Articles | Volume 17, issue 20
https://doi.org/10.5194/bg-17-5183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evapotranspiration over agroforestry sites in Germany
Christian Markwitz
CORRESPONDING AUTHOR
Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Alexander Knohl
Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
Lukas Siebicke
Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Related authors
José Ángel Callejas-Rodelas, Justus van Ramshorst, Alexander Knohl, Lukas Siebicke, Dietmar Fellert, Marek Peksa, Dirk Böttger, and Christian Markwitz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-440, https://doi.org/10.5194/essd-2025-440, 2025
Preprint under review for ESSD
Short summary
Short summary
A dataset expanding around seventy eight site-years was compiled, harmonized and presented. The dataset consisted in eddy covariance and meteorological measurements over four pairs of agroforestry and open cropland systems, and one pair of agroforestry and open grassland system. This is the first ever dataset compiling this type of data over temperate agroforestry systems.
José Ángel Callejas-Rodelas, Alexander Knohl, Ivan Mammarella, Timo Vesala, Olli Peltola, and Christian Markwitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-810, https://doi.org/10.5194/egusphere-2025-810, 2025
Short summary
Short summary
The spatial variability of CO2 and water vapour exchanges with the atmosphere was quantified above an agroforestry system, and further compared to a monocropping system, using a total of four eddy covariance stations. The variability of fluxes within the agroforestry was found to be as large as the variability between agroforestry and monocropping, induced by the heterogeneity of the site, which highlights the need for replicated measurements above such ecosystems.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
José Ángel Callejas-Rodelas, Justus van Ramshorst, Alexander Knohl, Lukas Siebicke, Dietmar Fellert, Marek Peksa, Dirk Böttger, and Christian Markwitz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-440, https://doi.org/10.5194/essd-2025-440, 2025
Preprint under review for ESSD
Short summary
Short summary
A dataset expanding around seventy eight site-years was compiled, harmonized and presented. The dataset consisted in eddy covariance and meteorological measurements over four pairs of agroforestry and open cropland systems, and one pair of agroforestry and open grassland system. This is the first ever dataset compiling this type of data over temperate agroforestry systems.
Biplob Dey, Toke Due Sjøgren, Peeyush Khare, Georgios I. Gkatzelis, Yizhen Wu, Sindhu Vasireddy, Martin Schultz, Alexander Knohl, Riikka Rinnan, Thorsten Hohaus, and Eva Y. Pfannerstill
EGUsphere, https://doi.org/10.5194/egusphere-2025-3779, https://doi.org/10.5194/egusphere-2025-3779, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Trees release reactive gases that affect air quality and climate. We studied how these emissions from European beech and English oak change under realistic scenarios of combined and single heat and ozone stress. Heat increased emissions, while ozone reduced most of them. When stressors were combined, the effects were complex and varied by species. Machine learning identified key stress-related compounds. Our findings show that future tree stress may alter air quality and climate interactions.
Beatriz P. Cazorla, Ana Meijide, Javier Cabello, Julio Peñas, Rodrigo Vargas, Javier Martínez-López, Leonardo Montagnani, Alexander Knohl, Lukas Siebicke, Benimiano Gioli, Jiří Dušek, Ladislav Šigut, Andreas Ibrom, Georg Wohlfahrt, Eugénie Paul-Limoges, Kathrin Fuchs, Antonio Manco, Marian Pavelka, Lutz Merbold, Lukas Hörtnagl, Pierpaolo Duce, Ignacio Goded, Kim Pilegaard, and Domingo Alcaraz-Segura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2835, https://doi.org/10.5194/egusphere-2025-2835, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We assess whether satellite-derived Ecosystem Functional Types (EFTs) reflect spatial heterogeneity in carbon fluxes across Europe. Using Eddy Covariance data from 50 sites, we show that EFTs capture distinct Net Ecosystem Exchange dynamics and perform slightly better than PFTs. EFTs offer a scalable, annually updatable approach to monitor ecosystem functioning and its interannual variability.
