Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5621-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5621-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial decomposition processes and vulnerable arctic soil organic carbon in the 21st century
Junrong Zha
Department of Earth, Atmospheric, and Planetary Sciences and Department of
Agronomy, Purdue University, West Lafayette, IN 47907, USA
Department of Earth, Atmospheric, and Planetary Sciences and Department of
Agronomy, Purdue University, West Lafayette, IN 47907, USA
Related authors
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Cited articles
Allison, S. D. and Martiny, J. B.: Colloquium paper: resistance,
resilience, and redundancy in microbial communities, P.
Natl. Acad. Sci. USA, 105,
11512–11519, https://doi.org/10.1073/pnas.0801925105, 2008.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat. Geosci., 3,
336–340, https://doi.org/10.1038/ngeo846, 2010.
Amiro, B. D., Orchansky, A. L., Barr, A. G., Black, T. A., Chambers, S. D.,
Chapin Iii, F. S., Goulden, M. L., Litvak, M., Liu, H. P., McCaughey, J. H.,
McMillan, A., and Randerson, J. T.: The effect of post-fire stand age on the
boreal forest energy balance, Agr. Forest Meteorol., 140,
41–50, https://doi.org/10.1016/j.agrformet.2006.02.014, 2006.
Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M.,
Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in the
vegetation growing season and annual cycle of atmospheric CO2 at high
northern latitudes from 1950 to 2011, Glob. Change Biol., 19, 3167–3183, https://doi.org/10.1111/gcb.12283, 2013.
Blagodatskaya, E. and Kuzyakov, Y.: Active microorganisms in soil: Critical
review of estimation criteria and approaches, Soil Biol. Biochem.,
67, 192–211, https://doi.org/10.1016/j.soilbio.2013.08.024, 2013.
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the
global soil respiration record, Nature, 464, 579–582, https://doi.org/10.1038/nature08930,
2010.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, https://doi.org/10.1038/nature06272, 2007.
Callaghan, T., Björn, L. O., Chernov, Y., Chapin, T., Christensen, T.
R., Huntley, B., Ims, R., Jolly, D., Jonasson, S., Matveyeva, N., Panikov,
N., Oechel, W., and Shaver, G.: Chapter 7: Arctic tundra and polar desert
ecosystems, Arctic climate impact assessment, 243–352, ACIA Overview report.
Cambridge University Press, 1020 pp., 2005.
Chapin, F. S. and Starfield, A. M.: Time lags and novel ecosystems in
response to transient climatic change in arctic Alaska, Climatic Change, 35,
449–461, 1997.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C.
L., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and other
biogeochemical cycles, Climate change 2013: the physical science basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 465–570, 2013.
Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A.,
Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D., and Zhao, Q.:
Global estimates of potential mitigation of greenhouse gas emissions by
agriculture, Nutr. Cycl. Agroecosys., 49, 221–228, 1997.
Cook, F. J. and Orchard, V. A.: Relationships between soil respiration and
soil moisture, Soil Biol. Biochem., 40, 1013–1018,
https://doi.org/10.1016/j.soilbio.2007.12.012, 2008.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
Davidson, E. A., Trumbore, S. E., and Amundson, R.: Biogeochemistry: soil
warming and organic carbon content, Nature, 408, 789–790,
https://doi.org/10.1038/35048672, 2000.
Dong, Y. and Somero, G. N.: Temperature adaptation of cytosolic malate
dehydrogenases of limpets (genus Lottia): differences in stability and
function due to minor changes in sequence correlate with biogeographic and
vertical distributions, J. Exp. Biol., 212, 169–177, https://doi.org/10.1242/jeb.024505, 2009.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global
optimization method for calibrating watershed models, J. Hydrol.,
158, 265–284, 1994.
Esteban G. Jobbágy, and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol. Appl., 10,
423–436, 2000.
Gear, A. J. and Huntley, B.: Rapid changes in the range limits of Scots
pine 4000 years ago, Science, 251, 544–547, 1991.
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The
Michaelis-Menten kinetics of soil extracellular enzymes in response to
temperature: a cross-latitudinal study, Glob. Change Biol., 18,
1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012.
Goetz, S. J., Mack, M. C., Gurney, K. R., Randerson, J. T., and Houghton, R.
A.: Ecosystem responses to recent climate change and fire disturbance at
northern high latitudes: observations and model results contrasting northern
Eurasia and North America, Environ. Res. Lett., 2, 045031, https://doi.org/10.1088/1748-9326/2/4/045031, 2007.
