Articles | Volume 17, issue 10
https://doi.org/10.5194/bg-17-2853-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2853-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Eva-Maria Pfeiffer
Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Lars Kutzbach
Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Related authors
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Tim Eckhardt, Christian Knoblauch, Lars Kutzbach, David Holl, Gillian Simpson, Evgeny Abakumov, and Eva-Maria Pfeiffer
Biogeosciences, 16, 1543–1562, https://doi.org/10.5194/bg-16-1543-2019, https://doi.org/10.5194/bg-16-1543-2019, 2019
Short summary
Short summary
We quantified the contribution of individual components governing the net ecosystem exchange of CO2 and how these fluxes respond to environmental changes in a drained and water-saturated site in the polygonal tundra of northeast Siberia. This work finds both sites as a sink for atmospheric CO2 during the growing season, but sink strengths varied between the sites. Furthermore, it was shown that soil hydrological conditions were one of the key drivers for differing CO2 fluxes between the sites.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020, https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Tim Eckhardt, Christian Knoblauch, Lars Kutzbach, David Holl, Gillian Simpson, Evgeny Abakumov, and Eva-Maria Pfeiffer
Biogeosciences, 16, 1543–1562, https://doi.org/10.5194/bg-16-1543-2019, https://doi.org/10.5194/bg-16-1543-2019, 2019
Short summary
Short summary
We quantified the contribution of individual components governing the net ecosystem exchange of CO2 and how these fluxes respond to environmental changes in a drained and water-saturated site in the polygonal tundra of northeast Siberia. This work finds both sites as a sink for atmospheric CO2 during the growing season, but sink strengths varied between the sites. Furthermore, it was shown that soil hydrological conditions were one of the key drivers for differing CO2 fluxes between the sites.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Short summary
We developed a process-based model for peatland micro-topography and hydrology, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By coupling the HH model with a model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We also identify potential biases that models without a micro-topographic representation can introduce in large-scale models.
M. Vanselow-Algan, S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach, and E.-M. Pfeiffer
Biogeosciences, 12, 4361–4371, https://doi.org/10.5194/bg-12-4361-2015, https://doi.org/10.5194/bg-12-4361-2015, 2015
Related subject area
Biogeochemistry: Wetlands
Shoulder season controls on methane emissions from a boreal peatland
Patterns and drivers of organic matter decomposition in peatland open-water pools
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Assessing root-soil interactions in wetland plants: root exudation and radial oxygen loss
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Technical Note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in freshwater mineral soil wetlands
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Modelling long-term blanket peatland development in eastern Scotland
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary
Multi-year effect of wetting on CH4 flux at taiga–tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4
Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Katherine Ann Haviland and Genevieve Noyce
EGUsphere, https://doi.org/10.5194/egusphere-2024-1547, https://doi.org/10.5194/egusphere-2024-1547, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, Spartina patens and S. americanus. We found that S. patens produces more carbon, and less oxygen, than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
EGUsphere, https://doi.org/10.5194/egusphere-2024-1162, https://doi.org/10.5194/egusphere-2024-1162, 2024
Short summary
Short summary
Precise and accurate estimates of wetland organic carbon sequestration rates are crucial to track progress of climate action goals through effective carbon budgeting. Radioisotope dating methods using cesium-137 (137Cs) and lead-210 (210Pb) are needed to provide temporal references for these estimations. The choice between using 137Cs or 210Pb, or their combination, depends on respective study objectives, with careful consideration of factors such as dating range and estimation complexity.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023, https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary
Short summary
Shrub leaves had higher mercury concentrations than sedge leaves in the sedge-dominated peatland. Dead shrub leaves leached less soluble mercury but more bioaccessible dissolved organic matter than dead sedge leaves. Leached mercury was positively related to the aromaticity of dissolved organic matter in leachate. Future plant species composition changes under climate change will affect Hg input from plant leaves to northern peatlands.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Luke C. Jeffrey, Damien T. Maher, Scott G. Johnston, Kylie Maguire, Andrew D. L. Steven, and Douglas R. Tait
Biogeosciences, 16, 1799–1815, https://doi.org/10.5194/bg-16-1799-2019, https://doi.org/10.5194/bg-16-1799-2019, 2019
Short summary
Short summary
Wetlands represent the largest natural source of methane (CH4), so understanding CH4 drivers is important for management and climate models. We compared several CH4 pathways of a remediated subtropical Australian wetland. We found permanently inundated sites emitted more CH4 than seasonally inundated sites and that the soil properties of each site corresponded to CH4 emissions. This suggests that selective wetland remediation of favourable soil types may help to mitigate unwanted CH4 emissions.
