Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-2869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Zijing Li
Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
Institute of Water Resources for Pastoral Area, Ministry of Water
Resources, Hohhot 010020, Inner Mongolia, PR China
Zhiyong Li
CORRESPONDING AUTHOR
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Xuze Tong
Institute of Agricultural Resources and Regional Planning, Chinese
Academy of Agricultural Sciences, Beijing 100081, PR China
Lei Dong
Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
Institute of Water Resources for Pastoral Area, Ministry of Water
Resources, Hohhot 010020, Inner Mongolia, PR China
Ying Zheng
Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
Institute of Water Resources for Pastoral Area, Ministry of Water
Resources, Hohhot 010020, Inner Mongolia, PR China
Jinghui Zhang
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Bailing Miao
Inner Mongolia Meteorological Institute, Hohhot 010051, Inner Mongolia, PR China
Lixin Wang
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Liqing Zhao
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Lu Wen
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Guodong Han
Key Laboratory of Grassland Resources, Ministry of Education, College of
Grassland, Resources and Environment, Inner Mongolia Agricultural
University, Hohhot 010011, Inner Mongolia, PR China
Frank Yonghong Li
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Cunzhu Liang
Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, PR China
Related authors
No articles found.
Mingming Deng, Ronghua Ma, Lixin Wang, Minqi Hu, Kun Xue, and Junfeng Xiong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-671, https://doi.org/10.5194/essd-2025-671, 2025
Preprint under review for ESSD
Short summary
Short summary
Lake salinity is an important parameter to characterize physical and biogeochemical processes. We proposed a microwave-optical integrated framework for high-precision salinity estimation, producing a 10 m resolution Inner Mongolia Xinjiang Lake zone lake salinity dataset (2016–2024). Salinity increased significantly in Lake Daihai and Lake Dalinor. The dataset can contribute to research on salinization prevention and salinity budget research.
Cited articles
Archer, E.: rfPermute: Estimate Permutation p-Values for Random Forest
Importance Metrics, R package version 2.5.1, https://CRAN.R-project.org/package=rfPermute (last access: 13 July 2023), 2022.
Avolio, M. L., Komatsu, K. J., Collins, S. L., Grman, E., Koerner, S. E.,
Tredennick, A. T., Wilcox, K. R., Baer, S., Boughton, E. H., Britton, A. J.,
Foster, B., Gough, L., Hovenden, M., Isbell, F., Jentsch, A., Johnson, D.
S., Knapp, A. K., Kreyling, J., Langley, J. A., Lortie, C., McCulley, R. L.,
McLaren, J. R., Reich, P. B., Seabloom, E. W., Smith, M. D., Suding, K. N.,
Suttle, K. B., and Tognetti, P. M.: Determinants of community compositional
change are equally affected by global change, Ecol. Lett., 24, 1892–1904, https://doi.org/10.1111/ele.13824,
2021.
Bhagwat, S. A. and Willis, K. J.: Species persistence in northerly glacial
refugia of Europe: a matter of chance or biogeographical traits?, Biogeography,
35, 464–482, https://doi.org/10.1111/j.1365-2699.2007.01861.x, 2008.
Blonder, B., Enquist, B. J., Graae, B. J., Kattge, J., Maitner, B. S.,
Morueta-Holme, N., Ordonez, A., Simova, I., Singarayer, J., Svenning, J. C.,
Valdes, P. J., and Violle, C.: Late Quaternary climate legacies in
contemporary plant functional composition, Glob. Change Biol., 24, 4827–4840,
https://doi.org/10.1111/gcb.14375, 2018.
Buisson, E., Archibald, S., Fidelis, A., and Suding, K. N.: Ancient
grasslands guide ambitious goals in grassland restoration, Science, 377,
594–598, https://doi.org/10.1126/science.abo4605, 2022.