Thorge Wintz, Alexander Röll, Gustavo Brant Paterno, Florian Ellsäßer, Delphine Clara Zemp, Hendrayanto, Bambang Irawan, Alexander Knohl, Holger Kreft, and Dirk Hölscher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2596, https://doi.org/10.5194/egusphere-2025-2596, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We investigated how the size and diversity of tree patches in Indonesian oil palm landscapes influence the movement of water to the atmosphere and local cooling. Our study shows that larger tree patches increase cooling mainly by supporting greater plant diversity and more complex vegetation structure. These findings suggest that expanding and diversifying tree patches can help manage microclimate and water cycling in agricultural areas.
José Ángel Callejas-Rodelas, Alexander Knohl, Ivan Mammarella, Timo Vesala, Olli Peltola, and Christian Markwitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-810, https://doi.org/10.5194/egusphere-2025-810, 2025
Short summary
Short summary
The spatial variability of CO2 and water vapour exchanges with the atmosphere was quantified above an agroforestry system, and further compared to a monocropping system, using a total of four eddy covariance stations. The variability of fluxes within the agroforestry was found to be as large as the variability between agroforestry and monocropping, induced by the heterogeneity of the site, which highlights the need for replicated measurements above such ecosystems.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 29–40, https://doi.org/10.5194/amt-16-29-2023, https://doi.org/10.5194/amt-16-29-2023, 2023
Short summary
Short summary
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with slow-response gas analyzers. TEA is formulated assuming ideal conditions with a zero mean vertical wind velocity during the averaging interval. This core assumption is rarely valid under field conditions. Here, we extend the TEA equation to accommodate nonideal conditions. The new equation allows constraining the systematic error term in the measured fluxes and the possibility to minimize or remove it.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, https://doi.org/10.5194/amt-16-41-2023, 2023
Short summary
Short summary
A new micrometeorological method to measure atmospheric exchange is proposed, and a prototype sampler is evaluated. The new method, called short-time eddy accumulation, is a variant of the eddy accumulation method, which is suited for use with slow gas analyzers. The new method enables adaptive time-varying accumulation intervals, which brings many advantages to flux measurements such as an improved dynamic range and the ability to run eddy accumulation in a continuous flow-through mode.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Jelka Braden-Behrens, Lukas Siebicke, and Alexander Knohl
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-398, https://doi.org/10.5194/bg-2020-398, 2020
Preprint withdrawn
Short summary
Short summary
We use directly measured isotopic compositions and isoforcing values in combination with meteorological data and PBL height information to gain a better understanding of the variability of the isotopic composition of H2Ov. We directly compare the measured changes in isotopic composition with isoforcing-related changes (driven by local evapotranspiration ET). We conclude that it is important to account for PBL height when interpreting isoforcing data.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Amiro, B.: Measuring boreal forest evapotranspiration using the energy balance
residual, J. Hydrol., 366, 112–118, https://doi.org/10.1016/j.jhydrol.2008.12.021,
2009. a
Aubinet, M., Feigenwinter, C., Heinesch, B., Bernhofer, C., Canepa, E.,
Lindroth, A., Montagnani, L., Rebmann, C., Sedlak, P., and Van Gorsel, E.:
Direct advection measurements do not help to solve the night-time CO2
closure problem: Evidence from three different forests, Agr. Forest
Meteorol., 150, 655–664, https://doi.org/10.1016/j.agrformet.2010.01.016, 2010. a
Aylott, M. J., Casella, E., Tubby, I., Street, N. R., Smith, P., and Taylor,
G.: Yield and spatial supply of bioenergy poplar and willow short-rotation
coppice in the UK, New Phytol., 178, 358–370,
https://doi.org/10.1111/j.1469-8137.2008.02396.x, 2008. a, b
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. a, b
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating
carbon dioxide exchange rates of ecosystems: past, present and future, Glob.
Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003. a, b
Beuschel, R., Piepho, H.-P., Joergensen, R. G., and Wachendorf, C.: Similar
spatial patterns of soil quality indicators in three poplar-based
silvo-arable alley cropping systems in Germany, Biol. Fert. Soils, 55, 1–14,
https://doi.org/10.1007/s00374-018-1324-3, 2018. a
Bloemen, J., Fichot, R., Horemans, J. A., Broeckx, L. S., Verlinden, M. S.,
Zenone, T., and Ceulemans, R.: Water use of a multigenotype poplar
short-rotation coppice from tree to stand scale, GCB Bioenergy, 9, 370–384,
https://doi.org/10.1111/gcbb.12345, 2016. a
Boessenkool, B.: Package “rdwd”: Select and Download Climate Data from
“DWD” (German Weather Service), Tech. rep., Potsdam University, Department
of geoecology, available at:
https://cran.r-project.org/web/packages/rdwd/vignettes/rdwd.html (last access: 24 January 2020),
2019. a
Böhm, C., Kanzler, M., and Freese, D.: Wind speed reductions as
influenced by woody hedgerows grown for biomass in short rotation alley
cropping systems in Germany, Agrofor. Syst., 88, 579–591,
https://doi.org/10.1007/s10457-014-9700-y, 2014. a, b
Bonan, G.: Ecological Climatology – Concepts and applications, Cambridge
University Press, Cambridge, UK, 3rd Edn., 2016. a
Budyko, M. I.: Climate and life, Acadamic Press, New York, 1974. a
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile
Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189,
https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971. a
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, KDD′16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. a
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,
Rory Mitchell, Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and
Li, Y.: Package “xgboost” – Extreme Gradient Boosting, available at:
https://xgboost.readthedocs.io/en/latest/ (last access: 24 October 2020), 2019. a, b
Dake, J. M. K.: Evaporative cooling of a body of water, Water Resour. Res.,
8, 1087–1091, https://doi.org/10.1029/WR008i004p01087, 1972. a
Davis, J. E. and Norman, J. M.: 22. Effects of shelter on plant water use,
Agr. Ecosyst. Environ., 22–23, 393–402,
https://doi.org/10.1016/0167-8809(88)90034-5, 1988. a, b
De Stefano, A. and Jacobson, M. G.: Soil carbon sequestration in
agroforestry systems: a meta-analysis, Agrofor. Syst., 92, 285–299,
https://doi.org/10.1007/s10457-017-0147-9, 2018. a
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C.,
Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P.,
Grünwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for defensible annual sums of net ecosystem exchange,
Agr. Forest Meteorol., 107, 43–69, https://doi.org/10.1016/S0168-1923(00)00225-2,
2001. a
Fischer, M., Trnka, M., Kučera, J., Deckmyn, G., Orság, M.,
Sedlák, P., Žalud, Z., and Ceulemans, R.: Evapotranspiration of
a high-density poplar stand in comparison with a reference grass cover in the
Czech-Moravian Highlands, Agr. Forest Meteorol., 181, 43–60,
https://doi.org/10.1016/j.agrformet.2013.07.004, 2013. a, b, c
Fischer, M., Zenone, T., Trnka, M., Orság, M., Montagnani, L., Ward,
E. J., Tripathi, A. M., Hlavinka, P., Seufert, G., Žalud, Z., King,
J. S., and Ceulemans, R.: Water requirements of short rotation poplar
coppice: Experimental and modelling analyses across Europe, Agr. Forest
Meteorol., 250–251, 343–360, https://doi.org/10.1016/j.agrformet.2017.12.079, 2018. a, b
Foken, T.: The Energy Balance Closure Problem: an Overview, Ecol. Appl., 18,
1351–1367, https://doi.org/10.1890/06-0922.1, 2008a. a
Foken, T.: Micrometorology, Vol. 1, Springer-Verlag Berlin Heidelberg,
Bayreuth, https://doi.org/10.1017/CBO9781107415324.004, 2008b. a, b
Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the energy balance closure problem, Atmos. Chem. Phys., 6, 4395–4402, https://doi.org/10.5194/acp-6-4395-2006, 2006. a, b, c
Göbel, L., Corre, M. D., Veldkamp, E., and Schmidt, M.: BonaRes SIGNAL,
Site: Mariensee and Reiffenhausen, soil characteristics, BonaRes Repository,
https://doi.org/10.20387/BonaRes-FQ8B-031J, 2018. a, b
Hill, T., Chocholek, M., and Clement, R.: The case for increasing the
statistical power of eddy covariance ecosystem studies: why, where and how?,
Glob. Change Biol., 23, 2154–2165, https://doi.org/10.1111/gcb.13547, 2017. a
Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance
measurements and its application to physiological models, Tree Physiol., 25,
873–885, https://doi.org/10.1093/treephys/25.7.873, 2005. a, b
Imukova, K., Ingwersen, J., Hevart, M., and Streck, T.: Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method, Biogeosciences, 13, 63–75, https://doi.org/10.5194/bg-13-63-2016, 2016. a
Jacobs, A. F. G., Heusinkveld, B. G., and Holtslag, A. A. M.: Towards Closing
the Surface Energy Budget of a Mid-latitude Grassland, Bound.-Lay. Meteorol.,
126, 125–136, https://doi.org/10.1007/s10546-007-9209-2, 2008. a, b
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.:
Evapotranspiration: a process driving mass transport and energy exchnge in
the soil-plant-atmosphere-climate system, Rev. Geophys., 50, 1–25,
https://doi.org/10.1029/2011RG000366, 2012. a
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015. a, b
Liebethal, C. and Foken, T.: Evaluation of six parameterization approaches for
the ground heat flux, Theor. Appl. Climatol., 88, 43–56,
https://doi.org/10.1007/s00704-005-0234-0, 2007. a
Lindroth, A.: Aerodynamic and canopy resistance of short-rotation forest in
relation to leaf area index and climate, Bound.-Lay. Meteorol., 66,
265–279, https://doi.org/10.1007/BF00705478, 1993. a
Markwitz, C., Knohl, A., and Siebicke, L.: Data set supporting journal
article: Markwitz, C., Knohl, A. and Siebicke, L.: “Evapotranspiration over
agroforestry sites in Germany”, Biogeosciences, 2020, Zenodo,
https://doi.org/10.5281/zenodo.4038399, 2020. a
McNaughton, K. G.: 1. Effects of windbreaks on turbulent transport and
microclimate, Agr. Ecosyst. Environ., 22–23, 17–39,
https://doi.org/10.1016/0167-8809(88)90006-0, 1988. a
Moncrieff, J., Massheder, J., de Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A
system to measure surface fluxes of momentum, sensible heat, water vapour and
carbon dioxide, J. Hydrol., 188–189, 589–611,
https://doi.org/10.1016/S0022-1694(96)03194-0, 1997. a
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965. a
Morhart, C. D., Douglas, G. C., Dupraz, C., Graves, A. R., Nahm, M., Paris, P.,
Sauter, U. H., Sheppard, J., and Spiecker, H.: Alley coppice-a new system
with ancient roots, Ann. For. Sci., 71, 527–542,
https://doi.org/10.1007/s13595-014-0373-5, 2014. a
Nuberg, I. K.: Effect of shelter on temperate crops: A review to define
research for Australian conditions, Agrofor. Syst., 41, 3–34,
https://doi.org/10.1023/A:1006071821948, 1998. a
Oncley, S. P., Foken, T., Vogt, R., Kohsiek, W., DeBruin, H. A., Bernhofer, C.,
Christen, A., van Gorsel, E., Grantz, D., Feigenwinter, C., Lehner, I.,
Liebethal, C., Liu, H., Mauder, M., Pitacco, A., Ribeiro, L., and Weidinger,
T.: The energy balance experiment EBEX-2000. Part I: Overview and energy
balance, Bound.-Lay. Meteorol., 123, 1–28,
https://doi.org/10.1007/s10546-007-9161-1, 2007. a
Quinkenstein, A., Wöllecke, J., Böhm, C., Grünewald, H.,
Freese, D., Schneider, B. U., and Hüttl, R. F.: Ecological benefits of
the alley cropping agroforestry system in sensitive regions of Europe,
Environ. Sci. Policy, 12, 1112–1121, https://doi.org/10.1016/j.envsci.2009.08.008,
2009. a, b, c, d, e
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier,
P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald,
T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A.,
Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta,
F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini,
R.: On the separation of net ecosystem exchange into assimilation and
ecosystem respiration: Review and improved algorithm, Glob. Change Biol.,
11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. a
Schmid, H. P.: Footprint modeling for vegetation atmosphere exchange studies:
A review and perspective, Agr. Forest Meteorol., 113, 159–183,
https://doi.org/10.1016/S0168-1923(02)00107-7, 2002. a
Schmidt-Walter, P., Richter, F., Herbst, M., Schuldt, B., and Lamersdorf,
N. P.: Transpiration and water use strategies of a young and a full-grown
short rotation coppice differing in canopy cover and leaf area, Agr. Forest
Meteorol., 195–196, 165–178, https://doi.org/10.1016/j.agrformet.2014.05.006, 2014. a, b, c
Smith, J., Pearce, B. D., and Wolfe, M. S.: Reconciling productivity with
protection of the environment: Is temperate agroforestry the answer?, Renew.