Ryo Shingubara, Atsuko Sugimoto, Jun Murase, Go Iwahana, Shunsuke Tei, Maochang Liang, Shinya Takano, Tomoki Morozumi, and Trofim C. Maximov
Biogeosciences, 16, 755–768, https://doi.org/10.5194/bg-16-755-2019, https://doi.org/10.5194/bg-16-755-2019, 2019
Short summary
Short summary
(1) Wetting event with extreme precipitation increased methane emission from wetland, especially two summers later, despite the decline in water level after the wetting. (2) Isotopic compositions of methane in soil pore water suggested enhancement of production and less significance of oxidation in the following two summers after the wetting event. (3) Duration of water saturation in the active layer may be important for predicting methane emission after a wetting event in permafrost ecosystems.
Wiebke Münchberger, Klaus-Holger Knorr, Christian Blodau, Verónica A. Pancotto, and Till Kleinebecker
Biogeosciences, 16, 541–559, https://doi.org/10.5194/bg-16-541-2019, https://doi.org/10.5194/bg-16-541-2019, 2019
Short summary
Short summary
Processes governing CH4 dynamics have been scarcely studied in southern hemispheric bogs. These can be dominated by cushion-forming plants with deep and dense roots suppressing emissions. Here we demonstrate how the spatial distribution of root activity drives a pronounced pattern of CH4 emissions, likewise also possible in densely rooted northern bogs. We conclude that presence of cushion vegetation as a proxy for negligible CH4 emissions from cushion bogs needs to be interpreted with caution.
Cited articles
Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytoenen, J., Laurila, T.,
Lohila, A., Maljanen, M., Martikainen, P. J., and Maekiranta, P.: Emission
factors and their uncertainty for the exchange of CO2, CH4 and
N2O in Finnish managed peatlands, Boreal Environ. Res., 12, 191–209, 2007. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to
measurement and data analysis, Springer, Dordrecht, 2012. a
Beyer, C. and Höper, H.: Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany, Biogeosciences, 12, 2101–2117, https://doi.org/10.5194/bg-12-2101-2015, 2015. a, b, c, d
Bhullar, G. S., Edwards, P. J., and Olde Venterink, H.: Influence of Different
Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland,
PLOS ONE, 9, 1–5, 2014. a
Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., and Lafleur,
P. M.: Evidence for a nonmonotonic relationship between ecosystem-scale
peatland methane emissions and water table depth,
J. Geophys. Res.-Biogeo., 119, 826–835, https://doi.org/10.1002/2013JG002576, 2014. a
Bubier, J. L.: The relationship of vegetation to methane emission and
hydrochemical gradients in northern peatlands, J. Ecol., 83,
403–420, 1995. a
Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G.,
Hanson, C., Law, B., Mcdermitt, D. K., Eckles, R., Furtaw, M., and
Velgersdyk, M.: Calculating CO2 and H2O eddy covariance fluxes
from an enclosed gas analyzer using an instantaneous mixing ratio,
Glob. Change Biol., 18, 385–399, https://doi.org/10.1111/j.1365-2486.2011.02536.x, 2012. a
Chen, H., Zamorano, M. F., and Ivanoff, D.: Effect of flooding depth on growth,
biomass, photosynthesis, and chlorophyll fluorescence of Typha domingensis,
Wetlands, 30, 957–965, 2010. a
Couwenberg, J., Dommain, R., and Joosten, H.: Greenhouse gas fluxes from
tropical peatlands in south-east Asia, Glob. Change Biol., 16, 1715–1732, https://doi.org/10.1111/j.1365-2486.2009.02016.x, 2010. a
Czerwonka, K.-D. and Czerwonka, M.: Das Himmelmoor – Dokumentationen, Berichte,
Kommentare, Geschichten, self-published, Quickborn, 1985. a
Detto, M., Verfaillie, J., Anderson, F., Xu, L., and Baldocchi, D.: Comparing
laser-based open- and closed-path gas analyzers to measure methane fluxes
using the eddy covariance method, Agr. Forest Meteorol., 151,
1312–1324, https://doi.org/10.1016/j.agrformet.2011.05.014, 2011. a
Drösler, M., Freibauer, A., Christensen, T. R., and Friborg, T.:
Observations and status of peatland greenhouse gas emissions in Europe, in:
The continental-scale greenhouse gas balance of Europe, 243–261,
Springer, New York, 2008. a
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C.,
Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P.,
Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, J., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for defensible annual sums of net ecosystem exchange,
Agr. Forest Meteorol., 107, 43–69,
https://doi.org/10.1016/S0168-1923(00)00225-2, 2001. a
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res., 106, 3503,
https://doi.org/10.1029/2000JD900731, 2001. a, b
Forbrich, I., Kutzbach, L., Wille, C., Becker, T., Wu, J., and Wilmking, M.:
Cross-evaluation of measurements of peatland methane emissions on microform
and ecosystem scales using high-resolution landcover classification and
source weight modelling, Agr. Forest Meteorol., 151, 864–874, https://doi.org/10.1016/j.agrformet.2011.02.006, 2011. a
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative
humidity effects on water vapour fluxes measured with closed-path
eddy-covariance systems with short sampling lines, Agr. Forest Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012. a
Gash, J. H. C. and Culf, A. D.: Applying a linear detrend to eddy correlation
data in realtime, Bound.-Lay. Meteorol., 79, 301–306,
https://doi.org/10.1007/BF00119443, 1996. a
Glaser, P. H., Chanton, J. P., Morin, P., Rosenberry, D. O., Siegel, D. I., Ruud, O., Chasar, L. I., and Reeve, A. S.: Surface deformations as indicators of deep ebullition fluxes in a large northern peatland, Global Biogeochem. Cy., 18, GB1003, https://doi.org/10.1029/2003GB002069, 2004. a
Goodrich, J. P., Varner, R. K., Frolking, S., Duncan, B. N., and Crill, P. M.:
High-frequency measurements of methane ebullition over a growing season at a
temperate peatland site, Geophys. Res. Lett., 38, L07404, https://doi.org/10.1029/2011GL046915, 2011. a
Gu, M., Robbins, J. A., Rom, C. R., and Choi, H. S.: Photosynthesis of birch
genotypes (Betula L.) under varied irradiance and CO2 concentration,
HortScience, 43, 314–319, 2008. a
Hahn-Schöfl, M., Zak, D., Minke, M., Gelbrecht, J., Augustin, J., and Freibauer, A.: Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2, Biogeosciences, 8, 1539–1550, https://doi.org/10.5194/bg-8-1539-2011, 2011. a, b
Holl, D., Pancotto, V., Heger, A., Camargo, S. J., and Kutzbach, L.: Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina, Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019,
2019a. a
Holl, D., Wille, C., Sachs, T., Schreiber, P., Runkle, B. R. K., Beckebanze, L., Langer, M., Boike, J., Pfeiffer, E.-M., Fedorova, I., Bolshianov, D. Y., Grigoriev, M. N., and Kutzbach, L.: A long-term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019,
2019b. a, b
Holl, D., Wille, C., Schreiber, P., Rüggen, N., Pfeiffer, E.-M., Czerwonka, K.-D., and Kutzbach, L.: Eddy covariance carbon dioxide and methane fluxes from mined and recently rewetted sections in a NW German cutover bog, PANGAEA, https://doi.org/10.1594/PANGAEA.915468, 2020. a
Hoogesteger, J. and Karlsson, P.: Effects of defoliation on radial stem growth
and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa),
Funct. Ecol., 6, 317–323, 1992. a
Järveoja, J., Peichl, M., Maddison, M., Soosaar, K., Vellak, K., Karofeld, E., Teemusk, A., and Mander, Ü.: Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area, Biogeosciences, 13, 2637–2651, https://doi.org/10.5194/bg-13-2637-2016, 2016. a, b, c
Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E., and Vesala, T.: Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys., 12, 8475–8489, https://doi.org/10.5194/acp-12-8475-2012, 2012. a
Joosten, H.: Bog regeneration in the Netherlands: A review, in: Peatland
Ecosystems and Man: An Impact Assessment, edited by: Bragg, O. M., Department
of Biological Sciences, University of Dundee, Dundee, 1992. a
Kaimal, J. and Finnigan, J.: Atmospheric Boundary Layer Flows: Their structure
and measurements, Oxford University Press, Oxford, 1994. a
Kaipiainen, E. L.: Parameters of photosynthesis light curve in Salix dasyclados
and their changes during the growth season,
Russ. J. Plant Physiol., 56, 445–453, 2009. a
Kerdchoechuen, O.: Methane emission in four rice varieties as related to sugars
