Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3425-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3425-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
Mhlangabezi Mdutyana
CORRESPONDING AUTHOR
Department of Oceanography, University of Cape Town, Rondebosch, South Africa
Southern Ocean Carbon and Climate Observatory (SOCCO), CSIR, Rosebank, South Africa
Tanya Marshall
Department of Oceanography, University of Cape Town, Rondebosch, South Africa
Department of Geosciences, Princeton University, Princeton, New
Jersey, USA
Department of Ecology and Evolutionary Biology, Yale University, New
Haven, Connecticut, USA
Jessica M. Burger
Department of Oceanography, University of Cape Town, Rondebosch, South Africa
Sandy J. Thomalla
Southern Ocean Carbon and Climate Observatory (SOCCO), CSIR, Rosebank, South Africa
Bess B. Ward
Department of Geosciences, Princeton University, Princeton, New
Jersey, USA
Sarah E. Fawcett
Department of Oceanography, University of Cape Town, Rondebosch, South Africa
Marine and Antarctic Research centre for Innovation and Sustainability (MARIS), University of Cape Town, Rondebosch, Cape Town, South Africa
Related authors
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jenna A. Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
Biogeosciences, 22, 4743–4761, https://doi.org/10.5194/bg-22-4743-2025, https://doi.org/10.5194/bg-22-4743-2025, 2025
Short summary
Short summary
Concurrent sampling of environmental parameters, productivity rates, photopigments, and DNA was used to analyze 24 L estuarine diatom bloom microcosms. Biogeochemical data and an ecological model indicated that the bloom was terminated by grazing. Comparisons to previous studies revealed (1) additional community and diversity complexity using 18S amplicon vs. traditional pigment–based analyses and (2) a potential global productivity–diversity relationship using 18S and carbon transport rates.
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data, 17, 1959–1975, https://doi.org/10.5194/essd-17-1959-2025, https://doi.org/10.5194/essd-17-1959-2025, 2025
Short summary
Short summary
The annual widespread growth of phytoplankton blooms across the global ocean has far-reaching impacts on food security, ecosystem health, and climate. This study uses satellite-derived observations to generate long-term, sustained indices of phytoplankton phenology, capturing the timing, variability, and magnitude of blooms across the global ocean. These indices support the effective monitoring and management of marine resources and help assess the impacts of climate change on ocean ecosystems.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Amin, S. A., Moffett, J. W., Martens-Habbena, W., Jacquot, J. E., Han, Y.,
Devol, A., Ingalls, A. E., Stahl, D. A., and Armbrust, E. V.: Copper
requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1
and implications for nitrification in the marine environment, Limnol.
Oceanogr., 58, 2037–2045, https://doi.org/10.4319/lo.2013.58.6.2037, 2013.
Archontoulis, S. V. and Miguez, F. E.: Nonlinear regression models and
applications in agricultural research, Agron. J., 107, 786–798,
https://doi.org/10.2134/agronj2012.0506, 2014.
Arp, D. J., Sayavedra-Soto, L. A., and Hommes, N. G.: Molecular biology and
biochemistry of ammonia oxidation by Nitrosomonas europaea, Arch.
Microbiol., 178, 250–255, https://doi.org/10.1007/s00203-002-0452-0, 2002.
Baer, S. E., Connelly, T. L., Sipler, R. E., Yager, P. L., and Bronk, D. A.:
Effect of temperature on rates of ammonium uptake and nitrification in the
western coastal Arctic during winter, spring, and summer, Global Biogeochem. Cy., 28, 1455–1466, https://doi.org/10.1111/1462-2920.13280, 2014.
Bayer, B., Saito, M. A., McIlvin, M. R., Lücker, S., Moran, D. M.,
Lankiewicz, T. S., Dupont, C. L., and Santoro, A. E.: Metabolic versatility
of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic
response to oxygen-limited conditions, ISME J., 15, 1025–1039,
https://doi.org/10.1038/s41396-020-00828-3, 2021.
Belkin, I. M. and Gordon, A. L.: Southern Ocean fronts from the Greenwich
meridian to Tasmania, J. Geophys. Res.-Oceans, 101, 3675–3696,
https://doi.org/10.1029/95JC02750, 1996.
Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical
evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of
California, ISME J., 2, 429–441, https://doi.org/10.1038/ismej.2007.118,
2008.
Beman, J. M., Leilei Shih, J., and Popp, B. N.: Nitrite oxidation in the
upper water column and oxygen minimum zone of the eastern tropical North
Pacific Ocean, ISME J., 7, 2192–2205,
https://doi.org/10.1038/ismej.2013.96, 2013.
