Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1691-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1691-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
David Kienle
Biogeography, University of Bayreuth, Bayreuth, 95440, Germany
Anna Walentowitz
CORRESPONDING AUTHOR
Biogeography, University of Bayreuth, Bayreuth, 95440, Germany
Leyla Sungur
Biogeography, University of Bayreuth, Bayreuth, 95440, Germany
Alessandro Chiarucci
BIOME Lab, Department of Biological, Geological and Environmental
Sciences, Alma Mater Studiorum, University of Bologna, Bologna, 40126, Italy
Severin D. H. Irl
Biogeography and Biodiversity Lab, Institute of Physical Geography,
Goethe University Frankfurt, Frankfurt, 60438, Germany
Anke Jentsch
Disturbance Ecology, University of Bayreuth, Bayreuth, 95440, Germany
Bayreuth Center of Ecology and Environmental Research BayCEER,
University of Bayreuth, Bayreuth, 95440, Germany
Ole R. Vetaas
Department of Geography, University of Bergen, Bergen, 5020, Norway
Richard Field
School of Geography, University of Nottingham, Nottingham, NG7 2RD,
UK
Carl Beierkuhnlein
Biogeography, University of Bayreuth, Bayreuth, 95440, Germany
Bayreuth Center of Ecology and Environmental Research BayCEER,
University of Bayreuth, Bayreuth, 95440, Germany
Geographical Institute Bayreuth, GIB, University of Bayreuth,
Bayreuth, 95440, Germany
Related authors
No articles found.
Oliver Sass, Urte Bauer, Anke Jentsch, and Thomas Deola
EGUsphere, https://doi.org/10.5194/egusphere-2025-6223, https://doi.org/10.5194/egusphere-2025-6223, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Weathering at steep rocky slopes is influenced by rock temperature and moisture which are both modified by plants. We used novel methods to measure rock moisture distribution. Plant cover was found to reduce temperature fluctuations while rock moisture increases under plant cover providing favourable sites for further vegetation establishment. We assume that plant cover reduces temperature weathering but enhances chemical weathering and crack formation through increased moisture.
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024, https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Short summary
The severity and the extent of a large fire event that occurred on the small volcanic island of Stromboli (Aeolian archipelago, Italy) on 25–26 May 2022 were evaluated through remotely sensed data to assess the short-term effect of fire on local plant communities. For the first time, we documented the outstanding after-fire resilience of an invasive alien species, Saccharum biflorum, which is a rhizomatous C4 perennial grass introduced on the island in the nineteenth century.
Cited articles
Abratis, M., Viereck, L., Pfänder, J. A., and Hentschel, R.: Geochemical
composition, petrography and 40Ar/39Ar age of the Heldburg phonolite:
implications on magma mixing and mingling, Int. J. Earth. Sci., 104,
2033–2055, https://doi.org/10.1007/s00531-015-1207-x, 2015.
Ackerman, L., Ulrych, J., Randa, Z., Erban, V., Hegner, E., Magna, T.,
Balogh, K., Frána, J., Milos, L., and Novák, J. K.: Geochemical
characteristics and petrogenesis of phonolites and trachytic rocks from the
České Středohoří Volcanic Complex, the Ohře Rift,
Bohemian Massif, Elsevier Lithos, 224, 256–271,
https://doi.org/10.1016/j.lithos.2015.03.014, 2015.
Alahuhta, J., Toivanen, M., and Hjort, J.: Geodiversity–biodiversity
relationship needs more empirical evidence, Nat. Ecol. Evol., 4, 2–3,
https://doi.org/10.1038/s41559-019-1051-7, 2020.
Atlantis 2021: Biodiversity Data Bank of the Canary Islands, Gobierno de las
Canarias, 2021.
Bailey, J. J., Boyd, D. S., Hjort, J., Lavers, C. P., and Field, R.:
Modelling native and alien vascular plant species richness: at which scales
is geodiversity most relevant?, Glob. Ecol. Biogeogr., 26, 763–776,
https://doi.org/10.1111/geb.12574, 2017.
Bañares, A., Blanca, G., Güemes, J., Moreno, J. C., and Ortiz, S.
(Eds): Atlas y libro rojo de la flora vascular amenazada de España,
Ministerio de Medio Ambiente, Madrid, ISBN 978-84-491-1071-9, 2004.
