Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T., Conway, T.,
and Francey, R. J.: Global carbon sinks and their variability inferred from
atmospheric O
2 and
δ13C, Science, 287, 2467–2470,
https://doi.org/10.1126/science.287.5462.2467, 2000.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: A global relationship between
the heterotrophic and autotrophic components of soil respiration?, Glob.
Change Biol., 10, 1756–1766, https://doi.org/10.1111/j.1365-2486.2004.00816.x, 2004.
Bond-Lamberty, B., Bronson, D., Bladyka, E., and Gower, S. T.: A comparison
of trenched plot techniques for partitioning soil respiration, Soil Biol.
Biochem., 43, 2108–2114, https://doi.org/10.1016/j.soilbio.2011.06.011, 2011.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature,
560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018.
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and
Crowther, T. W.: Managing uncertainty in soil carbon feedbacks to climate
change, Nat. Clim. Chang., 6, 751–758, https://doi.org/10.1038/nclimate3071, 2016.
Bruhwiler, L., Michalak, A. M., Birdsey, R., Huntzinger, D. N., Fisher, J.
B., Miller, J., and Houghton, R. A.: Overview of the Global Carbon Cycle,
Second State Carbon Cycle Rep., 1–33, https://doi.org/10.7930/SOCCR2.2018.Ch1, 2018.
Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J., and
Wieder, W. R.: Applying population and community ecology theory to advance
understanding of belowground biogeochemistry, Ecol. Lett., 20, 231–245,
https://doi.org/10.1111/ele.12712, 2017.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C.
D., Riley, W. J., Mu, M., and Randerson, J. T.: The International Land Model
Benchmarking (ILAMB) System: Design, Theory, and Implementation, J. Adv.
Model. Earth Syst., 10, 2731–2754, https://doi.org/10.1029/2018MS001354, 2018.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., and
Hyvönen, R.: Temperature and soil organic matter decomposition rates –
synthesis of current knowledge and a way forward, Glob. Chang. Biol.,
17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C.,
Jones, C. D., and Luke, C. M.: Sensitivity of tropical carbon to climate
change constrained by carbon dioxide variability, Nature, 494,
341–344, https://doi.org/10.1038/nature11882, 2013.
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M., Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M. R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K., Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.
Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing
artifacts and biases in chamber-based measurements of soil respiration,
Agr. Forest Meteorol., 113, 21–37, https://doi.org/10.1016/S0168-1923(02)00100-4,
2002.
Dlugokencky, E. J., Lang P. M., Mund J. W., Crotwell A. M., Crotwell M. J.,
and Thoning K. W.: Atmospheric carbon dioxide dry air mole fractions from
the NOAA ESRL carbon cycle cooperative global air sampling network,
1968–2015, version 2016-08-30, NOAA, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last access:4 January 2017),
2016.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.:
Soil organic matter turnover is governed by accessibility not recalcitrance,
Glob. Chang. Biol., 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x,
2012.
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S.,
Lee, J. E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New
global observations of the terrestrial carbon cycle from GOSAT: Patterns of
plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL048738, 2011.
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The
Michaelis-Menten kinetics of soil extracellular enzymes in response to
temperature: a cross-latitudinal study, Glob. Chang. Biol., 18,
1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012.
Guan, K., Berry, J. A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., and
Lobell, D. B.: Improving the monitoring of crop productivity using
spaceborne solar-induced fluorescence, Glob. Change Biol., 22, 716–726,
https://doi.org/10.1111/gcb.13136, 2016.
Hicke, J. A., Asner, G. P., Randerson, J. T., Tucker, C., Los, S., Birdsey,
R., Jenkins, J. C., and Field, C.: Trends in North American net primary
productivity derived from satellite observations, 1982–1998, Global
Biogeochem. Cy., 16, 2-1–2-14, https://doi.org/10.1029/2001gb001550, 2002.
Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., and
Seneviratne, S. I.: Sensitivity of atmospheric
CO2 growth rate to
observed changes in terrestrial water storage, Nature, 560, 628–631,
https://doi.org/10.1038/s41586-018-0424-4, 2018.
Jenkinson, A. D. S., Andrew, S. P. S., Lynch, J. M., Goss, M. J., Tinker, P.
B., and Jenkinson, D. S.: The turnover of organic carbon and nitrogen in
soil, Philos. T. Roy. Soc. London B, 329, 361–368,
https://doi.org/10.1098/rstb.1990.0177, 1990.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and
Morice, C. P.: Hemispheric and large-scale land-surface air temperature
variations: An extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Keeling, C. D., Piper, S. C., Whorf, T. P., and Keeling, R. F.: Evolution of
natural and anthropogenic fluxes of atmospheric CO
2 from 1957 to 2003,
Tellus B, 63, 1–22,
https://doi.org/10.1111/j.1600-0889.2010.00507.x, 2011.
Keppel-Aleks, G., Randerson, J. T., Lindsay, K., Stephens, B. B., Keith
Moore, J., Doney, S. C., Thornton, P. E., Mahowald, N. M., Hoffman, F. M.,
Sweeney, C., Tans, P. P., Wennberg, P. O., and Wofsy, S. C.: Atmospheric
carbon dioxide variability in the community earth system model: Evaluation
and transient dynamics during the twentieth and twenty-first centuries, J.
Clim., 26, 4447–4475, https://doi.org/10.1175/JCLI-D-12-00589.1, 2013.
Keppel-Aleks, G., Wolf, A. S., Mu, M., Doney, S. C., Morton, D. C.,
Kasibhatla, P. S., Miller, J. B., Dlugokencky, E. J., and Randerson, J. T.:
Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO
2, Global Biogeochem.
Cy., 29, 1295–1310, https://doi.org/10.1002/2014GB004890, 2014.
Keppel-Aleks, G., Basile, S. J., and Hoffman, F. M.: A functional response
metric for the temperature sensitivity of tropical ecosystems, Earth
Interact., 22, 7, https://doi.org/10.1175/EI-D-17-0017.1, 2018.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf, J.: Global retrievals of solar – induced chlorophyll fluorescence
with TROPOMI: First results and intersensor comparison to OCO – 2, Geophys.
Res. Lett., 45, 10–456, https://doi.org/10.1029/2018GL079031, 2018.
Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson, S. C.: The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4, Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, 2013.
Lavigne, M. B., Ryan, M. G., Anderson, D. E., Baldocchi, D. D., Crill, P.
M., Fitzjarrald, D. R., Goulden, M. L., Gower, S. T., Massheder, J. M.,
McCaughey, J. H., Rayment, M., and Striegl, R. G.: Comparing nocturnal eddy
covariance measurements to estimates of ecosystem respiration made by
scaling chamber measurements at six coniferous boreal sites, J. Geophys.
Res.-Atmos., 102, 28977–28985, https://doi.org/10.1029/97jd01173, 1997.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I., and Noe, S. M.: Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 an
d flux tower observations, Glob. Change Biol., 24, 3990–4008, https://doi.org/10.1111/gcb.14297, 2018.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I.
C., Thornton, P. E., Wang, S., Wang, Y. P., Weng, E., Iversen, C. M.,
Mccarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using ecosystem
experiments to improve vegetation models, Nat. Clim. Chang., 5, 528–534,
https://doi.org/10.1038/nclimate2621, 2015.
Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R.,
and Moreno, J.: Remote sensing of solar-induced chlorophyll fluorescence:
Review of methods and applications, Remote Sens. Environ., 113,
2037–2051, https://doi.org/10.1016/j.rse.2009.05.003, 2009.
Moorhead, D. L. and Weintraub, M. N.: The evolution and application of the
reverse Michaelis-Menten equation, Soil Biol. Biochem., 125, 261–262,
https://doi.org/10.1016/j.soilbio.2018.07.021, 2018.
