Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5287-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5287-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Pascal Wintjen
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Frederik Schrader
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Martijn Schaap
TNO, Climate Air and Sustainability, Utrecht, 3584 CB, the Netherlands
Institute of Meteorology, Freie Universität Berlin, 12165 Berlin,
Germany
Burkhard Beudert
Bavarian Forest National Park, 94481 Grafenau, Germany
Richard Kranenburg
TNO, Climate Air and Sustainability, Utrecht, 3584 CB, the Netherlands
Christian Brümmer
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Related authors
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Marc Guevara, Augustin Colette, Antoine Guion, Valentin Petiot, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Andrea Bolignano, Paula Camps, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Hugo Denier van der Gon, Gaël Descombes, John Douros, Hilde Fagerli, Yalda Fatahi, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Risto Hänninen, Kaj Hansen, Oriol Jorba, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Victor Lannuque, Frédérik Meleux, Agnes Nyíri, Yuliia Palamarchuk, Carlos Pérez García-Pando, Lennard Robertson, Felicita Russo, Arjo Segers, Mikhail Sofiev, Joanna Struzewska, Renske Timmermans, Andreas Uppstu, Alvaro Valdebenito, and Zhuyun Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1287, https://doi.org/10.5194/egusphere-2025-1287, 2025
Short summary
Short summary
Air quality models require hourly emissions to accurately represent dispersion and physico-chemical processes in the atmosphere. Since emission inventories are typically provided at the annual level, emissions are downscaled to a refined temporal resolution using temporal profiles. This study quantifies the impact of using new anthropogenic temporal profiles on the performance of an European air quality multi-model ensemble. Overall, the findings indicate an improvement of the modelling results.
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Leon Geers, Ruud Janssen, Gudrun Thorkelsdottir, Jordi Vilà-Guerau de Arellano, and Martijn Schaap
EGUsphere, https://doi.org/10.5194/egusphere-2025-426, https://doi.org/10.5194/egusphere-2025-426, 2025
Short summary
Short summary
High-resolution data on reactive nitrogen deposition are needed to inform cost-effective policies. Here, we describe the implementation of a dry deposition module into a large eddy simulation code. With this model, we are able to represent the turbulent exchange of tracers at the hectometer resolution. The model calculates the dispersion and deposition of NOx and NH3 in great spatial detail, clearly showing the influence of local land use patterns.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Xinrui Ge, Martijn Schaap, Richard Kranenburg, Arjo Segers, Gert Jan Reinds, Hans Kros, and Wim de Vries
Atmos. Chem. Phys., 20, 16055–16087, https://doi.org/10.5194/acp-20-16055-2020, https://doi.org/10.5194/acp-20-16055-2020, 2020
Short summary
Short summary
This article is about improving the modeling of agricultural ammonia emissions. By considering land use, meteorology and agricultural practices, ammonia emission totals officially reported by countries are distributed in space and time. We illustrated the first step for a better understanding of the variability of ammonia emission, with the possibility of being applied at a European scale, which is of great significance for ammonia budget research and future policy-making.
Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin
Atmos. Chem. Phys., 20, 15207–15225, https://doi.org/10.5194/acp-20-15207-2020, https://doi.org/10.5194/acp-20-15207-2020, 2020
Short summary
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Oksana Rybchak, Justin du Toit, Jean-Pierre Delorme, Jens-Kristian Jüdt, Kanisios Mukwashi, Christian Thau, Gregor Feig, Mari Bieri, and Christian Brümmer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-420, https://doi.org/10.5194/bg-2020-420, 2020
Revised manuscript not accepted
Short summary
Short summary
We studied the impacts of livestock grazing on carbon budgets in the semi-arid South African Karoo by comparing two sites under different grazing intensities. The previously overgrazed site, characterised by unpalatable grasses and thus poorly suited as pasture, sequestered more carbon over the four-year measurement period, compared to the lenient-grazed site. The studied ecosystems act as either carbon sinks or sources depending on precipitation.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Cited articles
Ahrends, B., Schmitz, A., Prescher, A.-K., Wehberg, J., Geupel, M., Henning,
A., and Meesenburg, H.: Comparison of Methods for the Estimation of Total
Inorganic Nitrogen Deposition to Forests in Germany, Front. Forest.