Barajas-Barbosa, M. P., Weigelt, P., Booregaard, M. K., Keppel, G., and Kreft
H.: Environmental heterogeneity dynamics drive plant diversity on oceanic
islands, J. Biogeogr., 47, 2248–2260, https://doi.org/10.1111/jbi.13925,
2020.
Beierkuhnlein, C., Walentowitz, A., and Welss, W.: FloCan – A revised
checklist for the flora of the Canary Islands, Diversity, 13, 480,
https://doi.org/10.3390/d13100480, 2021.
Brandmeier, M., Kuhlemann, J., Krumrei, I., Kappler, A., and Kubik, P. W.:
New challenges for tafoni research. A new approach to understand processes
and weathering rates, Earth Surf. Proc. Land., 36, 839–852,
https://doi.org/10.1002/esp.2112, 2011.
Carracedo, J. C., Day, S. J., Guillou, H., and Gravestock, P.: Later stages of
volcanic evolution of La Palma, Canary Islands: Rift evolution, giant
landslides, and the genesis of the Caldera de Taburiente, GSA Bull., 111,
755–768, https://doi.org/10.1130/0016-7606(1999)111<0755:LSOVEO>2.3.CO;2, 1999.
Chiarucci, A., Robinson, B. H., Bonini, I., Petit, D., Brooks, R. R., and De
Dominicis, V.: Vegetation of tuscan ultramafic soils in relation to edaphic
and physical factors, Folia Geobot., 33, 113–131,
https://doi.org/10.1007/BF02913340, 1998.
Chiarucci, A.: Vegetation ecology and conservation on Tuscan ultramafic
soils, Bot. Rev., 69, 252–268,
https://doi.org/10.1663/0006-8101(2003)069[0252:VEACOT]2.0.CO;2 , 2003.
Deák, B., Valkó, O., Török, P., Kelemen, A., Bede, A.,
Csathó, A. I., and Tóthmérész, B.: Landscape and habitat
filters jointly drive richness and abundance of specialist plants in
terrestrial habitat islands, Landscape Ecol., 33, 1117–1132,
https://doi.org/10.1007/s10980-018-0660-x, 2018.
Eriksson, O.: Regional dynamics of plants: a review of evidence for remnant,
source-sink and metapopulations, Oikos, 77, 248–258, https://doi.org/10.2307/3546063,
1996.
Eriksson, O.: Functional roles of remnant plant populations in communities
and ecosystems, Glob. Ecol. Biogeogr., 9, 443–449,
https://doi.org/10.1046/j.1365-2699.2000.00215.x , 2000.
Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., Abbondanzi, F.,
Campisi, T., Laurora, A., and Passaglia, E.: Ammonium-exchanged zeolitite
preparation for agricultural uses: from laboratory tests to large-scale
application in ZeoLIFE project prototype, Periodico di Mineralogia, 84, 303–321,
https://doi.org/10.2451/2015PM0015, 2015.
Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, J. A.
F., Guégan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G.,
Oberdorff, T., O'Brian, E. M., and Turner, J. R. G.: Spatial species-richness
gradients across scales: a meta-analysis, J. Biogeogr., 36, 132–147,
https://doi.org/10.1111/j.1365-2699.2008.01963.x, 2009.
Formoso, M. L. L., Retzmann, K., and Valeton, I.: Fractionation of rare earth
elements in weathering profiles on phonolites in the area of Lages, Santa
Catarina, Brazil, Geochim. Brasil., 3, 51–61, 1989.
Garnatje, T., Susanna, A., and Messeguer, R.: Isozyme studies in the genus
Cheirolophus (Asteraceae: Cardueae-Centaureinae) in the Iberian Peninsula, North Africa and the Canary Islands, Pl.
Syst. Evol., 213, 57–70, https://doi.org/10.1007/BF00988908, 1998.
Garcia, M., Fre, F., and Grooms, D.: Petrology of volcanic rocks from Kaula
Island, Hawaii, Contrib. Mineral. Petr., 94, 461–471,
https://doi.org/10.1007/BF00376339, 1986.
Gaston, K. J.: Global patterns in biodiversity, Nature, 405, 220–227,
https://doi.org/10.1038/35012228, 2000.
Giladi, I., May, F., Ristow, M., Jeltsch, F., and Ziv, Y.: Scale-dependent
species–area and species–isolation relationships: a review and a test
study from a fragmented semi-arid agro-ecosystem, J. Biogeogr., 41,
1055–1069, https://doi.org/10.1111/jbi.12299, 2014.
