016/j.foreco.2014.03.039, 2014.
Liski, J., Ilvesniemi, H., Mäkelä, A., and Westman, C. J., CO2
emissions from soil in response to climatic warming are overestimated: the
decomposition of old soil organic matter is tolerant of temperature, Ambio,
171–174, 1999.
Lorenz, K. and Lal, R.: Carbon sequestration in grassland soils, in: Carbon sequestration in agricultural ecosystems, edited by: Lorenz, K., Lal, R. Springer Cham, New York, NY, USA, 175–209, https://doi.org/10.1007/978-3-319-92318-5, 2018.
Luo, Y., Keenan, T. F., and Smith, M.: Predictability of the terrestrial
carbon cycle, Glob Change Biol, 21, 1737–1751,
https://doi.org/10.1111/gcb.12766, 2015.
Luo, Y., Shi, Z., Lu, X., Xia, J., Liang, J., Jiang, J., Wang, Y., Smith, M. J., Jiang, L., Ahlström, A., Chen, B., Hararuk, O., Hastings, A., Hoffman, F., Medlyn, B., Niu, S., Rasmussen, M., Todd-Brown, K., and Wang, Y.-P.: Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications, Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, 2017.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.: Deep soil
carbon dynamics are driven more by soil type than by climate: a worldwide
meta-analysis of radiocarbon profiles, Glob Change Biol, 21, 4278–4292,
https://doi.org/10.1111/gcb.13012, 2015.
Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E., and Collins, S.
L.: Sensitivity of primary production to precipitation across the United
States, Ecol. Lett., 23, 527–536, https://doi.org/10.1111/ele.13455, 2020.
Melillo, J. M., Aber, J. D., and Muratore, J. F.: Nitrogen and lignin
control of hardwood leaf litter decomposition dynamics, Ecology, 63,
621–626, 1982.
Mokany, K., Raison, R. J., and Prokushkin, A. S.: Critical analysis of
root: shoot ratios in terrestrial biomes: Root: shoot ratios in
terrestrial biomes, Global Change Biol., 12, 84–96,
https://doi.org/10.1111/j.1365-2486.2005.001043.x, 2006.
Moore, S., Adu-Bredu, S., Duah-Gyamfi, A., Addo-Danso, S. D., Ibrahim, F.,
Mbou, A. T., Grandcourt, A., Valentini, R., Nicolini, G., Djagbletey, G.,
Owusu-Afriyie, K., Gvozdevaite, A., Oliveras, I., Ruiz-Jaen, M. C., and
Malhi, Y.: Forest biomass, productivity and carbon cycling along a rainfall
gradient in West Africa, Glob Change Biol, 24, 496–510,
https://doi.org/10.1111/gcb.13907, 2018.
Nave, L., Johnson, K., van Ingen, C., Agarwal, D.,
Humphrey, M., and Beekwilder, N.: International Soil Carbon Network (ISCN)
Database V3-1, https://doi.org/10.17040/ISCN/1305039, 2017.
Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R.,
McClure, R., Lipton, M., Hofmockel, K. S., and Jansson, J. K.: Soil
Microbiomes Under Climate Change and Implications for Carbon Cycling, Annu.
Rev. Environ. Resour., 45, 29–59,
https://doi.org/10.1146/annurev-environ-012320-082720, 2020.
Ojima, D. S., Schimel, D. S., Parton, W. J., and Owensby, C. E.: Long-and
short-term effects of fire on nitrogen cycling in tallgrass prairie,
Biogeochemistry, 24, 67–84, 1994.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E. R., Smith, T., Stier, A., Braak, C. J. F. T., and Weedon, J.: vegan: Community Ecology Package, R package version 2.6-2.
https://CRAN.R-project.org/package=vegan (last access 4 August 2022), 2022.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E.,
Currie, W. S., King, J. Y., Adair, E. C., Brandt, L. A., Hart, S. C., and
Fasth, B.: Global-Scale Similarities in Nitrogen Release Patterns During
Long-Term Decomposition, Science, 315, 361–364,
https://doi.org/10.1126/science.1134853, 2007.
Petrie, M. D., Collins, S. L., Swann, A. M., Ford, P. L., and Litvak, M. E.:
Grassland to shrubland state transitions enhance carbon sequestration in the
northern Chihuahuan Desert, Global Change Biol., 21, 1226–1235,
https://doi.org/10.1111/gcb.12743, 2015.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Sitch, S., and van der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509, 600–603,
https://doi.org/10.1038/nature13376, 2014.
R Core Team R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 4 August 2022), 2022.
Rees, R. M., Bingham, I. J., Baddeley, J. A., and Watson, C. A.: The role of
plants and land management in sequestering soil carbon in temperate arable
and grassland ecosystems, Geoderma, 128, 130–154,
https://doi.org/10.1016/j.geoderma.2004.12.020, 2005.