Glob. Change, 3, 1–22, https://doi.org/10.3389/ffgc.2020.00103, 2020.
Ammann, C., Wolff, V., Marx, O., Brümmer, C., and Neftel, A.: Measuring
the biosphere-atmosphere exchange of total reactive nitrogen by eddy
covariance, Biogeosciences, 9, 4247–4261, https://doi.org/10.5194/bg-9-4247-2012, 2012.
Ammann, C., Jocher M., and Voglmeier, K.: Eddy Covariance Flux Measurements
of NH3 and NOy with a Dual-Channel Thermal Converter, IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), IEEE,
46–51, https://doi.org/10.1109/MetroAgriFor.2019.8909278, 2019.
Barr, A., Richardson, A., Hollinger, D., Papale, D., Arain, M., Black, T.,
Bohrer, G., Dragoni, D., Fischer, M., Gu, L., Law, B., Margolis, H.,
McCaughey, J., Munger, J., Oechel, W., and Schaeffer, K.: Use of
change-point detection for friction–velocity threshold evaluation in eddy
covariance studies, Agr. Forest Meteorol., 171/172, 31–45,
https://doi.org/10.1016/j.agrformet.2012.11.023, 2013.
Beudert, B. and Breit, W.: Kronenraumbilanzen zur Abschätzung der
Stickstoffgesamtdeposition in Waldökosysteme des Nationalparks
Bayerischer Wald, techreport, Umweltbundesamt, Dessau-Roßlau, Germany,
https://www.umweltbundesamt.de/sites/default/files/medien/370/dokumente/kronenraumbilanzen_stickstoffgesamtdeposition_nationalpark_bayerisches_wald_-_berichtsjahr_2013_im_forellenbach.pdf (last access: 14 March 2022), 2014.
Bobbink, R. and Hettelingh, J.-P.: Review and revision of empirical critical
loads and dose-response relationships, National Institute for Public Health
and the Environment (RIVM), RIVM Report,
https://www.rivm.nl/bibliotheek/rapporten/680359002.pdf (last access: 14
March 2022), 2011.
Bobbink, R., Hornung, M., and Roelofs, J. G. M.: The effects of air-borne
nitrogen pollutants on species diversity in natural and semi-natural
European vegetation, J. Ecol., 86, 717–738,
https://doi.org/10.1046/j.1365-2745.1998.8650717.x, 1998.
Breuninger, C., Meixner, F. X., and Kesselmeier, J.: Field investigations of
nitrogen dioxide (NO2) exchange between plants and the atmosphere,
Atmos. Chem. Phys., 13, 773–790,
https://doi.org/10.5194/acp-13-773-2013, 2013.
Brümmer, C., Marx, O., Kutsch, W., Ammann, C., Wolff, V., Flechard, C.
R., and Freibauer, A.: Fluxes of total reactive atmospheric nitrogen
(ΣNr) using eddy covariance above arable land, Tellus B, 65, 19770,
https://doi.org/10.3402/tellusb.v65i0.19770, 2013.
Brümmer, C., Rüffer, J. J., Delorme, J.-P., Wintjen, P., Schrader,
F., Beudert, B., Schaap, M., and Ammann, C.: Reactive nitrogen fluxes over
peatland and forest ecosystems using micrometeorological measurement
techniques, Earth Syst. Sci. Data, 14, 743–761,
https://doi.org/10.5194/essd-14-743-2022, 2022a.
Brümmer, C., Rüffer, J. J., Delorme, J.-P., Wintjen, P., Schrader,
F., Beudert, B., Schaap, M., and Ammann, C.: Reactive nitrogen fluxes over
peatland (Bourtanger Moor) and forest (Bavarian Forest National Park) using
micrometeorological measurement techniques (1.1), Zenodo [data set],
https://doi.org/10.5281/zenodo.5841074, 2022b.