Hagerty, S. B., van Groenigen, K. J., Allison, S. D., Hungate, B. A.,
Schwartz, E., Koch, G. W., Kolka, R. K., and Dijkstra, P.: Accelerated
microbial turnover but constant growth efficiency with warming in soil,
Nat. Clim. Change, 4, 903–906, https://doi.org/10.1038/nclimate2361, 2014.
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M.:
Global temperature change, P. Natl. Acad. Sci. USA, 103, 14288–14293, https://doi.org/10.1073/pnas.0606291103,
2006.
Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating
root and soil microbial contributions to soil respiration: A review of
methods and observations, Biogeochemistry, 48, 115–146, 2000.
Hao, G., Zhuang, Q., Zhu, Q., He, Y., Jin, Z., and Shen, W.: Quantifying
microbial ecophysiological effects on the carbon fluxes of forest ecosystems
over the conterminous United States, Climatic Change, 133, 695–708, https://doi.org/10.1007/s10584-015-1490-3, 2015.
Harden, J. W., Trumbore, S. E., Stocks, B. J., Hirsch, A., Gower, S. T.,
O'neill, K. P., and Kasischke, E. S.: The role of fire in the boreal carbon
budget, Glob. Change Biol., 6, 174–184, 2000.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hayes, D. J., Kicklighter, D. W., McGuire, A. D., Chen, M., Zhuang, Q.,
Yuan, F., Melillo, J. M., and Wullschleger, S. D.: The impacts of recent
permafrost thaw on land–atmosphere greenhouse gas exchange, Environ.
Res. Lett., 9, 045005, https://doi.org/10.1088/1748-9326/9/4/045005, 2014.
He, Y., Yang, J., Zhuang, Q., Harden, J. W., McGuire, A. D., Liu, Y., Wang,
G., and Gu, L.: Incorporating microbial dormancy dynamics into soil
decomposition models to improve quantification of soil carbon dynamics of
northern temperate forests, J. Geophys. Res.-Biogeo.,
120, 2596–2611, https://doi.org/10.1002/2015jg003130, 2015.
Hobbie, J. E. and Hobbie, E. A.: 15N in symbiotic fungi and plants
estimates nitrogen and carbon flux rates in Arctic tundra, Ecology, 87,
816–822, 2006.
Hobbie, E. A. and Hobbie, J. E.: Natural Abundance of 15N in
Nitrogen-Limited Forests and Tundra Can Estimate Nitrogen Cycling Through
Mycorrhizal Fungi: A Review, Ecosystems, 11, 815–830, https://doi.org/10.1007/s10021-008-9159-7, 2008.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, https://doi.org/10.1007/s00382-003-0332-6,
2003.
Houghton, R. A.: Balancing the Global Carbon Budget, Annu. Rev. Earth
Pl. Sc., 35, 313–347, https://doi.org/10.1146/annurev.earth.35.031306.140057,
2007.
Johnstone, J. F. and Kasischke, E. S.: Stand-level effects of soil burn
severity on postfire regeneration in a recently burned black spruce forest,
Can. J. Forest Res., 35, 2151–2163, https://doi.org/10.1139/x05-087, 2005.
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime
across the North American boreal region – Spatial and temporal patterns of
burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703,
https://doi.org/10.1029/2006gl025677, 2006.
Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial
biosphere: process-based simulations and uncertainties, Global Ecol.
Biogeogr., 9, 225–252, 2000.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization improvements and functional and
structural advances in Version 4 of the Community Land Model, J. Adv. Model.
Earth Sy., 3, M03001, https://doi.org/10.1029/2011ms000045, 2011.
Lennon, J. T. and Jones, S. E.: Microbial seed banks: the ecological and
evolutionary implications of dormancy, Nature reviews, Microbiology, 9,
119–130, https://doi.org/10.1038/nrmicro2504, 2011.
Lloyd, A. H.: Ecological histories from Alaskan tree lines provide insight
into future change, Ecology, 86, 1687–1695, 2005.
López-Urrutia, A., and Morán, X. A. G.: Resource limitation of bacterial
production distorts the temperature dependence of oceanic carbon cycling,
Ecology, 88, 817–822, 2007.
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., and Chapin III, F.
S. C.: Ecosystem carbon storage in arctic tundra reduced by long-term
nutrient fertilization, Nature, 431, 440–443, 2004.
McGuire, A. D. and Hobbie, J. E.: Global climate change and the equilibrium
responses of carbon storage in arctic and subarctic regions, in: Modeling the
Arctic system: A workshop report on the state of modeling in the Arctic
System Science program, 53–54, 1997.
McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A.
L., Moore III, B. M., and Vorosmarty, C. J.: Interactions between carbon and
nitrogen dynamics in estimating net primary productivity for potential
vegetation in North America, Global Biogeochem. Cy., 6, 101–124, 1992.