Gillespie, R. G. and Roderick, G. K.: Geology and climate drive
diversification, Nature, 509, 297–298, https://doi.org/10.1038/509297a,
2014.
Gray, M.: Geodiversity, Valuing and Conserving Abiotic Nature, John Wiley
& Sons Ltd, Chichester, ISBN 0-470-84895-2, 2004.
Gray, M.: Comment, Other nature: geodiversity and geosystem services,
Environ. Conserv., 38, 271–274, https://doi.org/10.1017/S0376892911000117,
2011.
Hagos, M., Koeberl, C., and Jourdan, F.: Geochemistry and geochronology of
phonolitic and trachytic source rocks of the Axum obelisks and other stone
artifacts Axum, Ethiopia, Geoheritage, 9, 479–494,
https://doi.org/10.1007/s12371-016-0199-7, 2017.
Hall, K., Lindgren, B. S., and Jackson, R.: Rock albedo and monitoring of
thermal conditions in respect of weathering: some expected and some
unexpected results, Earth Surf. Proc. Land., 30, 801–811,
https://doi.org/10.1002/esp.1189, 2005.
Harrison, S., Safford, H. D., Grace, J. B., Viers, J. H., and Davies, K. F.:
Regional and local species richness in an insular environment: serpentine
plants in California, Ecol. Monogr., 76, 41–56,
https://doi.org/10.1890/05-0910, 2006.
Harrison, S. P. and Rajakaruna, N.: Serpentine: The Evolution and Ecology of
a Model System, University of California Press, Berkeley, ISBN 978-0-520-26835-7, 2011.
Harter, D. E. V., Irl, S. D., Seo, B., Steinbauer, M. J., Gillespie, R.,
Triantis, K. A., Fernández-Palacios, J.-M., and Beierkuhnlein, C.:
Impacts of global climate change on the floras of oceanic
islands–Projections, implications and current knowledge, Perspect. Plant
Ecol. Evol. Syst., 17, 160–183, https://doi.org/10.1016/j.ppees.2015.01.003,
2015.
Hjort, J., Gordon, J. E., Gray, M., and Hunter, M. L.: Why geodiversity
matters in valuing nature's stage, Conserv. Biol., 29, 630–639,
https://doi.org/10.1111/cobi.12510, 2015.
Hortal, J., Triantis, K. A., Meiri, S., Thébault, E., and Sfenthourakis,
S.: Island species richness increases with habitat diversity, Am. Nat., 174,
207–217, https://doi.org/10.1086/645085, 2009.
Hulshof, C. M. and Spasojevic, M. J.: The edaphic control of plant diversity,
Global Ecol. Biogeogr., 29, 1634–1650, https://doi.org/10.1111/geb.13151,
2020.
Irl, S. D. H., Harter, D. E. V., Steinbauer, M. J., Gallego Puyol, D.,
Fernández-Palacios, J. M., Jentsch, A., and Beierkuhnlein, C.: Climate
vs. topography–spatial patterns of plant species diversity and endemism on
a high-elevation island, J. Ecol., 103, 1621–1633, 2015.
Irl, S. D. H., Schweiger, A., Hoffmann, S., Beierkuhnlein, H., Pickel, T.,
and Jentsch, A.: Spatiotemporal dynamics of plant diversity and endemism
during primary succession on an oceanic volcanic island, J. Veg. Sci., 30,
587–598, 2019.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft,
H., Soria-Auza, R. W., Zimmermann, N. E., Linder, P., and Kessler, M.:
Climatologies at high resolution for the Earth land surface areas,
Sci. Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Kazakou, E., Adamidis, G. C., Baker, A. J., Reeves, R. D., Godino, M., and
Dimitrakopoulos, P. G.: Species adaptation in serpentine soils in Lesbos
Island (Greece): metal hyperaccumulation and tolerance, Plant Soil, 332,
369–385, https://doi.org/10.1007/s11104-010-0302-9, 2010.
Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C.,
Mutke, J., and Barthlott, W.: A global assessment of endemism and species
richness across island and mainland regions, P. Natl. Acad. Sci. USA, 106, 9322–9327,
https://doi.org/10.1073/pnas.0810306106, 2009.
Kruckerberg, A. R.: An essay: Geoedaphics and island biogeography for
vascular plants, Aliso, 13, 225–238, 1991.
