Articles | Volume 17, issue 18
https://doi.org/10.5194/bg-17-4591-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4591-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget
Junrong Zha
Department of Earth, Atmospheric, and Planetary Sciences and Department of
Agronomy, Purdue University, West Lafayette, IN 47907 USA
Department of Earth, Atmospheric, and Planetary Sciences and Department of
Agronomy, Purdue University, West Lafayette, IN 47907 USA
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Cited articles
Allison, E. H., Perry, A. L., Badjeck, M.-C., Neil Adger, W., Brown, K.,
Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L.,
and Dulvy, N. K.: Vulnerability of national economies to the impacts of
climate change on fisheries, Fish Fish., 10, 173–196,
https://doi.org/10.1111/j.1467-2979.2008.00310.x, 2009.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat. Geosci., 3,
336–340, https://doi.org/10.1038/ngeo846, 2010.
Balser, T. C., Kinzig, A. P., and Firestone, M. K.: Linking soil microbial
communities and ecosystem functioning, The functional consequences of
biodiversity: Empirical progress and theoretical extensions, Biogeochemistry, 73, 265–293, 2002.
Billings, W. D., Peterson, K. M., Shaver, G. R., and Trent, A. W.: Root Growth,
Respiration, and Carbon Dioxide Evolution in an Arctic Tundra Soil, Arctic
Alpine Res., 9, 129–137, https://doi.org/10.1080/00040851.1977.12003908, 1977.
Blagodatskaya, E. and Kuzyakov, Y.: Active microorganisms in soil: Critical
review of estimation criteria and approaches, Soil Biol. Biochem.,
67, 192–211, https://doi.org/10.1016/j.soilbio.2013.08.024, 2013.
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I., Blagodatsky,
S., and Kuzyakov, Y.: Microbial interactions affect sources of priming
induced by cellulose, Soil Biol. Biochem., 74, 39–49,
https://doi.org/10.1016/j.soilbio.2014.02.017, 2014.
Blagodatsky, S., Grote, R., Kiese, R., Werner, C., and Butterbach-Bahl, K.:
Modelling of microbial carbon and nitrogen turnover in soil with special
emphasis on N-trace gases emission, Plant Soil, 346, 297–330,
https://doi.org/10.1007/s11104-011-0821-z, 2011.
Blagodatsky, S. A., Heinemeyer, O., and Richter, J.: Estimating the active
and total soil microbial biomass by kinetic respiration analysis, Biol.
Fertil. Soils, 32, 73–81, 2000.
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the
global soil respiration record, Nature, 464, 579–582, https://doi.org/10.1038/nature08930,
2010.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature,
560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018.
Bouskill, N. J., Tang, J., Riley, W. J., and Brodie, E. L.: Trait-based
representation of biological nitrification: model development, testing, and
predicted community composition, Front. Microb., 3, 364,
https://doi.org/10.3389/fmicb.2012.00364, 2012.
Callaghan, T., Björn, L. O., Chernov, Y., Chapin, T., Christensen, T.
R., Huntley, B., Ims, R., Jolly, D., Jonasson, S., Matveyeva, N., Panikov,
N., Oechel, W., and Shaver, G.: Arctic tundra and polar desert ecosystems,
Arctic climate impact assessment, Cambridge University Press, New York, 243–352, 2005.
Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J.
A. M., Cregger, M. A., Moorhead, L. C., and Patterson, C. M.: Direct and
indirect effects of climate change on soil microbial and soil
microbial-plant interactions: What lies ahead?, Ecosphere, 6, 130,
https://doi.org/10.1890/es15-00217.1, 2015.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M.,
Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton,
W. J., Megan Steinweg, J., Wallenstein, M. D., Martin Wetterstedt, J.
Å., and Bradford, M. A.: Temperature and soil organic matter
decomposition rates – synthesis of current knowledge and a way forward,
Glob. Change Biol., 17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x,
2011.