McGuire, A. D., Melillo, J. M., Kicklighter, D. W., and Joyce, L. A.:
Equilibrium responses of soil carbon to climate change: Empirical and
process-based estimates, J. Biogeogr., 22, 785–796, 1995.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change,
Ecol. Monogr., 79, 523–555, 2009.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin,
P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic
tundra: comparisons among observations, process models, and atmospheric
inversions, Biogeosciences, 9, 3185–3204,
https://doi.org/10.5194/bg-9-3185-2012, 2012.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty,
C. J., and Schloss, A. L.: Global climate change and terrestrial net primary
production, Nature, 363, 234–240, https://doi.org/10.1038/363234a0, 1993.
Oechel, W. C., Vourlitis, G. L., Hastings, S. J., Zulueta, R. C., Hinzman,
L., and Kane, D.: Acclimation of ecosystem CO2 exchange in the
Alaskan Arctic in response to decadal climate warming, Nature, 406, 978–981,
https://doi.org/10.1038/35023137, 2000.
Pan, Y., McGuire, A. D., Melillo, J. M., Kicklighter, D. W., Sitch, S., and
Prentice, I. C.: A biogeochemistry-based dynamic vegetation model and its
application along a moisture gradient in the continental United States, J.
Vegetation Sci., 13, 369–382, 2002.
Parton, W. J., Ojima, D. S., Cole, C. V., and Schimel, D. S.: A general
model for soil organic matter dynamics: sensitivity to litter chemistry,
texture and management, SSSA Spec. Publ., 39, 147–167, 1994.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P.
M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: a
process model based on global satellite and surface data, Global Biogeochem.
Cy., 7, 811–841, 1993.
Qian, H., Joseph, R., and Zeng, N.: Enhanced terrestrial carbon uptake in
the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle
Climate Model Intercomparison Project model projections, Glob. Change Biol.,
16, 641–656, https://doi.org/10.1111/j.1365-2486.2009.01989.x, 2010.
Raich, J. W. and Schlesinger, W. H.: The global carbon dioxide flux in soil
respiration and its relationship to vegetation and climate, Tellus B, 44,
81–99, 1992.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S.,
Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G., and
Zender, C. S.: The impact of boreal forest fire on climate warming, Science,
314, 1130–1132, 2006.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem
processes for regional applications I. Hydrologic balance, canopy gas
exchange and primary production processes, Ecol. Model., 42, 125–154, 1988.
Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., and Lucht,
W.: Contribution of permafrost soils to the global carbon budget, Environ.
Res. Lett., 8, 014026, https://doi.org/10.1088/1748-9326/8/1/014026, 2013.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity
on microbial carbon and nitrogen limitation in soil: a theoretical model,
Soil Biol. Biochem., 35, 549–563, https://doi.org/10.1016/s0038-0717(03)00015-4, 2003.
Schimel, J. P. and Hättenschwiler, S.: Nitrogen transfer between
decomposing leaves of different N status, Soil Biol. Biochem., 39,
1428–1436, https://doi.org/10.1016/j.soilbio.2006.12.037, 2007.
Schimel, J. P. and Schaeffer, S. M.: Microbial control over carbon cycling
in soil, Front. Microbiol., 3, 348, https://doi.org/10.3389/fmicb.2012.00348, 2012.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A.,
Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of
soil organic matter as an ecosystem property, Nature, 478, 49–56,
https://doi.org/10.1038/nature10386, 2011.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., and
Mazhitova, G.: Vulnerability of permafrost carbon to climate change:
Implications for the global carbon cycle, BioScience, 58, 701–714, 2008.
Serreze, M. C. and Francis, J. A.: The Arctic on the fast track of change,
Weather, 61, 65–69, 2006.
Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart,
H. H., Stocks, B. J., Sukhinin, A. I., Parfenova, E. I., Chapin, F. S., and
Stackhouse, P. W.: Climate-induced boreal forest change: Predictions versus
current observations, Global Planet. Change, 56, 274–296,
https://doi.org/10.1016/j.gloplacha.2006.07.028, 2007.
Somero, G. N.: Adaptation of enzymes to temperature: searching for basic
“strategies”, Comp. Biochem. Phys. B, 139, 321–333,
https://doi.org/10.1016/j.cbpc.2004.05.003, 2004.
Steinweg, J. M., Plante, A. F., Conant, R. T., Paul, E. A., and Tanaka, D.
L.: Patterns of substrate utilization during long-term incubations at
different temperatures, Soil Biol. Biochem., 40, 2722–2728,
https://doi.org/10.1016/j.soilbio.2008.07.002, 2008.