Bianchi, M., Feliatra, F., Tréguer, P., Vincendeau, M. A., and Morvan,
J.: Nitrification rates, ammonium and nitrate distribution in upper layers
of the water column and in sediments of the Indian sector of the Southern
Ocean, Deep. Res. Pt. II, 44, 1017–1032,
https://doi.org/10.1016/S0967-0645(96)00109-9, 1997.
Birch, C. P. D.: A new generalized logistic sigmoid growth equation compared
with the Richards growth equation, Ann. Bot., 83, 713–723,
https://doi.org/10.1006/anbo.1999.0877, 1999.
Blackburne, R., Vadivelu, V. M., and Yuan, Z.: Kinetic characterisation of
an enriched Nitrospira culture with comparison to Nitrobacter, Water Res., 41,
3033–3042, https://doi.org/10.1016/j.watres.2007.01.043, 2007.
Bock, E.: Vergleichende Untersuchungen über die Wirkung sichtbaren
Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi, Arch.
Mikrobiol., 51, 18–41, https://doi.org/10.1007/BF00406848, 1965.
Bristow, L. A., Sarode, N., Cartee, J., Caro-Quintero, A., Thamdrup, B., and
Stewart, F. J.: Biogeochemical and metagenomic analysis of nitrite
accumulation in the Gulf of Mexico hypoxic zone, Limnol. Oceanogr., 60,
1733–1750, https://doi.org/10.1002/lno.10130, 2015.
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P.,
and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl. Acad. Sci. USA, 113,
10601–10606, https://doi.org/10.1073/pnas.1600359113, 2016.
Caranto, J. D. and Lancaster, K. M.: Nitric oxide is an obligate bacterial
nitrification intermediate produced by hydroxylamine oxidoreductase, P. Natl. Acad. Sci. USA, 114, 8217–8222,
https://doi.org/10.1073/pnas.1704504114, 2017.
Carini, P., Dupont, C. L., and Santoro, A. E.: Patterns of thaumarchaeal
gene expression in culture and diverse marine environments, Environ.
Microbiol., 20, 2112–2124, https://doi.org/10.1111/1462-2920.14107, 2018.
Carvalho, F., Kohut, J., Oliver, M. J., and Schofield, O.: Defining the
ecologically relevant mixed-layer depth for Antarctica's coastal seas,
Geophys. Res. Lett., 44, 338–345, https://doi.org/10.1002/2016GL071205, 2017.
Cavagna, A. J., Fripiat, F., Elskens, M., Mangion, P., Chirurgien, L., Closset, I., Lasbleiz, M., Florez-Leiva, L., Cardinal, D., Leblanc, K., Fernandez, C., Lefèvre, D., Oriol, L., Blain, S., Quéguiner, B., and Dehairs, F.: Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean, Biogeosciences, 12, 6515–6528, https://doi.org/10.5194/bg-12-6515-2015, 2015.
Clark, D. R., Rees, A. P., Joint, I., Limnology, S., Jan, N., Clark, D. R.,
Rees, A. P., and Joint, I.: Ammonium regeneration and nitrification rates in
the oligo trophic Atlantic Ocean: Implications for new production
estimates, Limnol. Oceanogr., 53, 52–62, https://doi.org/10.4319/lo.2008.53.1.0052, 2008.
Cloete, R., Loock, J. C., Mtshali, T., Fietz, S., and Roychoudhury, A. N.:
Winter and summer distributions of Copper, Zinc and Nickel along the
International GEOTRACES Section GIPY05: Insights into deep winter mixing,
Chem. Geol., 511, 342–357, https://doi.org/10.1016/j.chemgeo.2018.10.023,
2019.
Collos, Y.: Nitrate uptake, nitrite release and uptake, and new production
estimates, Mar. Ecol. Prog. Ser., 171, 293–301,
https://doi.org/10.3354/meps171293, 1998.
Damashek, J., Tolar, B. B., Liu, Q., Okotie-Oyekan, A. O., Wallsgrove, N.
J., Popp, B. N., and Hollibaugh, J. T.: Microbial oxidation of nitrogen
supplied as selected organic nitrogen compounds in the South Atlantic Bight,
Limnol. Oceanogr., 64, 982–995, https://doi.org/10.1002/lno.11089, 2019.
de Jong, E., Vichi, M., Mehlmann, C. B., Eayrs, C., De Kock, W.,
Moldenhauer, M., and Audh, R. R.: Sea Ice conditions within the Antarctic
Marginal Ice Zone in winter 2017, onboard the SA Agulhas II, Pangaea, 2018,
https://doi.org/10.1594/PANGAEA.885211, 2018.