and organic acids of roots and root exudates and biomass yield, Agr. Ecosyst. Environ., 108, 155–163, 2005. a
Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E.,
Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., Papale,
D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I.,
Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I., Cescatti, A.,
Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen,
E., Friborg, T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig,
M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss,
K. W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T. H., Nilsson, M. B.,
Niu, S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L.,
Richardson, A. D., Runkle, B. R. K., Ryu, Y., Sachs, T., Schäfer, K. V. R.,
Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M.,
Vargas, R., Vesala, T., Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and
Zona, D.: FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and
Future Directions, B. Am. Meteorol. Soc., 100,
2607–2632, https://doi.org/10.1175/BAMS-D-18-0268.1, 2019. a
Kormann, R. and Meixner, F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/A:1018991015119, 2001. a
Körner, C.: CO2 exchange in the alpine sedge Carex curvula as
influenced by canopy structure, light and temperature, Oecologia, 53,
98–104, 1982. a
Kreis Pinneberg: Natur kehrt zurück ins Himmelmoor,
available at: https://www.kreis-pinneberg.de/Veröffentlichungen/Pressemitteilungen/Natur+kehrt+zurück+ins+Himmelmoor.html (2 November 2019),
2004. a
Lai, D. Y. F.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere,
19, 409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009. a
Lamers, L.: Tackling Biochemical Questions in Peatlands, PhD thesis,
Katholieke Universiteit Nijmegen, 2001. a
Lienau, D.: Untersuchung der diurnalen Variabilität der Photosyntheseraten
der Moorbirke im Himmelmoor, Master's thesis, Universität Hamburg,
Hamburg, 2014. a
Lütt, S.: Produktionsbiologische Untersuchungen zur Sukzession der
Torfstichvegetation in Schleswig-Holstein, Arbeitsgemeinschaft Geobotanik in
Schleswig-Holstein und Hamburg, Kiel, 1992. a
Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T., and Martikainen, P. J.: Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps, Biogeosciences, 7, 2711–2738, https://doi.org/10.5194/bg-7-2711-2010, 2010. a
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy
covariance software package TK2, Univ, Arbeitsergebnisse, Universität
Bayreuth, Abt. Mikrometeorologie, 26, 1–45, 2004. a
McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, a., Riensche, B.,
Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., and
Hastings, S.: A new low-power, open-path instrument for measuring methane
flux by eddy covariance, Appl. Phys. B, 102, 391–405, https://doi.org/10.1007/s00340-010-4307-0, 2011. a
Menzer, O., Meiring, W., Kyriakidis, P. C., and McFadden, J. P.: Annual sums
of carbon dioxide exchange over a heterogeneous urban landscape through
machine learning based gap-filling, Atmos. Environ., 101, 312–327, https://doi.org/10.1016/j.atmosenv.2014.11.006, 2015. a
Moffat, A. M.: A new methodology to interpret high resolution measurements of
net carbon fluxes between terrestrial ecosystems and the atmosphere, PhD
thesis, Friedrich-Schiller-Universität Jena, 2012. a
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D.,
Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232, https://doi.org/10.1016/j.agrformet.2007.08.011, 2007. a
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
detrending, and filtering of eddy covariance time series, Handbook of
Micrometeorology, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2004. a
Murchie, E. H. and Horton, P.: Acclimation of photosynthesis to irradiance and
spectral quality in British plant species: chlorophyll content,
photosynthetic capacity and habitat preference,
Plant Cell Environ.,
20, 438–448, 1997. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P., Cambridge University Press, Cambridge, 2013. a, b
Nakai, T., Van der Molen, M., Gash, J., and Kodama, Y.: Correction of sonic