Coursolle, C., Margolis, H. A., Barr, A. G., Black, T. A., Amiro, B. D.,
McCaughey, J. H., Flanagan, L. B., Lafleur, P. M., Roulet, N. T., Bourque,
C. P. A., Arain, M. A., Wofsy, S. C., Dunn, A., Morgenstern, K., Orchansky,
A. L., Bernier, P. Y., Chen, J. M., Kidston, J., Saigusa, N., and Hedstrom,
N.: Late-summer carbon fluxes from Canadian forests and peatlands along an
east–west continental transect, Can. J. Forest Res., 36,
783–800, https://doi.org/10.1139/x05-270, 2006.
Davidson, E. A., Trumbore, S. E., and Amundson, R.: Biogeochemistry: soil
warming and organic carbon content, Nature, 408, 789–790, https://doi.org/10.1038/35048672, 2000.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of
respiration in terrestrial ecosystems: moving beyond Q10, Glob. Change Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis-Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Glob. Change Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global
optimization method for calibrating watershed models, J. Hydrol.,
158, 265–284, 1994.
Evans, S. E. and Wallenstein, M. D.: Soil microbial community response to
drying and rewetting stress: does historical precipitation regime matter?,
Biogeochemistry, 109, 101–116, https://doi.org/10.1007/s10533-011-9638-3, 2011.
Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S., and Jackson,
R. B.: Environmental controls on the landscape – scale biogeography of
stream bacterial communities, Ecology, 88, 2162–2173, 2007.
Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response
of soil microbial efficiency and its feedback to climate, Nat. Clim. Change, 3, 395–398, https://doi.org/10.1038/nclimate1796, 2013.
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The
Michaelis-Menten kinetics of soil extracellular enzymes in response to
temperature: a cross-latitudinal study, Glob. Change Biol., 18,
1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012.
Gilmanov, T. G., Tieszen, L. L., Wylie, B. K., Flanagan, L. B., Frank, A.
B., Haferkamp, M. R., Meyers, T. P., and Morgan, J. A.: Integration of
CO2flux and remotely-sensed data for primary production and ecosystem
respiration analyses in the Northern Great Plains: potential for
quantitative spatial extrapolation, Glob. Ecol. Biogeogr., 14,
271–292, https://doi.org/10.1111/j.1466-822X.2005.00151.x, 2005.
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D.,
Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake
and storage following moderate disturbancein a Great Lakes forest,
Ecol. Appl., 23, 1202–1215, 2013.
Goulden, M. L., Winston, G. C., McMillan, A. M. S., Litvak, M. E., Read, E.
L., Rocha, A. V., and Rob Elliot, J.: An eddy covariance mesonet to measure
the effect of forest age on land-atmosphere exchange, Glob. Change Biol.,
12, 2146–2162, https://doi.org/10.1111/j.1365-2486.2006.01251.x, 2006.
Graham, E. B., Wieder, W. R., Leff, J. W., Weintraub, S. R., Townsend, A.
R., Cleveland, C. C., Philippot, L., and Nemergut, D. R.: Do we need to
understand microbial communities to predict ecosystem function? A comparison
of statistical models of nitrogen cycling processes, Soil Biol. Biochem., 68, 279–282, https://doi.org/10.1016/j.soilbio.2013.08.023, 2014.
Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann,
M., Yannarell, A., Beman, J. M., Abell, G., Philippot, L., Prosser, J.,
Foulquier, A., Yuste, J. C., Glanville, H. C., Jones, D. L., Angel, R.,
Salminen, J., Newton, R. J., Burgmann, H., Ingram, L. J., Hamer, U.,
Siljanen, H. M., Peltoniemi, K., Potthast, K., Baneras, L., Hartmann, M.,
Banerjee, S., Yu, R. Q., Nogaro, G., Richter, A., Koranda, M., Castle, S.
