Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3425-2022
https://doi.org/10.5194/bg-19-3425-2022
Research article
 | 
20 Jul 2022
Research article |  | 20 Jul 2022

Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector

Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett

Related authors

Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022,https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary

Related subject area

Biogeochemistry: Stable Isotopes & Other Tracers
Stable iron isotope signals indicate a “pseudo-abiotic” process driving deep iron release in methanic sediments
Susann Henkel, Bo Liu, Michael Staubwasser, Simone A. Kasemann, Anette Meixner, David A. Aromokeye, Michael W. Friedrich, and Sabine Kasten
Biogeosciences, 22, 1673–1696, https://doi.org/10.5194/bg-22-1673-2025,https://doi.org/10.5194/bg-22-1673-2025, 2025
Short summary
How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025,https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
No increase is detected and modeled for the seasonal cycle amplitude of δ13C of atmospheric carbon dioxide
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
Biogeosciences, 22, 19–39, https://doi.org/10.5194/bg-22-19-2025,https://doi.org/10.5194/bg-22-19-2025, 2025
Short summary
Fungi present distinguishable isotopic signals when grown on glycolytic versus tricarboxylic acid cycle intermediates
Stanislav Jabinski, Vítězslav Kučera, Marek Kopáček, Jan Jansa, and Travis B. Meador
EGUsphere, https://doi.org/10.5194/egusphere-2024-3153,https://doi.org/10.5194/egusphere-2024-3153, 2024
Short summary
Bias in calculating gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ17O) of stream nitrate
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences, 21, 4717–4722, https://doi.org/10.5194/bg-21-4717-2024,https://doi.org/10.5194/bg-21-4717-2024, 2024
Short summary

Cited articles

Amin, S. A., Moffett, J. W., Martens-Habbena, W., Jacquot, J. E., Han, Y., Devol, A., Ingalls, A. E., Stahl, D. A., and Armbrust, E. V.: Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment, Limnol. Oceanogr., 58, 2037–2045, https://doi.org/10.4319/lo.2013.58.6.2037, 2013. 
Archontoulis, S. V. and Miguez, F. E.: Nonlinear regression models and applications in agricultural research, Agron. J., 107, 786–798, https://doi.org/10.2134/agronj2012.0506, 2014. 
Arp, D. J., Sayavedra-Soto, L. A., and Hommes, N. G.: Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea, Arch. Microbiol., 178, 250–255, https://doi.org/10.1007/s00203-002-0452-0, 2002. 
Baer, S. E., Connelly, T. L., Sipler, R. E., Yager, P. L., and Bronk, D. A.: Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer, Global Biogeochem. Cy., 28, 1455–1466, https://doi.org/10.1111/1462-2920.13280, 2014. 
Bayer, B., Saito, M. A., McIlvin, M. R., Lücker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., and Santoro, A. E.: Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions, ISME J., 15, 1025–1039, https://doi.org/10.1038/s41396-020-00828-3, 2021. 
Download
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Share
Altmetrics
Final-revised paper
Preprint