DeVries, T., Holzer, M., and Primeau, F.: Recent increase in oceanic carbon
uptake driven by weaker upper-ocean overturning, Nature, 542, 215–218,
https://doi.org/10.1038/nature21068, 2017.
Diaz, F. and Raimbault, P.: Nitrogen regeneration and dissolved organic
nitrogen release during spring in a NW Mediterranean coastal zone (Gulf of
Lions): Implications for the estimation of new production, Mar. Ecol. Prog.
Ser., 197, 51–65, https://doi.org/10.3354/meps197051, 2000.
DiFiore, P. J., Sigman, D. M., and Dunbar, R. B.: Upper ocean nitrogen
fluxes in the Polar Antarctic Zone: Constraints from the nitrogen and oxygen
isotopes of nitrate, Geochem. Geophys. Geosys., 10, Q11016,
https://doi.org/10.1029/2009GC002468, 2009.
Dore, J. E. and Karl, D. A. I.: Nitrification in the euphotic zone as a
source for nitrite, nitrate, and nitrous oxide at Station ALOHA, Limnol. Oceanogr., 41,
1619–1628, https://doi.org/10.4319/lo.1996.41.8.1619, 1996.
Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of
nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206,
https://doi.org/10.4319/lo.1967.12.2.0196, 1967.
Dugdale, R. C. and Wilkerson, F. P.: the Use of N-15 To Measure Nitrogen
Uptake in Eutrophic Oceans – Experimental Considerations, Limnol. Oceanogr.,
31, 673–689, https://doi.org/10.4319/lo.1986.31.4.0673, 1986.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Fripiat, F., Studer, A. S., Haug, G. H., Oleynik, S.,
Martínez-García, A., Smart, S. M., Rubach, F., Sigman, D. M.,
Fawcett, S. E., and Kemeny, P. C.: The isotope effect of nitrate
assimilation in the Antarctic Zone: Improved estimates and paleoceanographic
implications, Geochim. Cosmochim. Ac., 247, 261–279,
https://doi.org/10.1016/j.gca.2018.12.003, 2019.
Füssel, J., Lam, P., Lavik, G., Jensen, M. M., Holtappels, M.,
Günter, M., and Kuypers, M. M. M.: Nitrite oxidation in the Namibian
oxygen minimum zone, ISME J., 6, 1200–1209,
https://doi.org/10.1038/ismej.2011.178, 2012.
Glibert, P. M., Lipschultz, F., Mccarthy, J. J., and Altabet, M. A.: Isotope
Dilution Models of Uptake and Remineralization of Ammonium By Marine
Plankton, Limnol. Oceanogr., 27, 639–650,
https://doi.org/10.4319/lo.1982.27.4.0639, 1982.
Glibert, P. M., Dennett, M. R., and Goldman, J. C.: Inorganic carbon uptake
by phytoplankton in Vineyard Sound, Massachusetts. II. Comparative primary
productivity and nutritional status of winter and summer assemblages, J.
Exp. Mar. Bio. Ecol., 86, https://doi.org/10.1016/0022-0981(85)90025-5,
1985.
Grasshoff, K., Ehrhardt, M., and, Kremling, K.: Methods of seawater analysis, Verlag
Chemie, New York, ISBN 3–527-2599-8, 1983.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S.,
Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Monaco, C.
Lo, Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L.,
Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2 from
1994 to 2007, Science, 363, 1193–1199,
https://doi.org/10.1126/science.aau5153, 2019.
Haas, S., Robicheau, B. M., Rakshit, S., Tolman, J., Algar, C. K., LaRoche,
J., and Wallace, D. W. R.: Physical mixing in coastal waters controls and
decouples nitrification via biomass dilution, P. Natl. Acad. Sci. USA, 118, e2004877118, https://doi.org/10.1073/pnas.2004877118, 2021.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt,
M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J.,
Gruber, N., Hashioka, T., John, J., Quéré, C. Le, Lima, I. D.,
Nakano, H., Séférian, R., and Totterdell, I.: On the Southern Ocean
CO2 uptake and the role of the biological carbon pump in the 21st century,
Global Biogeochem. Cy., 29, 1451–1470,
https://doi.org/10.1002/2015GB005140, 2015.
Heiss, E. M. and Fulweiler, R. W.: Erratum to “Coastal water column
ammonium and nitrite oxidation are decoupled in summer” Estuar. Coast. Shelf Sci., 193, 37–45,
https://doi.org/10.1016/j.ecss.2016.12.026, 2017.