C., Goberna, M., Song, B., Chatterjee, A., Nunes, O. C., Lopes, A. R., Cao,
Y., Kaisermann, A., Hallin, S., Strickland, M. S., Garcia-Pausas, J., Barba,
J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A.,
Lindstrom, E. S., Basiliko, N., and Nemergut, D. R.: Microbes as Engines of
Ecosystem Function: When Does Community Structure Enhance Predictions of
Ecosystem Processes?, Front. Microb., 7, 214,
https://doi.org/10.3389/fmicb.2016.00214, 2016.
Griffis, T. J., Lee, X., Baker, J. M., Billmark, K., Schultz, N., Erickson,
M., Zhang, X., Fassbinder, J., Xiao, W., and Hu, N.: Oxygen isotope
composition of evapotranspiration and its relation to C4photosynthetic
discrimination, J. Geophys. Res., 116, https://doi.org/10.1029/2010jg001514,
2011.
Hagerty, S. B., van Groenigen, K. J., Allison, S. D., Hungate, B. A.,
Schwartz, E., Koch, G. W., Kolka, R. K., and Dijkstra, P.: Accelerated
microbial turnover but constant growth efficiency with warming in soil,
Nat. Clim. Change, 4, 903–906, https://doi.org/10.1038/nclimate2361, 2014.
Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating root and soil
microbial contributions to soil respiration: A review of methods and
observations, Biogeochemistry, 48, 115–146, 2000.
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M.:
Global temperature change, P. Natl. Acad. Sci. USA, 103, 14288–14293, https://doi.org/10.1073/pnas.0606291103,
2006.
Harder, W. and Dijkhuizen, L.: Physiological responses to nutrient
limitation, Annu. Rev. Microb., 37, 1–23, 1983.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.
He, Y., Yang, J., Zhuang, Q., Harden, J. W., McGuire, A. D., Liu, Y., Wang,
G., and Gu, L.: Incorporating microbial dormancy dynamics into soil
decomposition models to improve quantification of soil carbon dynamics of
northern temperate forests, J. Geophys. Res.-Biogeo.,
120, 2596–2611, https://doi.org/10.1002/2015jg003130, 2015.
Hiller, R. V., McFadden, J. P., and Kljun, N.: Interpreting CO2 Fluxes Over
a Suburban Lawn: The Influence of Traffic Emissions, Bound.-Lay. Meteorol., 138, 215–230, https://doi.org/10.1007/s10546-010-9558-0, 2010.
Houghton, R. A.: Balancing the Global Carbon Budget, Annu. Rev. Earth
Pl. Sc., 35, 313–347, https://doi.org/10.1146/annurev.earth.35.031306.140057,
2007.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V.,
Hollinger, D. Y., and Smith, M. L.: Refining light-use efficiency
calculations for a deciduous forest canopy using simultaneous tower-based
carbon flux and radiometric measurements, Agr. Forest
Meteorol., 143, 64–79, https://doi.org/10.1016/j.agrformet.2006.11.008, 2007.
Kaiser, C., Franklin, O., Dieckmann, U., and Richter, A.: Microbial
community dynamics alleviate stoichiometric constraints during litter decay,
Ecol. Lett., 17, 680–690, https://doi.org/10.1111/ele.12269, 2014.
Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-term
sensitivity of soil carbon turnover to warming, Nature, 433, 298–301, https://doi.org/10.1038/nature03226, 2005.
Lawrence, C. R., Neff, J. C., and Schimel, J. P.: Does adding microbial
mechanisms of decomposition improve soil organic matter models?, A comparison
of four models using data from a pulsed rewetting experiment, Soil Biol. Biochem., 41, 1923–1934, https://doi.org/10.1016/j.soilbio.2009.06.016, 2009.
Lennon, J. T. and Jones, S. E.: Microbial seed banks: the ecological and
evolutionary implications of dormancy, Nature reviews, Microbiology, 9,
119–130, 10.1038/nrmicro2504, 2011.