Butterbach-Bahl, K., Gasche, R., Breuer, L., and Papen, H.: Fluxes of NO and
N2O from temperate forest soils: impact of forest type, N deposition
and of liming on the NO and N2O emissions, Nutr. Cycl.
Agroecosys., 48, 79–90,
https://doi.org/10.1023/a:1009785521107, 1997.
Chaparro-Suarez, I., Meixner, F., and Kesselmeier, J.: Nitrogen dioxide
(NO2) uptake by vegetation controlled by atmospheric concentrations and
plant stomatal aperture, Atmos. Environ., 45, 5742–5750,
https://doi.org/10.1016/j.atmosenv.2011.07.021, 2011
Damgaard, C., Jensen, L., Frohn, L. M., Borchsenius, F., Nielsen, K. E.,
Ejrnæs, R., and Stevens, C. J.: The effect of nitrogen deposition on the
species richness of acid grasslands in Denmark: A comparison with a study
performed on a European scale, Environ. Pollut., 159, 1778–1782,
https://doi.org/10.1016/j.envpol.2011.04.003, 2011.
Delaria, E. R., Vieira, M., Cremieux, J., and Cohen, R. C.: Measurements of
NO and NO2 exchange between the atmosphere and Quercus agrifolia,
Atmos. Chem. Phys., 18, 14161–14173,
https://doi.org/10.5194/acp-18-14161-2018, 2018.
Delaria, E. R., Place, B. K., Liu, A. X., and Cohen, R. C.: Laboratory
measurements of stomatal NO2 deposition to native California trees and
the role of forests in the NOx cycle, Atmos. Chem.
Phys., 20, 14023–14041, https://doi.org/10.5194/acp-20-14023-2020, 2020.
de Vries, W., Reinds, G. J., and Vel, E.: Intensive monitoring of forest
ecosystems in Europe: 2: Atmospheric deposition and its impacts on soil
solution chemistry, Forest Ecol. Manag., 174, 97–115,
https://doi.org/10.1016/S0378-1127(02)00030-0,
2003.
Dirnböck, T., Grandin, U., Bernhardt-Römermann, M., Beudert, B.,
Canullo, R., Forsius, M., Grabner, M.-T., Holmberg, M., Kleemola, S.,
Lundin, L., Mirtl, M. Neumann, M., Pompei, E., Salemaa, M., Starlinger, F.,
Staszewski, T., and Uziębło, A. K.: Forest floor vegetation response
to nitrogen deposition in Europe, Glob. Change Biol., 20, 429–440, https://doi.org/10.1111/gcb.12440 , 2014.
Dirnböck, T., Pröll, G., Austnes, K., Beloica, J., Beudert, B.,
Canullo, R., De Marco, A., Fornasier, M. F., Futter, M., Goergen, K.,
Grandin, U., Holmberg, M., Lindroos, A.-J., Mirtl, M., Neirynck, J., Pecka,
T., Nieminen, T. M., Nordbakken, J.-F., Posch, M., Reinds, G.-J., Rowe, E.
C., Salemaa, M., Scheuschner, T., Starlinger, F., Uziębło, A. K.,
Valinia, S., Weldon, J., Wamelink, W. G. W., and Forsius, M.: Currently
legislated decreases in nitrogen deposition will yield only limited plant
species recovery in European forests, Environ. Res. Lett., 13,
125010, https://doi.org/10.1088/1748-9326/aaf26b, 2018.
Draaijers, G. P. J. and Erisman, J. W.: A canopy budget model to assess
atmospheric deposition from throughfall measurements, Water Air Soil
Pollut., 85, 2253–2258, https://doi.org/10.1007/BF01186169, 1995.