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A., and Peterson, B. J.:
A simple and precise method for measuring ammonium in marine and freshwater
ecosystems, Can. J. Fish. Aquat. Sci., 56, 1801–1808, https://doi.org/10.1139/cjfas-56-10-1801, 1999.
Horak, R. E. A., Qin, W., Schauer, A. J., Armbrust, E. V., Ingalls, A. E.,
Moffett, J. W., Stahl, D. A., and Devol, A. H.: Ammonia oxidation kinetics
and temperature sensitivity of a natural marine community dominated by
Archaea, ISME J., 7, 2023–2033, https://doi.org/10.1038/ismej.2013.75,
2013.
Horrigan, S., Carlucci, F., and Williams, P.: Light inhibition of
nitrification in sea surface films, J. Mar. Res., 39, 557–565, 1981.
Horrigan, S. G., Montoya, J. P., Nevins, J. L., McCarthy, J. J., Ducklow,
H., Goericke, R., and Malone, T.: Nitrogenous nutrient transformations in
the spring and fall in the Chesapeake Bay, Estuar. Coast. Shelf Sci., 30, 369–391,
https://doi.org/10.1016/0272-7714(90)90004-B, 1990.
Jacob, J., Nowka, B., Merten, V., Sanders, T., Spieck, E., and Dähnke,
K.: Oxidation kinetics and inverse isotope effect of marine
nitrite-oxidizing isolates, Aquat. Microb. Ecol., 80, 289–300,
https://doi.org/10.3354/ame01859, 2017.
Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher,
C. R., Oschlies, A., Paulmier, A., Stramma, L., and Kuypers, M. M. M.:
Nitrogen cycling driven by organic matter export in the South Pacific oxygen
minimum zone, Nat. Geosci., 6, 228–234, https://doi.org/10.1038/ngeo1739,
2013.
Kendall, C.: USGS – Isotope Tracers – Resources: Isotope Tracers in
Catchment Hydrology – Chapter 16, Isot. Tracers Catchment Hydrol. Elsevier
Sci. B.V, ISBN 9780444501554, 1998.
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009.
Kiefer, D. A., Olson, R. J., and Holm-Hansen, O.: Another look at the
nitrite and chlorophyll maxima in the central North Pacific, Deep. Res.
Oceanogr. Abstr., 23, https://doi.org/10.1016/0011-7471(76)90895-0, 1976.
Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., Han, P., Bulaev, A., Pjevac,
P., Daebeler, A., Romano, S., Albertsen, M., Stein, L. Y., Daims, H., and
Wagner, M.: Kinetic analysis of a complete nitrifier reveals an oligotrophic
lifestyle, Nature, 549, 269–272, https://doi.org/10.1038/nature23679, 2017.
Kitzinger, K., Marchant, H. K., Bristow, L. A., Herbold, C. W., Padilla, C.
C., Kidane, A. T., Littmann, S., Daims, H., Pjevac, P., Stewart, F. J.,
Wagner, M., and Kuypers, M. M. M.: Single cell analyses reveal contrasting
life strategies of the two main nitrifiers in the ocean, Nat. Commun., 11,
https://doi.org/10.1038/s41467-020-14542-3, 2020.
Kowalchuk, G. A. and Stephen, J. R.: Ammonia-oxidizing bacteria: A model for
molecular microbial ecology, Annu. Rev. Microbiol., 55, 485–529,
https://doi.org/10.1146/annurev.micro.55.1.485, 2001.
Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G., and Stein, L.
Y.: Pathways and key intermediates required for obligate aerobic
ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota, ISME J.,
10, 1836–1845, https://doi.org/10.1038/ismej.2016.2, 2016.
Lomas, M. W. and Lipschultz, F.: Forming the primary nitrite maximum:
Nitrifiers or phytoplankton?, Limnol. Oceanogr., 51, 2453–2467,
https://doi.org/10.4319/lo.2006.51.5.2453, 2006.
Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie,
B., Rattei, T., Damsté, J. S. S., Spieck, E., Le Paslier, D., and Daims,
H.: A Nitrospira metagenome illuminates the physiology and evolution of
globally important nitrite-oxidizing bacteria, P. Natl. Acad. Sci. USA, 107, 13479–13484, https://doi.org/10.1073/pnas.1003860107, 2010.
Martens-Habbena, W., Berube, P. M., Urakawa, H., De La Torre, J. R., and
Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of
nitrifying Archaea and Bacteria, Nature, 461, 976–979,
https://doi.org/10.1038/nature08465, 2009.
McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial
method for nitrate isotopic analyses, Anal. Chem., 83, 1850–1856,
https://doi.org/10.1021/ac1028984, 2011.
Mdutyana, M., Thomalla, S. J., Philibert, R., Ward, B. B., and Fawcett, S.
E.: The Seasonal Cycle of Nitrogen Uptake and Nitrification in the Atlantic
Sector of the Southern Ocean, Global Biogeochem. Cy., 34, e2019GB006363,
https://doi.org/10.1029/2019GB006363, 2020.
Mdutyana, M., Sun, X., Burger, J., Flynn, R., Smith, S., van Horsten, N. R.,
Bucciarelli, E., Planquette, H., Roychoudhury, A. N., Thomalla, S. J., Ward,
B. B., and Fawcett, S. E.: The kinetics of ammonium uptake and oxidation during
winter across the Indian sector of the Southern Ocean, Limnol. Oceanogr., 67,
973–991, https://doi.org/10.1002/lno.12050, 2022a.
Mdutyana, M., Marshall, T., Sun, X., Burger, J. M., Thomalla, S. J., Ward, B. B., and Fawcett, S. E.: Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector, Zenodo [data set], https://doi.org/10.5281/zenodo.6791408, 2022b.
Meincke, M., Bock, E., Kastrau, D., and Kroneck, P. M. H.: Nitrite
oxidoreductase from Nitrobacter hamburgensis: redox centers and their
catalytic role, Arch. Microbiol., 158, 127–131,
https://doi.org/10.1007/BF00245215, 1992.
Milligan, A. J. and Harrison, P. J.: Effects of non-steady-state iron
limitation on nitrogen assimilatory enzymes in the marine diatom
Thalassiosira weissflogii (Bacillariophyceae), J. Phycol., 36, 78–86,
https://doi.org/10.1046/j.1529-8817.2000.99013.x, 2000.
Monod, J.: Recherches sur la croissance des cultures bacteriennes, Hermann
Cie, Paris, OCLC no. 6126763, 1942.
Mulholland, M. R. and Bernhardt, P. W.: The effect of growth rate,
phosphorus concentration, and temperature on N2 fixation, carbon fixation,
and nitrogen release in continuous cultures of Trichodesmium IMS101, Limnol.
Oceanogr., 50, 839–849, https://doi.org/10.4319/lo.2005.50.3.0839, 2005.
Newell, S. E., Babbin, A. R., Jayakumar, A., and Ward, B. B.: Ammonia
oxidation rates and nitrification in the Arabian Sea, Global Biogeochem.
Cycles, 25, 1–10, https://doi.org/10.1029/2010GB003940, 2011.
Newell, S. E., Fawcett, S. E., and Ward, B. B.: Depth distribution of
ammonia oxidation rates and ammonia-oxidizer community composition in the
Sargasso Sea, Limnol. Oceanogr., 58, 1491–1500,
https://doi.org/10.4319/lo.2013.58.4.1491, 2013.
Nowka, B., Daims, H., and Spieck, E.: Comparison of Oxidation Kinetics of
Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche
Differentiation, Appl. Environ. Microb., 81, 745–753, https://doi.org/10.1128/AEM.02734-14, 2015.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olson, R.: 15N tracer studies of the primary nitrite maximum, J. Mar. Res.,
39, 203–226, 1981a.
Olson, R.: Differential Photoinhibition of Marine Nitrifying Bacteria - a
Possible Mechanism for the Formation of the Primary Nitrite Maximum, J. Mar.
Res., 39, 227–238, 1981b.
Orsi, H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current Pronounced meridional gradients
in surface properties separate waters of the Southern Ocean from the warmer
and saltier waters of the subtropical circulations, Deep Sea Res., 42,
641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R.,
Swan, B. K., and Mathyer, M. E.: Major role of nitrite-oxidizing bacteria in
dark ocean carbon fixation, Science, 1051, 1046–1051, 2017.
Pasciak, W. J. and Gavis, J.: Transport Limitation of Nutrient Uptake in
Phytoplankton, Limnol. Oceanogr., 19, 881–888, https://doi.org/10.4319/lo.1974.19.6.0881, 1974.
Peng, X., Fuchsman, C. A., Jayakumar, A., Oleynik, S., Martens-Habbena, W.,
Devol, A. H., and Ward, B. B.: Ammonia and nitrite oxidation in the Eastern
Tropical North Pacific, Global Biogeochem. Cy., 29, 2034–2049,
https://doi.org/10.1002/2015GB005278, 2015.
