Articles | Volume 18, issue 17
https://doi.org/10.5194/bg-18-4937-2021
https://doi.org/10.5194/bg-18-4937-2021
Research article
 | 
10 Sep 2021
Research article |  | 10 Sep 2021

Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change

Andrew H. MacDougall

Related authors

A normalised framework for the Zero Emissions Commitment
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800,https://doi.org/10.5194/egusphere-2025-800, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
flat10MIP: An emissions-driven experiment to diagnose the climate response to positive, zero, and negative CO2 emissions
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356,https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024,https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023,https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023,https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024,https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Representation of the terrestrial carbon cycle in CMIP6
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024,https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary

Cited articles

Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, 1996. a
Avis, C. A.: Simulating the present-day and future distribution of permafrost in the UVic Earth system climate model, PhD thesis, University of Victoria, 2012. a, b
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of high–latitude wetlands in response to permafrost thaw, Nat. Geosci., 4, 444–448, https://doi.org/10.1038/ngeo1160, 2011. a, b
Burke, E. J., Hartley, I. P., and Jones, C. D.: Uncertainties in the global temperature change caused by carbon release from permafrost thawing, The Cryosphere, 6, 1063–1076, https://doi.org/10.5194/tc-6-1063-2012, 2012. a
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Modelling vegetation and the carbon cycle as interactive elements of the climate system, Proceedings of the RMS millennium conference, available at: http://terra.seos.uvic.ca/model/common/HCTN_23.pdf (last access: 8 September 2021), 2001. a
Download
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Share
Altmetrics
Final-revised paper
Preprint