Lloyd, A. H., Rupp, T. S., Fastie, C. L., and Starfield, A. M.: Patterns and
dynamics of treeline advance on the Seward Peninsula, Alaska, J. Geophys. Res., 108, 8161, https://doi.org/10.1029/2001jd000852, 2002.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Agren, G. I.:
Environmental and stoichiometric controls on microbial carbon-use efficiency
in soils, New Phytol., 196, 79–91, https://doi.org/10.1111/j.1469-8137.2012.04225.x,
2012.
McEwing, K. R., Fisher, J. P., and Zona, D.: Environmental and vegetation
controls on the spatial variability of CH4 emission from wet-sedge and
tussock tundra ecosystems in the Arctic, Plant Soil, 388, 37–52,
https://doi.org/10.1007/s11104-014-2377-1, 2015.
McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A.
L., III, B. M., and Vorosmarty, C. J.: Interactions between carbon and
nitrogen dynamics in estimating net primary productivity for potential
vegetation in North America, Global Biogeochem. Cy., 6, 101–124, 1992.
McGuire, A. D., Melillo, J. M., Kicklighter, D. W., and Joyce, L. A.:
Equilibrium responses of soil carbon to climate change: Empirical and
process-based estimates, J. Biogeogr., 22, 785–796, 1995.
McGuire, A. D. and Hobbie, J. E.: Global climate change and the equilibrium
responses of carbon storage in arctic and subarctic regions, in: Modeling the
Arctic system: A workshop report on the state of modeling in the Arctic
System Science program, 53–54, 1997.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change,
Ecol. Monogr., 79, 523–555, 2009.
McGuire, K. L. and Treseder, K. K.: Microbial communities and their
relevance for ecosystem models: Decomposition as a case study, Soil Biol. Biochem., 42, 529–535, https://doi.org/10.1016/j.soilbio.2009.11.016, 2010.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty,
C. J., and Schloss, A. L.: Global climate change and terrestrial net primary
production, Nature, 363, 234–240,
https://doi.org/10.1038/363234a0, 1993.
Merbold, L., Kutsch, W. L., Corradi, C., Kolle, O., Rebmann, C., Stoy, P.
C., Zimov, S. A., and Schulze, E. D.: Artificial drainage and associated
carbon fluxes (CO2∕CH4) in a tundra ecosystem, Glob. Change Biol., 15,
2599–2614, https://doi.org/10.1111/j.1365-2486.2009.01962.x, 2009.
Moorhead, D. L. and Sinsabaugh, R. L.: A theoretical model of litter decay
and microbial interaction, Ecol. Monogr., 76, 151–174, 2006.
Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhori, A. A.
M.: Annual patterns and budget of CO2flux in an Arctic tussock tundra
ecosystem, J. Geophys. Res.-Biogeo., 119, 323–339,
https://doi.org/10.1002/2013jg002431, 2014.
Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes,
R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E.
G., Kamnalrut, A., and Kinyamario, J. I.: Observations and modeling of
biomass and soil organic matter dynamics for the grassland biome worldwide,
Global Biogeochem. Cy., 7, 785–809, 1993.
Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W.,
Steudler, P. A., Peterson, B. J., Grace, A. L., Moore, B., and Vorosmary,
C. J.: Potential net primary productivity in South America: application of a
global model, Ecol. Appl., 1, 399–429,
https://doi.org/10.2307/1941899, 1991.
Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y.,
Ollinger, S. V., and Smith, M. L.: Use of digital webcam images to track
spring green-up in a deciduous broadleaf forest, Oecologia, 152, 323–334,
https://doi.org/10.1007/s00442-006-0657-z, 2007.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem
processes for regional applications I. Hydrologic balance, canopy gas
exchange and primary production processes, Ecol. Modell., 42,
125–154, 1988.
Salazar, A., Sulman, B. N., and Dukes, J. S.: Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress, Soil Biol. Biochem., 116, 237–244, https://doi.org/10.1016/j.soilbio.2017.10.017, 2018.