Peng, X., Fuchsman, C. A., Jayakumar, A., Warner, M. J., Devol, A. H., and
Ward, B. B.: Revisiting nitrification in the Eastern Tropical South Pacific:
A focus on controls, J. Geophys. Res.-Oceans, 121, 1667–1684,
https://doi.org/10.1002/2015JC011455, 2016.
Peng, X., Fawcett, S. E., van Oostende, N., Wolf, M. J., Marconi, D.,
Sigman, D. M., and Ward, B. B.: Nitrogen uptake and nitrification in the
subarctic North Atlantic Ocean, Limnol. Oceanogr., 63, 1462–1487,
https://doi.org/10.1002/lno.10784, 2018.
Philibert, R., Waldron, H., and Clark, D.: A geographical and seasonal
comparison of nitrogen uptake by phytoplankton in the Southern Ocean, Ocean
Sci., 11, 251–267, https://doi.org/10.5194/os-11-251-2015, 2015.
Pollard, R. T., Lucas, M. I., and Read, J. F.: Physical controls on
biogeochemical zonation in the Southern Ocean, Deep. Res. Pt. II, 49, 3289–3305, https://doi.org/10.1016/S0967-0645(02)00084-X,
2002.
Qin, W., Amin, S. A., Martens-Habbena, W., Walker, C. B., Urakawa, H.,
Devol, A. H., Ingalls, A. E., Moffett, J. W., Armbrust, E. V., and Stahl, D.
A.: Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy
and wide ecotypic variation, P. Natl. Acad. Sci. USA, 111,
12504–12509, https://doi.org/10.1073/pnas.1324115111, 2014.
Qin, W., Amin, S. A., Lundeen, R. A., Heal, K. R., Martens-Habbena, W.,
Turkarslan, S., Urakawa, H., Costa, K. C., Hendrickson, E. L., Wang, T.,
Beck, D. A., Tiquia-Arashiro, S. M., Taub, F., Holmes, A. D., Vajrala, N.,
Berube, P. M., Lowe, T. M., Moffett, J. W., Devol, A. H., Baliga, N. S.,
Arp, D. J., Sayavedra-Soto, L. A., Hackett, M., Armbrust, E. V., Ingalls, A.
E., and Stahl, D. A.: Stress response of a marine ammonia-oxidizing archaeon
informs physiological status of environmental populations, ISME J., 12,
508–519, https://doi.org/10.1038/ismej.2017.186, 2018.
Raven, J. A. and Falkowski, P. G.: Oceanic sinks for atmospheric CO2, Plant,
Cell Environ., 22, 741–755,
https://doi.org/10.1046/j.1365-3040.1999.00419.x, 1999.
Read, J. F., Pollard, R. T., and Bathmann, U.: Physical and biological
patchiness of an upper ocean transect from South Africa to the ice edge near
the Greenwich Meridian, Deep. Res. Pt. II, 49,
3713–3733, https://doi.org/10.1016/S0967-0645(02)00108-X, 2002.
Rees, A. P., Joint, I., and Donald, K. M.: Early spring bloom
phytoplankton-nutrient dynamics at the Celtic Sea shelf edge, Deep. Res.
Pt. I, 46, 483–510, https://doi.org/10.1016/S0967-0637(98)00073-9,
1999.
Saito, M. A., McIlvin, M. R., Moran, D. M., Santoro, A. E., Dupont, C. L.,
Rafter, P. A., Saunders, J. K., Kaul, D., Lamborg, C. H., Westley, M.,
Valois, F., and Waterbury, J. B.: Abundant nitrite-oxidizing metalloenzymes
in the mesopelagic zone of the tropical Pacific Ocean, Nat. Geosci., 13,
355–362, https://doi.org/10.1038/s41561-020-0565-6, 2020.
Santoro, A. E., Sakamoto, C. M., Smith, J. M., Plant, J. N., Gehman, A. L., Worden, A. Z., Johnson, K. S., Francis, C. A., and Casciotti, K. L.: Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, Biogeosciences, 10, 7395–7410, https://doi.org/10.5194/bg-10-7395-2013, 2013.
Santoro, A. E., Dupont, C. L., Richter, R. A., Craig, M. T., Carini, P.,
McIlvin, M. R., Yang, Y., Orsi, W. D., Moran, D. M., and Saito, M. A.:
Genomic and proteomic characterization of “Candidatus Nitrosopelagicus
brevis”: An ammonia-oxidizing archaeon from the open ocean, P. Natl. Acad. Sci. USA, 112, 1173–1178,
https://doi.org/10.1073/pnas.1416223112, 2015.