anemometer angle of attack errors, Agr. Forest Meteorol., 136,
19–30, 2006. a
Nemitz, E., Mannarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S.,
Gielen, B., Grelle, A., Heinesch, B., Herbst, M., Hörtnagl, L., Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D., Meier, P., Merbold, L., Nelson, D., Nicolini, G., Nilsson, O., Peltola, O., Rinne, J., and Zahniser, M.: Standardisation of
eddy-covariance flux measurements of methane and nitrous oxide, Int. Agrophys., 32, 517–549, 2018. a
Neue, H., Wassmann, R., Lantin, R., Alberto, M. C., Aduna, J., and Javellana,
A.: Factors affecting methane emission from rice fields, Atmos. Environ., 30, 1751–1754, 1996. a
Nygren, M. and Kellomäki, S.: Effect of shading on leaf structure and
photosynthesis in young birches, Betula pendula Roth. and B. pubescens
Ehrh, Forest Ecol. Manag., 7, 119–132, 1983. a
Ögren, E.: Convexity of the Photosynthetic Light-Response Curve in
Relation to Intensity and Direction of Light during Growth, Plant
Physiol., 101, 1013–1019, 1993. a
Paffen, B. and Roelofs, J.: Impact of carbon dioxide and ammonium on the growth
of submerged Sphagnum cuspidatum, Aquat. Bot., 40, 61–71, 1991. a
Papale, D. and Valentini, R.: A new assessment of European forests carbon
exchanges by eddy fluxes and artificial neural network spatialization,
Glob. Change Biol., 9, 525–535, https://doi.org/10.1046/j.1365-2486.2003.00609.x,
2003. a, b
Parish, F., Sirin, A., Charman, D., Joosten, H., Minaeva, T., and Silvius, M.:
Assessment on peatlands, biodiversity and climate change, Global Environment
Centre, Kuala Lumpur, 2008. a
Peltola, O., Mammarella, I., Haapanala, S., Burba, G., and Vesala, T.: Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements, Biogeosciences, 10, 3749–3765, https://doi.org/10.5194/bg-10-3749-2013, 2013. a
Peltola, O., Hensen, A., Helfter, C., Belelli Marchesini, L., Bosveld, F. C., van den Bulk, W. C. M., Elbers, J. A., Haapanala, S., Holst, J., Laurila, T., Lindroth, A., Nemitz, E., Röckmann, T., Vermeulen, A. T., and Mammarella, I.: Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment, Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, 2014. a
Pypker, T. G., Moore, P. A., Waddington, J. M., Hribljan, J. A., and Chimner, R. C.: Shifting environmental controls on CH4 fluxes in a sub-boreal peatland, Biogeosciences, 10, 7971–7981, https://doi.org/10.5194/bg-10-7971-2013, 2013. a
Rößger, N., Wille, C., Holl, D., Göckede, M., and Kutzbach, L.: Scaling and balancing carbon dioxide fluxes in a heterogeneous tundra ecosystem of the Lena River Delta, Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, 2019. a
Saarnio, S., Winiwarter, W., and Leitão, J.: Methane release from
wetlands and watercourses in Europe, Atmos. Environ., 43, 1421–1429, https://doi.org/10.1016/j.atmosenv.2008.04.007, 2009. a
Schrier-Uijl, A. P., Kroon, P. S., Leffelaar, P. A., van Huissteden, J. C.,
Berendse, F., and Veenendaal, E. M.: Methane emissions in two drained peat
agro-ecosystems with high and low agricultural intensity, Plant Soil,
329, 509–520, https://doi.org/10.1007/s11104-009-0180-1, 2010. a
Shurpali, N. J., Hyvönen, N. P., Huttunen, J. T., Biasi, C.,
Nykänen, H., Pekkarinen, N., Martikainen, P. J., Hyvonen, N. P., and
Nykanen, H.: Bare soil and reed canary grass ecosystem respiration in peat
extraction sites in Eastern Finland, Tellus B, 60, 200–209,
https://doi.org/10.1111/j.1600-0889.2007.00325.x, 2008. a
Sliva, J.: Renaturierung von industriell abgetorften Hochmooren am Beispiel der
Kendlmühlilzen, PhD thesis, Institut für Landespflege und Botanik
München, 1997. a
Smolders, A. J. P., Tomassen, H. B. M., Pijnappel, H. W., Lamers, L. P. M., and
Roelofs, J. G. M.: Substrate-derived CO2 is important in the development of
Sphagnum spp., New Phytol., 152, 325–332, 2001. a
Strack, M., Kellner, E., and Waddington, J.: Dynamics of biogenic gas bubbles
in peat and their effects on peatland biogeochemistry, Global Biogeochem.
Cy., 19, GB1003, https://doi.org/10.1029/2004GB002330, 2005. a
Suyker, A. E., Verma, S. B., Clement, R. J., and Billesbach, D. P.: Methane
flux in a boreal fen: Season-long measurement by eddy correlation, J.