Schimel, D. S.: Terrestrial ecosystems and the carbon cycle, Glob. Change Biol., 1, 77–91, 1995.
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P.,
Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell,
J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein,
P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., III, B. M.,
Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R.,
Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent
patterns and mechanisms of carbon exchange by terrestrial ecosystems,
Nature, 414, 169–172, https://doi.org/10.1038/3510250, 2001.
Schimel, J.: Microbes and global carbon, Nat. Clim. Change, 3, 867–868,
https://doi.org/10.1038/nclimate2015, 2013.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity
on microbial carbon and nitrogen limitation in soil: a theoretical model,
Soil Biol. Biochem., 35, 549–563, https://doi.org/10.1016/s0038-0717(03)00015-4,
2003.
Schimel, J. P. and Schaeffer, S. M.: Microbial control over carbon cycling
in soil, Front. Microb., 3, 348, https://doi.org/10.3389/fmicb.2012.00348, 2012.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A.,
Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence
of soil organic matter as an ecosystem property, Nature, 478, 49–56,
https://doi.org/10.1038/nature10386, 2011.
Stolpovsky, K., Martinez-Lavanchy, P., Heipieper, H. J., Van Cappellen, P.,
and Thullner, M.: Incorporating dormancy in dynamic microbial community
models, Ecol. Modell., 222, 3092–3102,
https://doi.org/10.1016/j.ecolmodel.2011.07.006, 2011.
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F.,
Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K.,
Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G.,
Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni,
R.: Remote sensing of vegetation and land-cover change in Arctic Tundra
Ecosystems, Remote Sens. Environ., 89, 281–308,
https://doi.org/10.1016/j.rse.2003.10.018, 2004.
Strickland, M. S., Lauber, C., Fierer, N., and Bradford, M. A.: Testing the
functional signi?canceof microbial community composition, Ecology, 90,
441–451, 2009.
Tang, J. and Zhuang, Q.: Equifinality in parameterization of process-based
biogeochemistry models: A significant uncertainty source to the estimation
of regional carbon dynamics, J. Geophys. Res., 113, G04010,
https://doi.org/10.1029/2008JG000757, 2008.
Tang, J. and Zhuang, Q.: A global sensitivity analysis and Bayesian
inference framework for improving the parameter estimation and prediction of
a process-based Terrestrial Ecosystem Model, J. Geophys. Res., 114, D15303,
https://doi.org/10.1029/2009JD011724, 2009.
Tang, J. and Riley, W. J.: Weaker soil carbon–climate feedbacks resulting
from microbial and abiotic interactions, Nat. Clim. Change, 5, 56–60,
https://doi.org/10.1038/nclimate2438, 2014.
Tape, K. E. N., Sturm, M., and Racine, C.: The evidence for shrub expansion
in Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702,
https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008gb003327, 2009.
Thullner, M., Van Cappellen, P., and Regnier, P.: Modeling the impact of
microbial activity on redox dynamics in porous media, Geochim.
Cosmochim. Ac., 69, 5005–5019, https://doi.org/10.1016/j.gca.2005.04.026, 2005.
Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M., and
Allison, S. D.: A framework for representing microbial decomposition in
coupled climate models, Biogeochemistry, 109, 19–33,
https://doi.org/10.1007/s10533-011-9635-6, 2011.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Treseder, K. K., Balser, T. C., Bradford, M. A., Brodie, E. L., Dubinsky, E.
A., Eviner, V. T., Hofmockel, K. S., Lennon, J. T., Levine, U. Y.,
MacGregor, B. J., Pett-Ridge, J., and Waldrop, M. P.: Integrating microbial
ecology into ecosystem models: challenges and priorities, Biogeochemistry,
109, 7–18, https://doi.org/10.1007/s10533-011-9636-5, 2011.
