Articles | Volume 15, issue 2
https://doi.org/10.5194/bg-15-491-2018
https://doi.org/10.5194/bg-15-491-2018
Research article
 | 
26 Jan 2018
Research article |  | 26 Jan 2018

Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia

Burkhard Büdel, Wendy J. Williams, and Hans Reichenberger

Related authors

Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah
Wendy Williams, Burkhard Büdel, and Stephen Williams
Biogeosciences, 15, 2149–2159, https://doi.org/10.5194/bg-15-2149-2018,https://doi.org/10.5194/bg-15-2149-2018, 2018
Short summary
Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas
Michelle Szyja, Burkhard Büdel, and Claudia Colesie
Biogeosciences, 15, 1919–1931, https://doi.org/10.5194/bg-15-1919-2018,https://doi.org/10.5194/bg-15-1919-2018, 2018
Short summary
Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts
Patrick Jung, Laura Briegel-Williams, Anika Simon, Anne Thyssen, and Burkhard Büdel
Biogeosciences, 15, 1149–1160, https://doi.org/10.5194/bg-15-1149-2018,https://doi.org/10.5194/bg-15-1149-2018, 2018
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024,https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024,https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024,https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary

Cited articles

Belnap, J.: Surface disturbances: their role in accelerating desertification, Environ. Monit. Assess., 37, 39–57, 1995.
Belnap, J., Weber, B., and Büdel, B.: Biological soil crusts as an organizing principle in drylands, in: Biological soil crusts: An organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Ecol. Stud., 226, 3–13, 2016.
Beraldi-Campesi, H. and Retallack, G. J.: Terrestrial ecosystems in the Precambrian, in: Biological soil crusts: An organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Ecol. Stud., 226, 37–54, 2016.
Billi, D.: Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays, Extremophiles, 13, 49–57, 2009.
Download
Short summary
We report on the net primary productivity of a biological soil crust from the Boodjamulla NP, Queensland. Metabolic activity lasted from September 2010 to mid-April 2011, referring to 23.6 % of the total time of the year. The first months of activity had a respiratory loss of CO2. Of the metabolic active period, 48.6 % were photosynthesis and 51.4 % dark respiration. Carbon gain was 1.72 g m−2 yr−1. The gas exchange pattern was divided into metabolically inactive winter and active summer month.
Altmetrics
Final-revised paper
Preprint