Agr. Food Syst., 28, 80–92, https://doi.org/10.1017/S1742170511000585, 2013. a
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E.,
Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H.,
Mccaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M.,
Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F.,
and Varlagin, A.: A data-driven analysis of energy balance closure across
FLUXNET research sites: The role of landscape scale heterogeneity, Agr.
Forest Meteorol., 171–172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004,
2013. a, b
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic
Publishers, Heidelberg, Berlin, https://doi.org/10.1007/978-94-009-3027-8, 1989. a, b
Swieter, A., Langhof, M., Lamerre, J., and Greef, J. M.: Long-term yields of
oilseed rape and winter wheat in a short rotation alley cropping agroforestry
system, Agrofor. Syst., 93, 1853–1864, https://doi.org/10.1007/s10457-018-0288-5,
2019. a
Tsonkova, P., Böhm, C., Quinkenstein, A., and Freese, D.: Ecological
benefits provided by alley cropping systems for production of woody biomass
in the temperate region: a review, Agrofor. Syst., 85, 133–152,
https://doi.org/10.1007/s10457-012-9494-8, 2012.
a, b
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers,
T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting
eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol.,
103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000. a
Ward, P. R., Micin, S. F., and Fillery, I. R. P.: Application of eddy
covariance to determine ecosystem-scale carbon balance and evapotranspiration
in an agroforestry system, Agr. Forest Meteorol., 152, 178–188,
https://doi.org/10.1016/j.agrformet.2011.09.016, 2012. a
Webster, R.: Regression and functional relations, Eur. J. Soil Sci., 48,
557–566, https://doi.org/10.1111/j.1365-2389.1997.tb00222.x, 1997. a
Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C.,
Schwalm, C., Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale, D.,
Schymanski, S., and Schaefer, K.: Climate and vegetation controls on the
surface water balance: Synthesis of evapotranspiration measured across a
global network of flux towers, Water Resour. Res., 48, 1–13,
https://doi.org/10.1029/2011WR011586, 2012. a
Zenone, T., Fischer, M., Arriga, N., Broeckx, L. S., Verlinden, M. S.,
Vanbeveren, S., Zona, D., and Ceulemans, R.: Biophysical drivers of the
carbon dioxide, water vapor, and energy exchanges of a short-rotation poplar
coppice, Agr. Forest Meteorol., 209–210, 22–35,
https://doi.org/10.1016/j.agrformet.2015.04.009, 2015. a, b
Short summary
Agroforestry has been shown to alter the microclimate and to lead to higher carbon sequestration above ground and in the soil. In this study, we investigated the impact of agroforestry systems on system-scale evapotranspiration (ET) due to concerns about increased water losses to the atmosphere. Results showed small differences in annual sums of ET over agroforestry relative to monoculture systems, indicating that agroforestry in Germany can be a land use alternative to monoculture agriculture.
Agroforestry has been shown to alter the microclimate and to lead to higher carbon sequestration...
Altmetrics
Final-revised paper
Preprint