Steinweg, J. M., Dukes, J. S., Paul, E. A., and Wallenstein, M. D.:
Microbial responses to multi-factor climate change: effects on soil enzymes,
Front. Microbiol., 4, 146, https://doi.org/10.3389/fmicb.2013.00146, 2013.
Stone, M. M., Weiss, M. S., Goodale, C. L., Adams, M. B., Fernandez, I. J.,
German, D. P., and Allison, S. D.: Temperature sensitivity of soil enzyme
kinetics under N-fertilization in two temperate forests, Glob. Change Biol.,
18, 1173–1184, https://doi.org/10.1111/j.1365-2486.2011.02545.x, 2012.
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F.,
Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K.,
Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G.,
Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni,
R.: Remote sensing of vegetation and land-cover change in Arctic Tundra
Ecosystems, Remote Sens. Environ., 89, 281–308,
https://doi.org/10.1016/j.rse.2003.10.018, 2004.
Sturm, M., Racine, C., and Tape, K.: Climate change: increasing shrub
abundance in the Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Tang, J. and Zhuang, Q.: Equifinality in parameterization of process-based
biogeochemistry models: A significant uncertainty source to the estimation of
regional carbon dynamics, J. Geophys. Res.-Biogeo., 113, G04010,
https://doi.org/10.1029/2008jg000757, 2008.
Tape, K. E. N., Sturm, M., and Racine, C.: The evidence for shrub expansion
in Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702,
https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008gb003327, 2009.
Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M., and
Allison, S. D.: A framework for representing microbial decomposition in
coupled climate models, Biogeochemistry, 109, 19–33,
https://doi.org/10.1007/s10533-011-9635-6, 2011.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M.,
Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in
soil carbon simulations from CMIP5 Earth system models and comparison with
observations, Biogeosciences, 10, 1717–1736,
https://doi.org/10.5194/bg-10-1717-2013, 2013.
White, A., Cannell, M. G. R., and Friend, A. D.: The high-latitude
terrestrial carbon sink: a model analysis, Glob. Change Biol., 6, 227–245,
2000.
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon
projections are improved by modelling microbial processes, Nat. Clim. Change,
3, 909–912, https://doi.org/10.1038/nclimate1951, 2013.
Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a
permafrost model into a large-scale ecosystem model: Evaluation of temporal
and spatial scaling issues in simulating soil thermal dynamics, J. Geophys.
Res.-Atmos., 106, 33649–33670, https://doi.org/10.1029/2001jd900151, 2001.
Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V.
E., and Yarie, J.: Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska, J. Geophys. Res., 108, FFR 3-1-FFR-3-26,
https://doi.org/10.1029/2001jd001244, 2002.
Zhuang, Q., He, J., Lu, Y., Ji, L., Xiao, J., and Luo, T.: Carbon dynamics
of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an
analysis with a process-based biogeochemical model, Global Ecol. Biogeogr.,
19, 649–662, https://doi.org/10.1111/j.1466-8238.2010.00559.x, 2010.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M.,
Prinn, R. G., and McGuire, A. D.: Response of global soil consumption of
atmospheric methane to changes in atmospheric climate and nitrogen
deposition, Global Biogeochem. Cy., 27, 650–663, https://doi.org/10.1002/gbc.20057,
2013.
Zhuang, Q., Zhu, X., He, Y., Prigent, C., Melillo, J. M., McGuire, D. A.,
Prinn, R. G., and Kicklighter, D. W.: Influence of changes in wetland
inundation extent on net fluxes of carbon dioxide and methane in northern
high latitudes from 1993 to 2004, Environ. Res. Lett., 10, 095009,
https://doi.org/10.1088/1748-9326/10/9/095009, 2015.
Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J.,
Kicklighter, D. W., Myneni, R. B., Dong, J., Romanovsky, V. E., Harden, J.,
and Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of
the Northern Hemisphere during the 20th century: a modeling analysis of the
influences of soil thermal dynamics, Tellus B, 55, 751–776,
https://doi.org/10.3402/tellusb.v55i3.16368, 2003.
Download
- Article
(2709 KB) - Full-text XML
Short summary
This study used a detailed microbial-based soil decomposition biogeochemistry model to examine the fate of much arctic soil carbon under changing climate conditions. We found that the detailed microbial decomposition biogeochemistry model estimated a much lower carbon accumulation in the region during this century. The amount of soil carbon considered in the 21st-century simulations determines the regional carbon sink and source strengths, regardless of the complexity of models used.
This study used a detailed microbial-based soil decomposition biogeochemistry model to examine...
Altmetrics
Final-revised paper
Preprint