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R.,
Fazayeli, F., Banerjee, A., Atkin, O. K., Kattge, J., Amiaud, B., Blonder,
B., Boenisch, G., Bond-Lamberty, B., Brown, K. A., Byun, C., Campetella, G.,
Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., Craven, D., de
Vries, F. T., Díaz, S., Domingues, T. F., Forey, E., González-Melo,
A., Gross, N., Han, W., Hattingh, W. N., Hickler, T., Jansen, S., Kramer,
K., Kraft, N. J. B., Kurokawa, H., Laughlin, D. C., Meir, P., Minden, V.,
Niinemets, Ü., Onoda, Y., Peñuelas, J., Read, Q., Sack, L., Schamp,
B., Soudzilovskaia, N. A., Spasojevic, M. J., Sosinski, E., Thornton, P. E.,
Valladares, F., van Bodegom, P. M., Williams, M., Wirth, C., and Reich, P.
B.: Mapping local and global variability in plant trait distributions, P.
Natl. Acad. Sci. USA, 114, E10937–E10946, https://doi.org/10.1073/pnas.1708984114, 2017.
Cadotte, M. W., Cardinale, B. J., and Oakley, T. H.: Evolutionary history
and the effect of biodiversity on plant productivity, P. Natl. Acad. Sci. USA,
105, 17012–17017, https://doi.org/10.1073/pnas.0805962105, 2008.
Cavender-Bares, J., Kozak, K. H., Fine, P. V., and Kembel, S. W.: The
merging of community ecology and phylogenetic biology, Ecol. Lett., 12,
693–715, https://doi.org/10.1111/j.1461-0248.2009.01314.x, 2009.
Cutler, D. R., Edwards, J. T. C., Beard, K. H., Cutler, A., Hess, K. T.,
Gibson, J., and Lawler, J. J.: Random forest for classification ecology,
Ecology, 88, 2783–2792, https://doi.org/10.1890/07-0539.1 2007.
Diaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray,
S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E., Bonisch,
G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J.,
Gillison, A. N., Zanne, A. E., Chave, J., Wright, S. J., Sheremet'ev, S. N.,
Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup,
D., Casanoves, F., Joswig, J. S., Gunther, A., Falczuk, V., Ruger, N.,
Mahecha, M. D., and Gorne, L. D.: The global spectrum of plant form and
function, Nature, 529, 167–171, https://doi.org/10.1038/nature16489, 2016.
Díaz, S., Lavorel, S., McIntyre, S. U. E., Falczuk, V., Casanoves, F.,
Milchunas, D. G., Skarpe, C., Rusch, G., Sternberg, M., Noy-Meir, I.,
Landsberg, J., Zhang, W. E. I., Clark, H., and Campbell, B. D.: Plant trait
responses to grazing – a global synthesis, Glob. Change Biol., 13, 313–341,
https://doi.org/10.1111/j.1365-2486.2006.01288.x, 2007.
Eiserhardt, W. L., Borchsenius, F., Plum, C. M., Ordonez, A., and Svenning,
J. C.: Climate-driven extinctions shape the phylogenetic structure of
temperate tree floras, Ecol. Lett., 18, 263–272, https://doi.org/10.1111/ele.12409, 2015.
Ellis, E. C., Gauthier, N., Klein Goldewijk, K., Bliege Bird, R., Boivin,
N., Diaz, S., Fuller, D. Q., Gill, J. L., Kaplan, J. O., Kingston, N.,
Locke, H., McMichael, C. N. H., Ranco, D., Rick, T. C., Shaw, M. R.,
Stephens, L., Svenning, J. C., and Watson, J. E. M.: People have shaped most
of terrestrial nature for at least 12,000 years, P. Natl. Acad. Sci. USA, 118, e2023483118,
https://doi.org/10.1073/pnas.2023483118, 2021.
Fang, J.-Y., Wang, X.-P., Shen, Z.-H., Tang, Z.-Y., He, J.-S., Yu, D.,
Jiang, Y., Wang, Z.-H., Zheng, C.-Y., Zhu, J.-L., and Guo, Z.-D.: Methods
and protocols for plant community inventory, Biodiversity Science, 17,
533–548, https://www.biodiversity-science.net/EN/10.3724/SP.J.1003.2009.09253 (last access: 13 July 2023), 2009.