Geophys. Res.-Atmos., 101, 28637–28647,
https://doi.org/10.1029/96JD02751, 1996. a
Thornley, J. H. M.: Dynamic Model of Leaf Photosynthesis with Acclimation to
Light and Nitrogen, Ann. Bot., 81, 421–430, 1998. a
Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer,
C., Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster, C.,
Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M., Höper,
H., Jurasinski, G., Leiber-Sauheitl, K., Peichl-Brak, M., Roßkopf, N.,
Sommer, M., and Zeitz, J.: High emissions of greenhouse gases from grasslands
on peat and other organic soils, Glob. Change Biol., 22, 4134–4149, 2016. a, b
Tuittila, E. S., Komulainen, V. M., Vasander, H., Nykanen, H., Martikainen,
P. J., and Laine, J.: Methane dynamics of a restored cut-away peatland,
Glob. Change Biol., 6, 569–581, https://doi.org/10.1046/j.1365-2486.2000.00341.x,
2000. a
Tuzson, B., Hiller, R. V., Zeyer, K., Eugster, W., Neftel, A., Ammann, C., and Emmenegger, L.: Field intercomparison of two optical analyzers for CH4 eddy covariance flux measurements, Atmos. Meas. Tech., 3, 1519–1531, https://doi.org/10.5194/amt-3-1519-2010, 2010. a
Verma, S. B., Ullamn, F. G., Billesbach, D., Clement, R. J., and Kim, J.: Eddy
correlation measurements of methane flux in a northern peatland ecosystem,
Bound.-Lay. Meteorol., 58, 289–304, 1992. a
Vernay, A., Balandier, P., Guinard, L., Améglio, T., and Malagoli, P.:
Photosynthesis capacity of Quercus petraea (Matt.) saplings is affected by
Molinia caerulea (L.) under high irradiance, Forest Ecol. Manag.,
376, 107–117, 2016. a
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Tech., 14,
512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. a, b
Vybornova, O.: Effect of re-wetting on greenhouse gas emissions from different
microtopes in a cut-over bog in Northern Germany, PhD thesis,
Universität Hamburg, Hamburg,
available at: https://ediss.sub.uni-hamburg.de/volltexte/2017/8618/pdf/Dissertation.pdf (2 November 2019), 2017. a
Vybornova, O., van Asperen, H., Pfeiffer, E., and Kutzbach, L.: High N2O and
CO2 emissions from bare peat dams reduce the climate mitigation potential
of bog rewetting practices, Mires Peat, 24, 4, https://doi.org/10.19189/MaP.2017.SNPG.304, 2019. a, b, c, d
Waddington, J. M., Warner, K. D., and Kennedy, G. W.: Cutover peatlands: A
persistent source of atmospheric CO2, Global Biogeochem. Cy., 16, 1–7,
https://doi.org/10.1029/2001GB001398, 2002. a
Whalen, S. C.: Biogeochemistry of methane exchange between natural wetlands
and the atmosphere, Environ. Eng. Sci., 22, 73–94, https://doi.org/10.1089/ees.2005.22.73, 2005. a, b
Wilson, D., Alm, J., Laine, J., Byrne, K. a., Farrell, E. P., and Tuittila,
E. S.: Rewetting of cutaway peatlands: Are we re-creating hot spots of
methane emissions?, Restor. Ecol., 17, 796–806,
https://doi.org/10.1111/j.1526-100X.2008.00416.x, 2009. a, b, c
Wilson, D., Blain, D., Couwenberg, J., Evans, C., Murdiyarso, D., Page, S.,
Renou-Wilson, F., Rieley, J., Sirin, A., Strack, M., and Tuittila, E.-S.: Greenhouse gas
emission factors associated with rewetting of organic soils, Mires Peat,
17, 4, https://doi.org/10.19189/MaP.2016.OMB.222, 2016a. a, b, c
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, l13402, https://doi.org/10.1029/2010GL043584, 2010. a
Zahniser, M. S., Nelson, D. D., Mcmanus, J. B., and Kebabian, P. L.:
Measurement of trace gas fluxes using tunable diode laser spectroscopy,
Philosohical Transactions: Physical Sciences and Engineering, 351, 371–382, 1995. a
Zeltner, U.: Schutzgebiets- und Biotopverbundsystem Schleswig-Holstein-
regionale Ebene – (Gebiete von überörtlicher Bedeutung für
den Arten- und Biotopschutz); Fachbeitrag zur Landschaftsrahmenplanung;
Spezieller Teil; Planungsraum I – Teilbereich Kreis Pinneberg, Landesamt
für Natur und Umwelt des Landes Schleswig-Holstein, Flintbek, 2003. a
Zheng, Y., Zhao, Z., Zhou, J.-J., and Zhou, H.: Evaluations of different leaf
and canopy photosynthesis models: a case study with black locust (Robinia
pseudoacacia) plantations on a loess plateau, Pak. J. Bot., 44,
531–539, 2012. a
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been...
Altmetrics
Final-revised paper
Preprint