Nevison, C. D., Mahowald, N. M., Doney, S. C., Lima, I. D., van der Werf, G.
R., Randerson, J. T., Baker, D. F., Kasibhatla, P., and McKinley, G. A.:
Contribution of ocean, fossil fuel, land biosphere, and biomass burning
carbon fluxes to seasonal and interannual variability in atmospheric
CO2, J. Geophys. Res.-Biogeosc., 113, 1–21,
https://doi.org/10.1029/2007JG000408, 2008.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Charles, D., Levis, S., Li, F., Riley, W. J., Zachary, M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E.,
Lamarque, F., Lawrence, P. J., Leung, L. R., Muszala, S., Ricciuto, D. M.,
and Sacks, W.: Technical description of version 4.5 of the Community Land
Model (CLM), NCAR Technical Note NCAR/TN-503
+STR, Natl. Cent. Atmos. Res.
Boulder, CO, (July), 420 pp., https://doi.org/10.5065/D6RR1W7M, 2013.
Parton, W. J.: The CENTURY Model, in: Evaluation of Soil Organic Matter
Models, edited by: Powlson, D. S., Smith, P., and Smith, J. U.,
Springer-Verlag, Berlin, Heidelberg, Germany, 283–291, https://doi.org/10.1007/978-3-642-61094-3_23, 1996.
Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P.,
Friedlingstein, P., and Sitch, S.: Interannual variation of terrestrial
carbon cycle: Issues and perspectives, Glob. Change Biol., 26, 300–318,
https://doi.org/10.1111/gcb.14884, 2020.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P.
M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: A
process model based on global satellite and surface data, Global Biogeochem.
Cy., 7, 811–841, https://doi.org/10.1029/93GB02725, 1993.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Stich, S., and van der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509,
600–603, https://doi.org/10.1038/nature13376, 2014.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M.,
Janssens, I., Yuste, J. C., Grünzweig, J. M., Reth, S., Subke, J. A.,
Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth,
A., and Hari, P.: Comparison of different chamber techniques for measuring
soil
CO2 efflux, Agr. Forest Meteorol., 123, 159–176,
https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
Randerson, J. T., Thompson, M. V., and Malmstrom, C. M.: Substrate Limitations
for Heterotrophs: Implications for models that estimate the seasonal cycle
of atmospheric
CO2, Global Biogeochem. Cy., 10, 585–602,
https://doi.org/10.1029/96GB01981, 1996.
Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., and Field, C.
B.: The contribution of sources and sinks to trends in the seasonal cycle of
atmospheric carbon dioxide, Global Biogeochem. Cy., 11, 535–560,
https://doi.org/10.1029/97GB02268, 1997.
Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay,
K., Lee, Y. H., Nevison, C. D., Doney, S. C., Bonan, G., Stöckli, R.,
Covey, C., Running, S. W., and Fung, I. Y.: Systematic assessment of
terrestrial biogeochemistry in coupled climate-carbon models, Glob. Change
Biol., 15, 2462–2484, https://doi.org/10.1111/j.1365-2486.2009.01912.x, 2009.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.
Rayner, P. J., Law, R. M., Allison, C. E., Francey, R. J., Trudinger, C. M.,
and Pickett-Heaps, C.: Interannual variability of the global carbon cycle
(1992–2005) inferred by inversion of atmospheric
CO2 and
δ 13
CO2 measurements, Global Biogeochem. Cy., 22, 1–12,
https://doi.org/10.1029/2007GB003068, 2008.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, Bioscience, 54, 547,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Ryan, M. G. and Law, B. E.: Interpreting, measuring, and modeling soil
respiration, Biogeochemistry, 73, 3–27, https://doi.org/10.1007/s10533-004-5167-7,
2005.
Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., and Sierra, C. A.: Decomposability of soil organic matter over time: The Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-184, in review, 2019.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature,
478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schuur, E. A. and Mack, M. C.: Ecological response to permafrost thaw and
consequences for local and global ecosystem services, Annu. Rev. Ecol. Evol.
S., 49, 279–301, https://doi.org/10.1146/annurev-ecolsys-121415-032349, 2018.
Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and Pacala, S.
W.: Microbe-driven turnover offsets mineral-mediated storage of soil carbon
under elevated CO
2, Nat. Clim. Chang., 4, 1099–1102,
https://doi.org/10.1038/nclimate2436, 2014.
Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S.,
Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R.,
Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar,
A., Schimel, J. P., Tang, J., and Classen, A. T.: Multiple models and
experiments underscore large uncertainty in soil carbon dynamics,
Biogeochemistry, 141, 109–123, https://doi.org/10.1007/s10533-018-0509-z, 2018.
Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q., and Allison, S. D.: Changes in soil organic carbon storage predicted by Earth system models during the 21st century, Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, 2014.
Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W.,
Zhao, M., Costa, M. H., Kirschbaum, A. A., Ham, J. M., Saleska, S. R., and
Ahl, D. E.: Evaluation of MODIS NPP and GPP products across multiple biomes,
Remote Sens. Environ., 102, 282–292, https://doi.org/10.1016/j.rse.2006.02.017,
2006.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon
projections are improved by modelling microbial processes, Nat. Clim.
Chang., 3, 909–912, https://doi.org/10.1038/nclimate1951, 2013.
Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B.: Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, Biogeosciences, 11, 3899–3917, https://doi.org/10.5194/bg-11-3899-2014, 2014.
Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and Bonan, G. B.: Representing life in the Earth system with soil microbial functional traits in the MIMICS model, Geosci. Model Dev., 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015, 2015.
Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y. P., Koven, C. D., and
Bonan, G. B.: Carbon cycle confidence and uncertainty: Exploring variation
among soil biogeochemical models, Glob. Change Biol., 24, 1563–1579,
https://doi.org/10.1111/gcb.13979, 2018.
Wunch, D., Wennberg, P. O., Messerschmidt, J., Parazoo, N. C., Toon, G. C., Deutscher, N. M., Keppel-Aleks, G., Roehl, C. M., Randerson, J. T., Warneke, T., and Notholt, J.: The covariation of Northern Hemisphere summertime CO
2 with surface temperature in boreal regions, Atmos. Chem. Phys., 13, 9447–9459, https://doi.org/10.5194/acp-13-9447-2013, 2013.
Yang, Z., Washenfelder, R. A., Keppel-Aleks, G., Krakauer, N. Y., Randerson,
J. T., Tans, P. P., Sweeney, C., and Wennberg, P. O.: New constraints on
Northern Hemisphere growing season net flux, Geophys. Res. Lett., 34, L12807,
https://doi.org/10.1029/2007GL029742, 2007.
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and
Maksyutov, S.: Global Concentrations of
CO2 and CH
4 Retrieved from
GOSAT: First Preliminary Results, Sola, 5, 160–163,
https://doi.org/10.2151/sola.2009-041, 2009.
Zhao, Z., Peng, C., Yang, Q., Meng, F. R., Song, X., Chen, S., Epule, T. E.,
Li, P., and Zhu, Q.: Model prediction of biome-specific global soil
respiration from 1960 to 2012, Earth's Futur., 5, 715–729,
https://doi.org/10.1002/2016EF000480, 2017.
Zhang, H., Goll, D. S., Wang, Y., Ciais, P., Wieder, W. R., Abramoff, R.,
Huang, Y., Guenet, B., Prescher, A., Viscarra Rossel, R., A., Barré, P.,
Chenu, C., Zhou, G., and Tang, X.: Microbial dynamics and soil physicochemical
properties explain large scale variations in soil organic carbon, Glob. Change
Biol., https://doi.org/10.1111/gcb.14994, 2020.