Fine, P. V. A.: Ecological and Evolutionary Drivers of Geographic Variation
in Species Diversity, Annu. Rev. Ecol. Evol. S., 46, 369–392,
https://doi.org/10.1146/annurev-ecolsys-112414-054102, 2015.
Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I., and Naeem, S.:
Functional and phylogenetic diversity as predictors of
biodiversity-ecosystem-function relationships, Ecology, 92, 1573–1581,
https://doi.org/10.1890/10-1245.1, 2011.
Fordham, D. A., Jackson, S. T., Brown, S. C., Huntley, B., Brook, B. W.,
Dahl-Jensen, D., Gilbert, M. T. P., Otto-Bliesner, B. L., Svensson, A.,
Theodoridis, S., Wilmshurst, J. M., Buettel, J. C., Canteri, E., McDowell,
M., Orlando, L., Pilowsky, J., Rahbek, C., and Nogues-Bravo, D.: Using
paleo-archives to safeguard biodiversity under climate change, Science, 369, eabc5654,
https://doi.org/10.1126/science.abc5654, 2020.
Hanif, M. A., Yu, Q., Rao, X., and Shen, W.: Disentangling the Contributions
of Plant Taxonomic and Functional Diversities in Shaping Aboveground Biomass
of a Restored Forest Landscape in Southern China, Plants, 8, 612,
https://doi.org/10.3390/plants8120612, 2019.
Harrison, S. P., Gornish, E. S., and Copeland, S.: Climate-driven diversity
loss in a grassland community, P. Natl. Acad. Sci. USA, 112, 8672–8677,
https://doi.org/10.1073/pnas.1502074112, 2015.
Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., and
Reich, P. B.: Anthropogenic environmental changes affect ecosystem stability
via biodiversity, Science, 348, 336–340, https://doi.org/10.1126/science.aaa1788, 2015.
Herrero-Jáuregui, C. and Oesterheld, M.: Effects of grazing intensity on
plant richness and diversity: a meta-analysis, Oikos, 127, 757–766,
https://doi.org/10.1111/oik.04893, 2018.
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P.,
Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B.,
Setälä, H., Symstad, A. J., Vandermeer, J., and Wardle, D. A.: Effects of
biodiversity on ecosystem functioning: a consensus of current knowledge,
Ecol. Monogr., 75, 3–35, https://doi.org/10.1890/04-0922, 2005.
Huang, X., Zhang, J., Ren, L., Zhang, S., and Chen, F.: Intensification and
Driving Forces of Pastoralism in Northern China 5.7 ka Ago, Geophys. Res.
Lett., 48, e2020GL092288, https://doi.org/10.1029/2020GL092288, 2021.
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich,
P. B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J.,
Weigelt, A., Wilsey, B. J., Zavaleta, E. S., and Loreau, M.: High plant
diversity is needed to maintain ecosystem services, Nature, 477, 199–202,
https://doi.org/10.1038/nature10282, 2011.
Jansson, R.: Global patterns in endemism explained by past climatic change,
P. Roy. Soc. B-Biol. Sci., 270, 583–590, https://doi.org/10.1098/rspb.2002.2283, 2003.
Jiao, W., Wang, L., Smith, W. K., Chang, Q., Wang, H., and D'Odorico, P.:
Observed increasing water constraint on vegetation growth over the last
three decades, Nat. Commun., 12, 3777, https://doi.org/10.1038/s41467-021-24016-9, 2021.
Karger, D. N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.
W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high
resolution for the earth's land surface areas, Sci. Data, 4, 170122,
https://doi.org/10.1038/sdata.2017.122, 2017.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H.,
Ackerly, D. D., Blomberg, S. P., and Webb, C. O.: Picante: R tools for
integrating phylogenies and ecology, Bioinformatics, 26, 1463–1464,
https://doi.org/10.1093/bioinformatics/btq166, 2010.
Kissling, W. D., Eiserhardt, W. L., Baker, W. J., Borchsenius, F., Couvreur,
T. L., Balslev, H., and Svenning, J. C.: Cenozoic imprints on the
phylogenetic structure of palm species assemblages worldwide, P. Natl. Acad.