Rudgers, J. A., Hallmark, A., Baker, S. R., Baur, L., Hall, K. M., Litvak,
M. E., Muldavin, E. H., Pockman, W. T., and Whitney, K. D.: Sensitivity of
dryland plant allometry to climate, Funct. Ecol., 33,
2290–2303, 2019.
Saiz, G., Bird, M. I., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch,
T. R., Veenendaal, E., Djagbletey, G., Hien, F., Compaore, H., Diallo, A.,
and Lloyd, J.: Variation in soil carbon stocks and their determinants across
a precipitation gradient in West Africa, Glob Change Biol, 18, 1670–1683,
https://doi.org/10.1111/j.1365-2486.2012.02657.x, 2012.
Sala, O. E., Parton, W. J., Joyce, L. A., and Lauenroth, W. K.: Primary
Production of the Central Grassland Region of the United States, Ecology,
69, 40–45, https://doi.org/10.2307/1943158, 1988.
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbágy, E., and Peters,
D.: Legacies of precipitation fluctuations on primary production: theory and
data synthesis, Phil. Trans. R. Soc. B, 367, 3135–3144,
https://doi.org/10.1098/rstb.2011.0347, 2012.
Schenk, H. J. and Jackson, R. B.: The global biogeography of roots,
Ecol. Monogr., 72, 311–328,
https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2, 2002.
Seastedt, T. R.: Mass, Nitrogen, and Phosphorus Dynamics in Foliage and Root
Detritus of Tallgrass Prairie, Ecology, 69, 59–65,
https://doi.org/10.2307/1943160, 1988.
Shi, Z., Thomey, M. L., Mowll, W., Litvak, M., Brunsell, N. A., Collins, S.
L., Pockman, W. T., Smith, M. D., Knapp, A. K., and Luo, Y.: Differential
effects of extreme drought on production and respiration: synthesis and
modeling analysis, Biogeosciences, 11, 621–633,
https://doi.org/10.5194/bg-11-621-2014, 2014.
Shi, Z., Xu, X., Hararuk, O., Jiang, L., Xia, J., Liang, J., Li, D., and
Luo, Y.: Experimental warming altered rates of carbon processes, allocation,
and carbon storage in a tallgrass prairie, Ecosphere, 6, art210,
https://doi.org/10.1890/ES14-00335.1, 2015.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S.
D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E.,
Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak,
D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global
scale: Stoichiometry of soil enzyme activity, Ecology Letters, 11,
1252–1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Smith, P.: Carbon sequestration in croplands: the potential in Europe
and the global context, Europ. J. Agron., 20, 229–236, 2004.
Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K.,
Rounsevell, M., and Van Wesemael, B.: Carbon sequestration potential in
European croplands has been overestimated, Global Change Biol., 11,
2153–2163, 2005.
Smith, P.: Do grasslands act as a perpetual sink for carbon?, Global Change Biol., 20, 2708–2711, https://doi.org/10.1111/gcb.12561, 2014.
Soong, J. L. and Cotrufo, M. F.: Annual burning of a tallgrass prairie
inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic
matter storage while reducing N availability, Global Change Biol., 21,
2321–2333, https://doi.org/10.1111/gcb.12832, 2015.
Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell,
C., Ceschia, E., Clifton-Brown, J., Czobel, S., Domingues, R., Flechard, C.,
Fuhrer, J., Hensen, A., Horvath, L., Jones, M., Kasper, G., Martin, C.,
Nagy, Z., Neftel, A., Raschi, A., Baronti, S., Rees, R. M., Skiba, U.,
Stefani, P., Manca, G., Sutton, M., Tuba, Z., and Valentini, R.: Full
accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European
grassland sites, Agr. Ecosyst. Environ., 121, 121–134,
https://doi.org/10.1016/j.agee.2006.12.022, 2007.
Sperow, M.: Estimating carbon sequestration potential on US
agricultural topsoils, Soil Tillage Res., 155, 390-400, 2016.
Stielstra, C. M., Lohse, K. A., Chorover, J., McIntosh, J. C.,
Barron-Gafford, G. A., Perdrial, J. N., Litvak, M., Barnard, H. R., and
Brooks, P. D.: Climatic and landscape influences on soil moisture are
primary determinants of soil carbon fluxes in seasonally snow-covered forest
ecosystems, Biogeochemistry, 123, 447–465,
https://doi.org/10.1007/s10533-015-0078-3, 2015.
Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S.,
Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R.,
Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar,
A., Schimel, J. P., Tang, J., and Classen, A. T.: Multiple models and
experiments underscore large uncertainty in soil carbon dynamics,
Biogeochemistry, 141, 109–123, https://doi.org/10.1007/s10533-018-0509-z,
2018.
Sulzman, E. W., Brant, J. B., Bowden, R. D., and Lajtha, K.: Contribution of
aboveground litter, belowground litter, and rhizosphere respiration to total
soil CO2 efflux in an old growth coniferous forest, Biogeochemistry, 73,
231–256, https://doi.org/10.1007/s10533-004-7314-6, 2005.