Lawler, J. J., Ackerly, D. D., Albano, C. M., Anderson, M. G., Dobrowski, S.
Z., Gill, J. L., Heller, N. E., Pressey, R. L., Sanderson, E. W., and Weiss,
S. B.: The theory behind, and the challenges of, conserving nature's stage
in a time of rapid change, Conserv Biol., 29, 618–629,
https://doi.org/10.1111/cobi.12505, 2015.
Laughlin, D. C., Gremer, J. R., Adler, P. B., Mitchell, R. M., and Moore M.,
M.: The net effect of functional traits on fitness, Trends Ecol. Evol., 35, 1037–1047,
https://doi.org/10.1016/j.tree.2020.07.010, 2020.
Liu, J., Möller, M., Gao, L., Poudel, R. C., and Li, D.: Geological and
ecological factors drive cryptic speciation of yews in a biodiversity
hotspot, New Phytol., 199, 1093–1108, https://doi.org/10.1111/nph.12336,
2013.
Liu, J., Matthews, T. J., Zhong, L., Liu, J., Wu, D., and Yu, M.:
Environmental filtering underpins the island species-area relationship in a
subtroppical anthropogenic archipelago, J. Ecol., 108, 424–432,
https://doi.org/10.1111/1365-2745.13272, 2020.
MacArthur, R. H. and Wilson, E. O: The Theory of Island Biogeography,
Monographs in Population Biology no. 1, Princeton University Press,
Princeton, NJ, ISBN 978-1-4008-8137-6, 1967.
Manning, D. A. C.: Mineral sources of potassium for plant nutrition, A
review, Agron. Sustain. Dev., 30, 281–294,
https://doi.org/10.1051/agro/2009023, 2010.
Matthews, T. J., Guilhaumon, F., Triantes, K. A., Borregaard, M. K., and
Whittaker, R. J.: On the form of species-area relationships in habitat
islands and true islands, Global. Ecol. Biogeogr., 25, 847–858,
https://doi.org/10.1111/geb.12269, 2016.
Middlemost, E. A. K.: San Miguel de La Palma – A volcanic island in section,
Bull. Volcanol., 34, 216–239, https://doi.org/10.1007/BF02597787, 1970.
Middlemost, E. A. K.: Evolution of La Palma, Canary Archipelago, Contr.
Mineral. Petrol., 36, 33–48, https://doi.org/10.1007/BF00372833, 1972.
Muer, T., Sauerbier, H., and Cabrera Calixto, F.: Die Farn- und
Blütenpflanzen der Kanarischen Inseln, Margraf Publishers, Weikersheim, ISBN 978-3-8236-1721-1,
2016.
Nockolds, S. R.: Average chemical composition of some igneous rocks, Bull.
Geol. Soc. Am., 65, 1007–1032, 1954.
Nogueira, T. A. R., Miranda, B. G., Jalal, A., Lessa, L. G. F., Filho, M. C.
M. T., Marcante, N. C., Abreu-Junior, C. H., Jani, A. D., Capra, G. F.,
Moreira, A., and Martins, É. D. S.: Nepheline syenite and phonolite as
alternative potassium sources for maize, Agronomy, 11, 1385,
https://doi.org/10.3390/agronomy11071385, 2021.
Pankhurst, M. J., Scarrow, J. H., Barbee, O. A., Hickey, J., Coldwell, B.
C., Rollinson, G., Rodriguez-Losada, J. A., Martín-Lorenzo, A.,
Rodríguez, F., Hernández, W., Hernández, P. A., and Pérez,
N. M.: Petrology of the opening eruptive phase of the 2021 Cumbre Vieja
eruption, La Palma, Canary Islands,
https://doi.org/10.21203/rs.3.rs-963593/v1, 2021.
Paulay, M.: Biodiversity on oceanic islands: Its origin and extinction, Am.
Zool., 34, 134–144, https://doi.org/10.1093/icb/34.1.134, 1994.
Pausas, J. G., Carreras, J., Ferré, A., and Font, X.: Coarse-scale plant
species richness in relation to environmental heterogeneity, J. Veg. Sci.,
14, 661–668, https://doi.org/10.1111/j.1654-1103.2003.tb02198.x, 2003.