Sci. USA, 109, 7379–7384, https://doi.org/10.1073/pnas.1120467109, 2012.
Kreft, H. and Jetz, W.: Global patterns and determinants of vascular plant
diversity, P. Natl. Acad. Sci. USA, 104, 5925–5930, https://doi.org/10.1073/pnas.0608361104,
2007.
Kubota, Y., Kusumoto, B., Shiono, T., Ulrich, W., and Duarte, L.:
Environmental filters shaping angiosperm tree assembly along climatic and
geographic gradients, J. Veg. Sci., 29, 607–618, https://doi.org/10.1111/jvs.12648, 2018.
Laliberté, E. and Legendre, P.: A distance-based framework for measuring functional diversity from multiple traits, Ecology, 91, 299–305, https://doi.org/10.1890/08-2244.1, 2010.
Lefcheck, J. S.: piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution,
and systematics, Meth. Ecol. Evol., 7, 573–579,
https://doi.org/10.1111/2041-210x.12512, 2016.
Li, Z., Li, Z., Tong, X., Zhang, J., Dong, L., Zheng, Y., Ma, W., Zhao, L.,
Wang, L., Wen, L., Dang, Z., Tuvshintogtokh, I., Liang, C., and Li, F. Y.:
Climatic humidity mediates the strength of the species richness–biomass
relationship on the Mongolian Plateau steppe, Sci. Total Environ., 718,
137252, https://doi.org/10.1016/j.scitotenv.2020.137252, 2020.
Li, Z., Liang, M., Li, Z., Mariotte, P., Tong, X., Zhang, J., Dong, L.,
Zheng, Y., Ma, W., Zhao, L., Wang, L., Wen, L., Tuvshintogtokh, I., Gornish,
E. S., Dang, Z., Liang, C., Li, F. Y., and Schöb, C.: Plant functional
groups mediate effects of climate and soil factors on species richness and
community biomass in grasslands of Mongolian Plateau, J. Plant Ecol., 14,
679–691, https://doi.org/10.1093/jpe/rtab021, 2021.
Liang, M., Liang, C., Hautier, Y., Wilcox, K. R., and Wang, S.:
Grazing-induced biodiversity loss impairs grassland ecosystem stability at
multiple scales, Ecol. Lett., 24, 2054–2064, https://doi.org/10.1111/ele.13826, 2021.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (last access: 14 July 2023), 2002.
Lioubimtseva, E.: Climate change in arid environments: revisiting the past
to understand the future, Prog. Phys. Geogr., 28, 502–530,
https://doi.org/10.1191/0309133304pp422oa, 2004.
Liu, D., Zhang, C., Ogaya, R., Fernández-Martínez, M., Pugh, T. A.
M., and Peñuelas, J.: Increasing climatic sensitivity of global
grassland vegetation biomass and species diversity correlates with water
availability, New Phytol., 230, 1761–1771, https://doi.org/10.1111/nph.17269, 2021.
Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., Wang, H., Liu, L.,
Zhu, B., Cao, G., Zhao, X., Sanders, N. J., Classen, A. T., Reich, P. B.,
and He, J. S.: Shifting plant species composition in response to climate
change stabilizes grassland primary production, P. Natl. Acad. Sci. USA, 115,
4051–4056, https://doi.org/10.1073/pnas.1700299114, 2018.
Liu, Y., Su, X., Shrestha, N., Xu, X., Wang, S., Li, Y., Wang, Q., Sandanov,
D., and Wang, Z.: Effects of contemporary environment and Quaternary climate
change on drylands plant diversity differ between growth forms, Ecography,
42, 334–345, https://doi.org/10.1111/ecog.03698, 2018.
MacPhail, M. K., Colhoun, E. A., and Fitzsimons, S. J.: Key Periods in the
Evolution of the Cenozoic Vegetation and Flora in Western Tasmania: the Late
Pliocene, Aust. J. Bot., 43, 505–526, https://doi.org/10.1071/bt9950505, 1995.