Wang, G., Mayes, M. A., Gu, L., and Schadt, C. W.: Representation of
Dormant and Active Microbial Dynamics for Ecosystem Modeling, Public Library
of Science, 9, e89252, https://doi.org/10.1371/journal.pone.0089252.g001, 2014.
Wang, G., Jagadamma, S., Mayes, M. A., Schadt, C. W., Steinweg, J. M., Gu,
L., and Post, W. M.: Microbial dormancy improves development and
experimental validation of ecosystem model, ISME J., 9, 226–237,
https://doi.org/10.1038/ismej.2014.120, 2015.
Wang, W., Feng, J., and Oikawa, T.: Contribution of Root and Microbial Respiration
to Soil CO2 Efflux and Their Environmental Controls in a Humid Temperate
Grassland of Japan, Pedosphere, 19, 31–39, 2009.
Werf, H. V. D. and Verstraete, W.: Estimation of active soil microbial
biomass by mathematical analysis of respiration curves: relation to
conventional estimation of total biomass, Soil Biol. Biochem., 19,
267–271, 1987.
White, A., Cannell, M. G. R., and Friend, A. D.: The high-latitude
terrestrial carbon sink: a model analysis Glob. Change Biol., 6, 227–245,
2000.
Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., Hopkins, F., Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang, Y. P., Xia, J., and Xu, X.: Explicitly representing soil microbial processes in Earth system models, Global Biogeochem. Cy., 29, 1782–1800, https://doi.org/10.1002/2015GB005188, 2015.
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon
projections are improved by modelling microbial processes, Nat. Clim. Change, 3, 909–912, https://doi.org/10.1038/nclimate1951, 2013.
Xu, X., Schimel, J. P., Thornton, P. E., Song, X., Yuan, F., and Goswami,
S.: Substrate and environmental controls on microbial assimilation of soil
organic carbon: a framework for Earth system models, Ecol. Lett., 17,
547–555, https://doi.org/10.1111/ele.12254, 2014.
Zha, J. and Zhuang, Q.: Microbial decomposition processes and vulnerable arctic soil organic carbon in the 21st century, Biogeosciences, 15, 5621–5634, https://doi.org/10.5194/bg-15-5621-2018, 2018.
Zhou, L., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., and
Myneni, R. B.: Variations in northern vegetation activity inferred from
satellite data of vegetation index during 1981 to 1999, J. Geophys. Res.-Atmos., 106, 20069–20083, https://doi.org/10.1029/2000jd000115,
2001.
Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a
permafrost model into a large-scale ecosystem model: Evaluation of temporal
and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res.:-Atmos., 106, 33649–33670, https://doi.org/10.1029/2001jd900151,
2001.
Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V.
E., and Yarie, J.: Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska, J. Geophys. Res., 108, FFR 3-1-FFR-3-26, https://doi.org/10.1029/2001jd001244, 2002.
Zhuang, Q., He, J., Lu, Y., Ji, L., Xiao, J., and Luo, T.: Carbon dynamics
of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An
analysis with a process-based biogeochemical model, Glob. Ecol. Biogeogr., 19, 649–662, https://doi.org/10.1111/j.1466-8238.2010.00559.x, 2010.
Zhuang, Q., Zhu, X., He, Y., Prigent, C., Melillo, J. M., David McGuire, A.,
Prinn, R. G., and Kicklighter, D. W.: Influence of changes in wetland
inundation extent on net fluxes of carbon dioxide and methane in northern
high latitudes from 1993 to 2004, Environ. Res. Lett., 10,
095009, https://doi.org/10.1088/1748-9326/10/9/095009, 2015.
Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J.,
Kicklighter, D. W., Myneni, R. B., Dong, J., Romanovsky, V. E., Harden, J.,
and Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of
the Northern Hemisphere during the 20th century: a modeling analysis of the
influences of soil thermal dynamics, Tellus B, 55, 751–776, https://doi.org/10.3402/tellusb.v55i3.16368, 2016.
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model...
Altmetrics
Final-revised paper
Preprint