Porder, S., Paytan, A., and Vitousek, P. M.: Erosion and landscape development
affect plant nutrient status in the Hawaiian Islands, Oecologia, 142,
440–449, https://doi.org/10.1007/s00442-004-1743-8, 2004.
POWO: Plants of the World Online, Facilitated by the Royal Botanic Gardens,
Kew, 2019: http://www.plantsoftheworldonline.org/, last access: 6 January
2021.
Ramos, L. A., Nolla, A., Korndörfer, G. H., Pereira, H. S., and Camargo,
M. S.: Reatividade de corretivos da acidez e condicionadores de solo em
colunas de lixiviação, Rev. Bras. Cienc. Solo., 30, 849–857, 2006.
Ricketts, T. H.: The matrix matters: Effective isolation in fragmented
landscapes, Am. Nat., 158, 87–99, https://doi.org/10.1086/320863, 2001.
Rosenzweig, M.: Species Diversity in Space and Time, Cambridge: Cambridge
University Press, https://doi.org/10.1017/CBO9780511623387, 1995.
Roqueto de Reis, B.: Rock powders in the soil-plant system: mineralogy and
microbiome response, Master Thesis, University of São Paulo, https://doi.org/10.11606/D.11.2020.tde-31032021-161123, 2021.
Schoen, C., Aumond, J. J., and Stuermer, S. L.: Efficiency of the on-Farm
mycorrhizal inoculant and phonolite rock on growth and nutrition of Schinus
terebinthifolius and Eucalyptus saligna, Rev. Bras. Cien. Solo., 40, 1–14,
https://doi.org/10.1590/18069657rbcs20150440, 2016.
Spürgin, S., Weisenberger, T. B., and Marković, M.: Zeolite-group
minerals in phonolite-hosted deposits of the Kaiserstuhl Volcanic Complex,
Germany, Am. Mineral., 104, 659–670,
https://doi.org/10.2138/am-2019-6831, 2019.
Tavares, L. F., de Carvalho, A. M. X., Camargo, L. G. B., de Fátima
Pereira, S. G., and Cardoso, I. M.: Nutrients release from powder phonolite
mediated by bioweathering actions, Int. J. Recycl. Org. Waste. Agr., 7,
89–98, https://doi.org/10.1007/s40093-018-0194-x, 2018.
Tukiainen, H., Bailey, J. J., Field, R., Kangas, K., and Hjort, J.: Combining
geodiversity with climate and topography to account for threatened species
richness, Conserv. Biol., 31, 364–375, https://doi.org/10.1111/cobi.12799,
2016.
Vitales, D., Garnatje, T., Pellicer, J., Vallès, J., Santos-Guerra, A.,
and Sanmartín, I.: The explosive radiation of Cheirolophus (Asteraceae,
Cardueae) in Macaronesia, BMC Evol. Biol., 14, 1–15,
https://doi.org/10.1186/1471-2148-14-118, 2014a.
Vitales, D., García-Fernández, A., Pellicer, J., Vallè, J.,
Santos-Guerra, A., Cowan, R. S., Fay, M. F., Hidalgo, O., and Garnatje, T.: Key
processes for Cheirolophus (Asteraceae) diversification on oceanic islands inferred from
AFLP Data, Plos ONE, 9, e113207,
https://doi.org/10.1371/journal.pone.0113207, 2014b.
von Fragstein, P., Pertl, W., and Vogtmann, H.: Artificial weathering of
silicate rock powders, Z. Pflanz. Bodenkunde, 151, 141–146,
https://doi.org/10.1002/jpln.19881510214, 1988.
von Wilpert, K. and Lukes, M.: Ecochemical effects of phonolite rock powder,
dolomite and potassium sulfate in a spruce stand on an acidified glacial
loam, Nutr. Cycl. Agroecosys., 65, 115–127,
https://doi.org/10.1023/A:1022103325310, 1998.
Walentowitz, A., Kienle, D., Sungur, L., and Beierkuhnlein, C.: Vegetation
plot and trait data from phonolitic and basaltic rocks on La Palma (Canary
Islands, Spain), [data set], 37, 107229, https://doi.org/10.1016/j.dib.2021.107229, 2021.
Whittaker, R. J. and Fernández-Palacios, J.-M.: Island Biogeography:
Ecology, Evolution, and Conservation, 2 Edn., Oxford University Press,
Oxford, ISBN 0-19-856611-5, 2007.
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of...
Altmetrics
Final-revised paper
Preprint