Maestre, F. T., Benito, B. M., Berdugo, M., Concostrina-Zubiri, L.,
Delgado-Baquerizo, M., Eldridge, D. J., Guirado, E., Gross, N., Kefi, S., Le
Bagousse-Pinguet, Y., Ochoa-Hueso, R., and Soliveres, S.: Biogeography of
global drylands, New Phytol., 231, 540–558, https://doi.org/10.1111/nph.17395, 2021.
Mayle, F. E., Burn, M. J., Power, M., and Urrego, D. H.: Vegetation and Fire at the Last Glacial Maximum in Tropical South America, in: Past Climate Variability in South America and Surrounding Regions, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Developments in Paleoenvironmental Research, Vol. 14, Springer, Dordrecht, https://doi.org/10.1007/978-90-481-2672-9_4, 2009.
Mottl, O., Flantua, S. G. A., Bhatta, K. P., Felde, V. A., Giesecke, T.,
Goring, S., Grimm6, E. C., Haberle, S., Hooghiemstra, H., Ivory, S.,
Kuneš, P., Wolters, S., Seddon, A. W. R., and Williams, J. W.: Global
acceleration in rates of vegetation change over the past 18,000 years,
Science, 372, 860–864, https://doi.org/10.1126/science.abg1685, 2021.
Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R.
A., Borger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma,
A., Diaz, S., Echeverria-Londono, S., Edgar, M. J., Feldman, A., Garon, M.,
Harrison, M. L., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J.,
Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D. L., Martin, C. D., Meiri,
S., Novosolov, M., Pan, Y., Phillips, H. R., Purves, D. W., Robinson, A.,
Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G.
M., Scharlemann, J. P., and Purvis, A.: Global effects of land use on local
terrestrial biodiversity, Nature, 520, 45–50, https://doi.org/10.1038/nature14324, 2015.
Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J.
L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R.,
Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S.,
Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., Kim, S.-H.,
Latorre, C., Leydet, M., Lézine, A.-M., Liu, K.-B., Liu, Y., Lozhkin, A.
V., McGlone, M. S., Marchant, R. A., Momohara, A., Moreno, P. I.,
Müller, S., Otto-Bliesner, B. L., Shen, C., Stevenson, J., Takahara, H.,
Tarasov, P. E., Tipton, J., Vincens, A., Weng, C., Xu, Q., Zheng, Z., and
Jackson, S. T.: Past and future global transformation of terrestrial
ecosystems under climate change, Science, 361, 920–923,
https://doi.org/10.1126/science.aan5360, 2018.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., and Weedon, J.: vegan: Community Ecology Package_, R package version 2.6-4, https://CRAN.R-project.org/package=vegan (last access: 13 July 2023), 2022.
Ordonez, A. and Svenning, J.-C.: Geographic patterns in functional diversity
deficits are linked to glacial-interglacial climate stability and
accessibility, Global Ecol. Biogeogr., 24, 826–837, https://doi.org/10.1111/geb.12324, 2015.
Ordonez, A. and Svenning, J. C.: Consistent role of Quaternary climate
change in shaping current plant functional diversity patterns across
European plant orders, Sci. Rep.-UK, 7, 42988, https://doi.org/10.1038/srep42988, 2017.
Qian, H., Jin, Y., and Ricklefs, R. E.: Phylogenetic diversity anomaly in
angiosperms between eastern Asia and eastern North America, P. Natl. Acad. Sci.
USA, 114, 11452–11457, https://doi.org/10.1073/pnas.1703985114, 2017.
Ray, N. and Adams, J. M.: A GIS-based Vegetation Map of the World at the
Last Glacial Maximum (25,000–15,000 BP), Internet Archaeology, 11, 1–44,
https://doi.org/10.11141/ia.11.2, 2001.
Revelle, W.: Package “psych”: Procedures for Psychological, Psychometric,
and Personality Research, https://CRAN.R-project.org/package=psych (last access: 13 July 2023), 2021.
Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J.,
Sutherland, W. J., and Svenning, J. C.: The influence of Late Quaternary
climate-change velocity on species endemism, Science, 334, 660–664,
https://doi.org/10.1126/science.1210173, 2011.