Taylor, J. P., Wilson, B., Mills, M. S., and Burns, R. G.: Comparison of
microbial numbers and enzymatic activities in surface soils and subsoils
using various techniques, Soil Biol. Biochem., 34, 387–401,
https://doi.org/10.1016/S0038-0717(01)00199-7, 2002.
Telles, E. de C. C., de Camargo, P. B., Martinelli, L. A., Trumbore, S. E.,
da Costa, E. S., Santos, J., Higuchi, N., and Oliveira, R. C.: Influence of
soil texture on carbon dynamics and storage potential in tropical forest
soils of Amazonia: Carbon storage potential of tropical soils, Global
Biogeochem. Cy., 17, 1–12, https://doi.org/10.1029/2002GB001953, 2003.
Thomey, M. L., Collins, S. L., Vargas, R., Johnson, J. E., Brown, R. F.,
Natvig, D. O., and Friggens, M. T.: Effect of precipitation variability on
net primary production and soil respiration in a Chihuahuan Desert
grassland: Precipitation variability in desert grassland, Global Change Biol., 17, 1505–1515, https://doi.org/10.1111/j.1365-2486.2010.02363.x,
2011.
Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q., and Allison, S. D.: Changes in soil organic carbon storage predicted by Earth system models during the 21st century, Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, 2014.
Wang, Y., Xie, Z., and Jia, B.: Incorporation of a dynamic root distribution
into CLM4.5: Evaluation of carbon and water fluxes over the Amazon, Adv.
Atmos. Sci., 33, 1047–1060, https://doi.org/10.1007/s00376-016-5226-8,
2016.
Weng, E. and Luo, Y.: Soil hydrological properties regulate grassland
ecosystem responses to multifactor global change: A modeling analysis, J.
Geophys. Res., 113, G03003, https://doi.org/10.1029/2007JG000539, 2008.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils - A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wilcox, K. R., Blair, J. M., and Knapp, A. K.: Stability of grassland soil C
and N pools despite 25 years of an extreme climatic and disturbance regime:
precipitation impacts on soil C and N, J. Geophys. Res.-Biogeo., 121,
1934–1945, https://doi.org/10.1002/2016JG003370, 2016.
Williams, M. A. and Rice, C. W.: Seven years of enhanced water availability
influences the physiological, structural, and functional attributes of a
soil microbial community, Appl. Soil Ecol., 35, 535–545,
https://doi.org/10.1016/j.apsoil.2006.09.014, 2007.
Wu, D., Piao, S., Zhu, D., Wang, X., Ciais, P., Bastos, A., Xu, X., and Xu,
W.: Accelerated terrestrial ecosystem carbon turnover and its drivers, Global Change Biol., 26, 5052–5062, https://doi.org/10.1111/gcb.15224, 2020.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change:
a meta-analysis of experimental manipulation: Meta-analysis of experimental
manipulation, Global Change Biol., 17, 927–942,
https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
wilcoxkr/AssessingCarbonCapacity: Assessing Carbon Capacity, Github [code], https://github.com/wilcoxkr/AssessingCarbonCapacity, last access: 4 August 2022.
Xu, T., White, L., Hui, D., and Luo, Y.: Probabilistic inversion of a
terrestrial ecosystem model: Analysis of uncertainty in parameter estimation
and model prediction: probabilistic inversion of terrestrial ecosystem,
Global Biogeochem. Cy., 20, 1–15
https://doi.org/10.1029/2005GB002468, 2006.
Yahdjian, L., Sala, O. E., and Austin, A. T.: Differential controls of
water input on litter decomposition and nitrogen dynamics in the Patagonian
steppe, Ecosystems, 9, 128–141, 2006.
You, Y., Wang, J., Huang, X., Tang, Z., Liu, S., and Sun, O. J.: Relating
microbial community structure to functioning in forest soil organic carbon
transformation and turnover, Ecol. Evol., 4, 633–647,
https://doi.org/10.1002/ece3.969, 2014.
Zhao, Y. F., Wang, X., Jiang, S. L., Zhou, X. H., Liu, H. Y., Xiao, J. J.,
Hao, Z. G., and Wang, K. C.: Climate and geochemistry interactions at
different altitudes influence soil organic carbon turnover times in alpine
grasslands, Agr. Ecosyst. Environ., 320, 107591,
https://doi.org/10.1016/j.agee.2021.107591, 2021.
Zhou, T. and Luo, Y.: Spatial patterns of ecosystem carbon residence time
and NPP-driven carbon uptake in the conterminous United States: carbon
residence time and carbon uptake, Global Biogeochem. Cy., 22, 1–15,
https://doi.org/10.1029/2007GB002939, 2008.
Zhou, X., Zhou, T., and Luo, Y.: Uncertainties in carbon residence time and
NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA:
a Bayesian approach, Tellus B, 64, 17223,
https://doi.org/10.3402/tellusb.v64i0.17223, 2012.
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems...
Altmetrics
Final-revised paper
Preprint