Schaefer, S. C. and Hollibaugh, J. T.: Temperature Decouples Ammonium and
Nitrite Oxidation in Coastal Waters, Environ. Sci. Technol., 51, 3157–3164,
https://doi.org/10.1021/acs.est.6b03483, 2017.
Schofield, O., Miles, T., Alderkamp, A. C., Lee, S. H., Haskins, C.,
Rogalsky, E., Sipler, R., Sherrell, R. M., and Yager, P. L.: In situ
phytoplankton distributions in the Amundsen Sea Polynya measured by
autonomous gliders, Elementa, 3, 000073,
https://doi.org/10.12952/journal.elementa.000073, 2015.
Sciandra, A. and Amara, R.: Effects of nitrogen limitation on growth and
nitrite excretion rates of the dinoflagellate Prorocentrum minimum, Mar.
Ecol. Prog. Ser., 105, 301, https://doi.org/10.3354/meps105301, 1994.
Shafiee, R. T., Snow, J. T., Zhang, Q., and Rickaby, R. E. M.: Iron
requirements and uptake strategies of the globally abundant marine
ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1, ISME J., 13, 2295–2305,
https://doi.org/10.1038/s41396-019-0434-8, 2019.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis
of nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Smart, S. M., Fawcett, S. E., Thomalla, S. J., Weigand, M. a, Reason, C. J.
C., and Sigman, D. M.: Isotopic evidence for nitrification in the Antarctic winter mixed layer, Global Biogeochem. Cy., 29, 427–445,
https://doi.org/10.1002/2014GB005013, 2015.
Smith, S., Altieri, K. E., Mdutyana, M., Walker, D. R., Parrott, R. G., Gallie, S., Spence, K. A. M., Burger, J. M., and Fawcett, S. E.: Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean, Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, 2022.
Sorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A.,
Kleerebezem, R., Rijpstra, W. I. C., Sinninghe Damsté, J. S., Le
Paslier, D., Muyzer, G., Wagner, M., Van Loosdrecht, M. C. M., and Daims,
H.: Nitrification expanded: Discovery, physiology and genomics of a
nitrite-oxidizing bacterium from the phylum Chloroflexi, ISME J., 6,
2245–2256, https://doi.org/10.1038/ismej.2012.70, 2012.
Spieck, E., Ehrich, S., and Aamand, J.: Isolation and immunocytochemical
location of the nitrite-oxidizing system in Nitrospira moscoviensis, Arch.
Microbiol., 169, 225–230, https://doi.org/10.1007/s002030050565, 1998.
Sun, X., Ji, Q., Jayakumar, A., and Ward, B. B.: Dependence of nitrite
oxidation on nitrite and oxygen in low-oxygen seawater, Geophys. Res. Lett.,
44, 7883–7891, https://doi.org/10.1002/2017GL074355, 2017.
Sun, X., Frey, C., Garcia-Robledo, E., Jayakumar, A., and Ward, B. B.:
Microbial niche differentiation explains nitrite oxidation in marine oxygen
minimum zones, ISME J., 1–13, https://doi.org/10.1038/s41396-020-00852-3,
2021.
Sundermeyer-Klinger, H., Meyer, W., Warninghoff, B., and Bock, E.:
Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate
reductase system, Arch. Microbiol., 140, 153–158, https://doi.org/10.1007/BF00454918,
1984.
Tagliabue, A., Mtshali, T., Aumont, O., Bowie, A. R., Klunder, M. B., Roychoudhury, A. N., and Swart, S.: A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean, Biogeosciences, 9, 2333–2349, https://doi.org/10.5194/bg-9-2333-2012, 2012.
Tsoularis, A. and Wallace, J.: Analysis of logistic growth models, Math.
Biosci., 179, 21–55, https://doi.org/10.1016/S0025-5564(02)00096-2, 2002.
Ushiki, N., Jinno, M., Fujitani, H., Suenaga, T., Terada, A., and Tsuneda,
S.: Nitrite oxidation kinetics of two Nitrospira strains: The quest for
competition and ecological niche differentiation, J. Biosci. Bioeng., 123,
581–589, https://doi.org/10.1016/j.jbiosc.2016.12.016, 2017.
Vaccaro, R. F. and Ryther, J. H.: Marine Phytoplankton and the Distribution
of Nitrite in the Sea, ICES J. Mar. Sci., 25, 260–271,
https://doi.org/10.1093/icesjms/25.3.260, 1960.