Seddon, A. W. R., Macias-Fauria, M., and Willis, K. J.: Climate and abrupt
vegetation change in Northern Europe since the last deglaciation, Holocene,
25, 25–36, https://doi.org/10.1177/0959683614556383, 2014.
Shao, J., Zhou, X., Groenigen, K. J., Zhou, G., Zhou, H., Zhou, L., Lu, M.,
Xia, J., Jiang, L., Hungate, B. A., Luo, Y., He, F., Thakur, M. P., and
Mayfield, M.: Warming effects on grassland productivity depend on plant
diversity, Global Ecol. Biogeogr., 31, 588–598, https://doi.org/10.1111/geb.13441, 2021.
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A., Marushia, R. G., and
Mirotchnick, N.: Phylogenetic diversity and the functioning of ecosystems,
Ecol. Lett., 15, 637–648, https://doi.org/10.1111/j.1461-0248.2012.01795.x, 2012.
Strömberg, C. A. E. and Staver, A. C.: The history and challenge of
grassy biomes-Grassy biomes are > 20 million years old but are
undervalued and under threat today, Science, 377, 592–593,
https://doi.org/10.1126/science.add1347, 2022.
Svenning, J.-C.: Deterministic Plio-Pleistocene extinctions in the European
cool-temperate tree flora, Ecol. Lett., 6, 646–653,
https://doi.org/10.1046/j.1461-0248.2003.00477.x, 2003.
Svenning, J.-C. and Skov, F.: Could the tree diversity pattern in Europe be
generated by postglacial dispersal limitation?, Ecol. Lett., 10, 453–460,
https://doi.org/10.1111/j.1461-0248.2007.01038.x, 2007a.
Svenning, J.-C. and Skov, F.: Ice age legacies in the geographical
distribution of tree species richness in Europe, Global Ecol. Biogeogr., 16,
234–245, https://doi.org/10.1111/j.1466-8238.2006.00280.x, 2007b.
Svenning, J.-C., Normand, S., and Skov, F.: Postglacial dispersal limitation
of widespread forest plant species innemoral Europe, Ecography, 31, 316–326,
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.0906-7590.2008.05206.x (last access: 13 July 2023), 2008.
Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A., and Sandel,
B.: The Influence of Paleoclimate on Present-Day Patterns in Biodiversity
and Ecosystems, Annu. Rev. Ecol. Evol. S., 46, 551–572,
https://doi.org/10.1146/annurev-ecolsys-112414-054314, 2015.
Swenson, N. G.: The role of evolutionary processes in producing biodiversity
patterns, and the interrelationships between taxonomic, functional and
phylogenetic biodiversity, Am. J. Bot., 98, 472–480, https://doi.org/10.3732/ajb.1000289, 2011.
Swenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero-Montaña,
J., Ge, X., Howe, R., Lake, J. K., Liu, X., Ma, K., Pei, N., Thompson, J.,
Uriarte, M., Wolf, A., Wright, S. J., Ye, W., Zhang, J., Zimmerman, J. K.,
and Kress, W. J.: Phylogenetic and functional alpha and beta diversity in
temperate and tropical tree communities, Ecology, 93, S112–S125, 2012.
The Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny
Group classification for the orders and families of flowering plants APG III, Bot.
J. Linn. Soc., 161, 105–121, https://doi.org/10.1111/boj.12385, 2009.
Tian, F., Wang, Y., Chi, Z., Liu, J., Yang, H., Jiang, N., and Tang, W.:
Late Quaternary vegetation and climate reconstruction based on pollen data
from southeastern Inner Mongolia, China, Rev. Palaeobot. Palyno., 242, 33–42,
https://doi.org/10.1016/j.revpalbo.2017.03.003, 2017.
Tilman, D., Reich, P. B., and Isbell, F.: Biodiversity impacts ecosystem
productivity as much as resources, disturbance, or herbivory, P. Natl. Acad.
Sci. USA, 109, 10394–10397, https://doi.org/10.1073/pnas.1208240109 2012.
Trabucco, A. and Zomer, R. J.: Global Aridity Index and Potential
Evapo-Transpiration (ET0) Climate Database v2,
https://doi.org/10.6084/m9.figshare.7504448.v3, 2019.
Ulrich, W., Soliveres, S., Maestre, F. T., Gotelli, N. J., Quero, J. L.,
Delgado-Baquerizo, M., Bowker, M. A., Eldridge, D. J., Ochoa, V., Gozalo,
B., Valencia, E., Berdugo, M., Escolar, C., Garcia-Gomez, M., Escudero, A.,
Prina, A., Alfonso, G., Arredondo, T., Bran, D., Cabrera, O., Cea, A.,
Chaieb, M., Contreras, J., Derak, M., Espinosa, C. I., Florentino, A.,
Gaitan, J., Muro, V. G., Ghiloufi, W., Gomez-Gonzalez, S., Gutierrez, J. R.,
Hernandez, R. M., Huber-Sannwald, E., Jankju, M., Mau, R. L., Hughes, F. M.,
Miriti, M., Monerris, J., Muchane, M., Naseri, K., Pucheta, E.,
Ramirez-Collantes, D. A., Raveh, E., Romao, R. L., Torres-Diaz, C., Val, J.,
Veiga, J. P., Wang, D., Yuan, X., and Zaady, E.: Climate and soil attributes
determine plant species turnover in global drylands, J. Biogeogr., 41,
2307–2319, https://doi.org/10.1111/jbi.12377, 2014.
Van der Plas, F.: Biodiversity and ecosystem functioning in naturally
assembled communities, Biol. Rev., 94, 1220–1245, https://doi.org/10.1111/brv.12499, 2019.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.
J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological
responses to recent climate change, Nature, 416, 389–395, https://doi.org/10.1038/416389a,
2002.
Wang, Q., Li, Y., Zou, D., Su, X., Cai, H., Luo, A., Jiang, K., Zhang, X.,
Xu, X., Shrestha, N., and Wang, Z.: Phylogenetic niche conservatism and
variations in species diversity–climate relationships, Ecography, 44,
1856–1868, https://doi.org/10.1111/ecog.05759, 2021.
Wolf, A. A., Funk, J. L., Selmants, P. C., Morozumi, C. N., Hernandez, D.
L., Pasari, J. R., and Zavaleta, E. S.: Trait-based filtering mediates the
effects of realistic biodiversity losses on ecosystem functioning, P. Natl.
Acad. Sci. USA, 118, e2022757118, https://doi.org/10.1073/pnas.2022757118, 2021.
Yang, H., Wu, M., Liu, W., Zhang, Z. H. E., Zhang, N., and Wan, S.:
Community structure and composition in response to climate change in a
temperate steppe, Glob. Change Biol., 17, 452–465,
https://doi.org/10.1111/j.1365-2486.2010.02253.x, 2011.
Ye, J. S., Delgado-Baquerizo, M., Soliveres, S., and Maestre, F. T.:
Multifunctionality debt in global drylands linked to past biome and climate,
Glob. Change Biol., 25, 2152–2161, https://doi.org/10.1111/gcb.14631, 2019.
Yin, Y., Liu, H., He, S., Zhao, F., Zhu, J., Wang, H., Liu, G., and Wu, X.:
Patterns of local and regional grain size distribution and their application
to Holocene climate reconstruction in semi-arid Inner Mongolia, China,
Palaeogeogr. Palaeocl., 307, 168–176, https://doi.org/10.1016/j.palaeo.2011.05.011, 2011.
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A.,
FitzJohn, R. G., McGlinn, D. J., O'Meara, B. C., Moles, A. T., Reich, P. B.,
Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J.,
Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., Hemmings, F.,
Leishman, M. R., Oleksyn, J., Soltis, P. S., Swenson, N. G., Warman, L., and
Beaulieu, J. M.: Three keys to the radiation of angiosperms into freezing
environments, Nature, 506, 89–92, https://doi.org/10.1038/nature12872, 2014.
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
We used random forest models and structural equation models to assess the relative importance of...
Altmetrics
Final-revised paper
Preprint