Vajrala, N., Martens-Habbena, W., Sayavedra-Soto, L. A., Schauer, A.,
Bottomley, P. J., Stahl, D. A., and Arp, D. J.: Hydroxylamine as an
intermediate in ammonia oxidation by globally abundant marine archaea, P. Natl. Acad. Sci. USA, 110, 1006–1011,
https://doi.org/10.1073/pnas.1214272110, 2013.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes, edited by: Sundquist, E. T. and Broecker, W. S., Geophysical Monograph Series, https://doi.org/10.1029/GM032p0099, 1985.
Walker, C. B., De La Torre, J. R., Klotz, M. G., Urakawa, H., Pinel, N.,
Arp, D. J., Brochier-Armanet, C., Chain, P. S. G., Chan, P. P., Gollabgir,
A., Hemp, J., Hügler, M., Karr, E. A., Könneke, M., Shin, M.,
Lawton, T. J., Lowe, T., Martens-Habbena, W., Sayavedra-Soto, L. A., Lang,
D., Sievert, S. M., Rosenzweig, A. C., Manning, G., and Stahl, D. A.:
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification
and autotrophy in globally distributed marine crenarchaea, P. Natl. Acad. Sci. USA, 107, 8818–8823, https://doi.org/10.1073/pnas.0913533107,
2010.
Ward, B. B.: Temporal variability in nitrification rates and related
biogeochemical factors in Monterey Bay, California, USA, Mar. Ecol. Prog.
Ser., 292, 97–109, https://doi.org/10.3354/meps292097, 2005.
Ward, B. B.: Chapter 5 – Nitrification in Marine Systems, in: Nitrogen in
the Marine Environment (2 Edn.), 199–261,
https://doi.org/https://doi.org/10.1016/B978-0-12-372522-6.00005-0, 2008.
Ward, B. B. and Kilpatrick, K. A.: Nitrogen Transformations in the Oxic
Layer of Permanent Anoxic Basins: The Black Sea and the Cariaco Trench, in:
Black Sea Oceanography,
https://doi.org/10.1007/978-94-011-2608-3_7, 1991.
Ward, B. B. and Zafiriou, O. C.: Nitrification and nitric oxide in the
oxygen minimum of the eastern tropical North Pacific, Deep Sea Res., 35, 1127–1142,
https://doi.org/10.1016/0198-0149(88)90005-2, 1988.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C.,
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised
estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon
inventory, Nat. Commun., 11, 1–6,
https://doi.org/10.1038/s41467-020-18203-3, 2020.
Watson, S. W. and Waterbury, J. B.: Characteristics of Two Marine Nitrite
Oxidizing Bacteria, Microscopy, 77, 203–230, https://doi.org/10.1007/BF00408114, 1971.
Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B., and Schlosser, U.:
Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing
bacterium, Arch. Microbiol., 144, 1–7, https://doi.org/10.1007/BF00454947, 1986.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.:
Updates to instrumentation and protocols for isotopic analysis of nitrate by
the denitrifier method, Rapid Commun. Mass Spectrom., 30, 1365–1383,
https://doi.org/10.1002/rcm.7570, 2016.
Xu, M. N., Li, X., Shi, D., Zhang, Y., Dai, M., Huang, T., Glibert, P. M.,
and Kao, S. J.: Coupled effect of substrate and light on assimilation and
oxidation of regenerated nitrogen in the euphotic ocean, Limnol. Oceanogr.,
64, 1270–1283, https://doi.org/10.1002/lno.11114, 2019.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, https://doi.org/10.1038/nature05885, 2007.
Zakem, E. J., Al-Haj, A., Church, M. J., Van Dijken, G. L., Dutkiewicz, S.,
Foster, S. Q., Fulweiler, R. W., Mills, M. M., and Follows, M. J.:
Ecological control of nitrite in the upper ocean, Nat. Commun., 9,
https://doi.org/10.1038/s41467-018-03553-w, 2018.
Zhang, Y., Qin, W., Hou, L., Zakem, E. J., Wan, X., Zhao, Z., Liu, L., Hunt,
K. A., Jiao, N., Kao, S. J., Tang, K., Xie, X., Shen, J., Li, Y., Chen, M.,
Dai, X., Liu, C., Deng, W., Dai, M., Ingalls, A. E., Stahl, D. A., and
Herndl, G. J.: Nitrifier adaptation to low energy flux controls inventory of
reduced nitrogen in the dark ocean, P. Natl. Acad. Sci. USA, 117,
4823–4830, https://doi.org/10.1073/pnas.1912367117, 2020.
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but...
Altmetrics
Final-revised paper
Preprint