Emberson, L. D., Ashmore, M. R., Simpson, D., Tuovinen, J.-P., and Cambridge,
H. M.: Towards a model of ozone deposition and stomatal uptake over Europe,
EMEP/MSC-W 6/2000, Norwegian Meteorological Institute, Oslo, ISSN 0332-9879, http://emep.int/publ/reports/2000/note_6_2000_A4.ps (last access: 11 November 2022), 2000a.
Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., and
Tuovinen, J. P.: Modelling stomatal ozone flux across Europe, Environ.
Pollut., 109, 403–13, https://doi.org/10.1016/S0269-7491(00)00043-9, 2000b.
Erisman, J. W., Van Pul, A., and Wyers, P.: Parametrization of surface
resistance for the quantification of atmospheric deposition of acidifying
pollutants and ozone, Atmos. Environ., 28, 2595–2607,
https://doi.org/10.1016/1352-2310(94)90433-2, 1994.
Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., and
Butterbach-Bahl, K.: Reactive nitrogen in the environment and its effect on
climate change, Curr. Opin. Env. Sust., 3, 281–290,
https://doi.org/10.1016/j.cosust.2011.08.012, 2011.
Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N. B.,
Petrescu, A. M., Leach, A. M., and de Vries, W.: Consequences of human
modification of the global nitrogen cycle, Philos. T.
R. Soc. Lond. B, 368, 201301116, https://doi.org/10.1098/rstb.2013.0116, 2013.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer,
C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross,
P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, J., Pilegaard, K., Üllar Rannik, Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for defensible annual sums of net ecosystem exchange,
Agr. Forest Meteorol/, 107, 43–69,
https://doi.org/10.1016/S0168-1923(00)00225-2, 2001.
Farmer, D. K. and Cohen, R. C.: Observations of HNO3, ΣAN,
ΣPN and NO2 fluxes: evidence for rapid HOx chemistry
within a pine forest canopy, Atmos. Chem. Phys., 8,
3899–3917, https://doi.org/10.5194/acp-8-3899-2008, 2008.
Farmer, D. K., Wooldridge, P. J., and Cohen, R. C.: Application of
thermal-dissociation laser induced fluorescence (TD-LIF) to measurement of
HNO3, Σalkyl nitrates, Σperoxy nitrates, and NO2
fluxes using eddy covariance, Atmos. Chem. Phys., 6,
3471–3486, https://doi.org/10.5194/acp-6-3471-2006, 2006.
Ferm, M.: A Sensitive Diffusional Sampler, Report L91-172, Swedish
Environmental Research Institute, Gothenburg, 1991.
Ferrara, R. M., Loubet, B., Di Tommassi, P., Bertolini, T., Magliulo, V.,
Cellier, P., Eugster, W., and Rana, G.: Eddy covarinance measurement of
ammonia fluxes: Comparison of high frequency correction methodologies,
Agr. Forest Meteorol., 158/159, 30–42,
https://doi.org/10.1016/j.agrformet.2012.02.001, 2012.
Ferrara, R. M., Di Tommassi, P., Farmulari, D., and Rana G.: Limitations of
an Eddy-Covariance System in Measuring Low Ammonia Fluxes, Bound.-Lay.
Meteorol., 180, 173–186, https://doi.org/10.1007/s10546-021-00612-6, 2021.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res.-Atmos., 106, 3503–3509,
https://doi.org/10.1029/2000JD900731, 2001.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T.,
Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and
Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a
comparison of inferential models across the NitroEurope network, Atmos.
Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Flechard, C. R., Ibrom, A., Skiba, U. M., de Vries, W., van Oijen, M.,
Cameron, D. R., Dise, N. B., Korhonen, J. F. J., Buchmann, N., Legout, A.,
Simpson, D., Sanz, M. J., Aubinet, M., Loustau, D., Montagnani, L.,
Neirynck, J., Janssens, I. A., Pihlatie, M., Kiese, R., Siemens, J.,
Francez, A.-J., Augustin, J., Varlagin, A., Olejnik, J., Juszczak, R.,
Aurela, M., Berveiller, D., Chojnicki, B. H., Dammgen, U., Delpierre, N.,
Djuricic, V., Drewer, J., Dufrene, E., Eugster, W., Fauvel, Y., Fowler, D.,
Frumau, A., Granier, A., Gross, P., Hamon, Y., Helfter, C., Hensen, A.,
Horvath, L., Kitzler, B., Kruijt, B., Kutsch, W. L., Lobo-do Vale, R.,
Lohila, A., Longdoz, B., Marek, M. V., Matteucci, G., Mitosinkova, M.,
Moreaux, V., Neftel, A., Ourcival, J.-M., Pilegaard, K., Pita, G., Sanz, F.,
Schjoerring, J. K., Sebastia, M.-T., Tang, Y. S., Uggerud, H., Urbaniak, M.,
van Dijk, N., Vesala, T., Vidic, S., Vincke, C., Weidinger, T.,
Zechmeister-Boltenstern, S., Butterbach-Bahl, K., Nemitz, E., and Sutton, M.
A.: Carbon–nitrogen interactions in European forests and semi-natural
vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse
gases from ecosystem monitoring and modelling, Biogeosciences, 17,
1583–1620, https://doi.org/10.5194/bg-17-1583-2020, 2020.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S.,
Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P.,
Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D.,
Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Philos. T. R. Soc. B, 368, 20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R.
W., Cowling, E. B., and Cosby, B. J.: The Nitrogen Cascade, BioScience, 53,
341–356, https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2, 2003.
Garland, J. A.: The Dry Deposition of Sulphur Dioxide to Land and Water
Surfaces, Proc. Roy. Soc. A, 354, 245–268, https://doi.org/10.1098/rspa.1977.0066, 1977.
Ge, X., Schaap, M., Kranenburg, R., Segers, A., Reinds, G. J., Kros, H., and
de Vries, W.: Modeling atmospheric ammonia using agricultural emissions with
improved spatial variability and temporal dynamics, Atmos. Chem. Phys., 20,
16055–16087, https://doi.org/10.5194/acp-20-16055-2020, 2020.
Geddes, J. A. and Murphy, J. G.: Observations of reactive nitrogen oxide
fluxes by eddy covariance above two midlatitude North American mixed
hardwood forests, Atmos. Chem. Phys., 14, 2939–2957,
https://doi.org/10.5194/acp-14-2939-2014, 2014.
Grandin, U.: Epiphytic algae and lichen cover in boreal forests – a
long-term study along a N and S deposition gradient in Sweden, Ambio, 40,
857–866, https://doi.org/10.1007/s13280-011-0205-x, 2011.
Hansen, K., Sørensen, L. L., Hertel, O., Geels, C., Skjøth, C. A.,
Jensen, B., and Boegh, E.: Ammonia emissions from deciduous forest after
leaf fall, Biogeosciences, 10, 4577–4589, https://doi.org/10.5194/bg-10-4577-2013,
2013.
Hansen, K., Pryor, S. C., Boegh, E., Hornsby, K. E., Jensen, B., and
Sørensen, L. L.: Background concentrations and fluxes of atmospheric
ammonia over a deciduous forest, Agr. Forest Meteorol.,
214/215, 380–392, https://doi.org/10.1016/j.agrformet.2015.09.004, 2015.
Hettelingh, J.-P., Posch, M., De Smet, P. A. M., and Downing, R. J.: The use
of critical loads in emission reduction agreements in Europe, Water Air
Soil Pollut., 85, 2381–2385, https://doi.org/10.1007/BF01186190, 1995.
Hettelingh, J.-P., Posch, M., Velders, G. J. M., Ruyssenaars, P., Adams, M.,
de Leeuw, F., Lükewille, A., Maas, R., Sliggers, J., and Slootweg, J.:
Assessing interim objectives for acidification, eutrophication and
ground-level ozone of the EU National Emission Ceilings Directive with 2001
and 2012 knowledge, Atmos. Environ., 75, 129–140,
https://doi.org/10.1016/j.atmosenv.2013.03.060, 2013.
Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., and
McManus, J. B.: Fluxes of nitrogen oxides over a temperate deciduous forest,
J. Geophys. Res.-Atmos., 109, D08305, https://doi.org/10.1029/2003JD004326,
2004.
Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., and
McManus, J. B.: Atmospheric reactive nitrogen concentration and flux budgets
at a Northeastern US forest site, Agr. Forest Meteorol., 136,
159–174, https://doi.org/10.1016/j.agrformet.2006.03.005, 2006.
Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential
and Stomatal Conductance Found in Canopies in the Field, Philos. T. R. Soc.
B, 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jensen, N. and Hummelshøj, P.: Derivation of canopy resistance for water
vapor fluxes over a spruce forest, using a new technique for the viscous
sublayer resistance (correction to Vol. 73, p. 339, 1995), Agr.
Forest Meteorol., 85, 289, https://doi.org/10.1016/S0168-1923(97)00024-5, 1997.
Jensen, N. O. and Hummelshøj, P.: Derivation of canopy resistance for
water-vapor fluxes over a spruce forest, using a new technique for the
viscous sublayer resistance, Agr. Forest Meteorol., 73,
339–352, https://doi.org/10.1016/0168-1923(94)05083-I, 1995.
Jung, H., Senf, C., Beudert, B., and Krueger, T.: Bayesian hierarchical
modeling of nitrate concentration in a forest stream affected by large-scale
forest dieback, Water Resour. Res., 57, e2020WR027264, https://doi.org/10.1029/2020WR027264 2021.
Krupa, S. V.: Effects of atmospheric ammonia (NH3) on terrestrial
vegetation: a review, Environ. Pollut., 124, 179–211, https://doi.org/10.1016/S0269-7491(02)00434-7, 2003.
Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, I., and
Denier van der Gon, H.: CAMS-REG-v4: a state-of-the-art high-resolution
European emission inventory for air quality modelling, Earth Syst. Sci.
Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, 2022.
Kundu, S., Kawamura, K., and Lee, M.: Seasonal variation of the
concentrations of nitrogenous species and their nitrogen isotopic ratios in
aerosols at Gosan, Jeju Island: Implications for atmospheric processing and
source changes of aerosols, J. Geophys. Res.-Atmos.,
115, D20305, https://doi.org/10.1029/2009JD013323, 2010.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehman,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett, J. L.: Increasing
importance of deposition of reduced nitrogen in the United States,
P. Natl. Acad. Sci., 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113, 2016.
Marx, O., Brümmer, C., Ammann, C., Wolff, V., and Freibauer, A.: TRANC
– a novel fast-response converter to measure total reactive atmospheric
nitrogen, Atmos. Meas. Tech., 5, 1045–1057,
https://doi.org/10.5194/amt-5-1045-2012, 2012.
Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A.
C., Hendriks, C., Jonkers, S., Kranenburg, R., Kuenen, J. J. P.,Segers, A.
J., Timmermans, R. M. A., Visschedijk, A. J. H., Wichink Kruit, R. J., van
Pul, W. A. J., Sauter, F. J., van der Swaluw, E., Swart, D. P. J., Douros,
J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf,
S., Mues, A. C., Stern, R., Fu, G., Lu,S., Heemink, A., van Velzen, N., and
Schaap, M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport
model, Geosci. Model Dev., 10, 4145–4173,
https://doi.org/10.5194/gmd-10-4145-2017, 2017.
Manders-Groot, A. M. M., Segers, A. J., and Jonkers, S.: LOTOS-EUROS v2.0
Reference Guide, TNO report TNO2016 R10898, TNO, Utrecht, The Netherlands,
https://lotos-euros.tno.nl/media/10360/reference_guide_v2-0_r10898.pdf (last access: 14 March
2022), 2016.
Milford, C., Hargreaves, K. J., Sutton, M. A., Loubet, B., and Cellier, P.:
Fluxes of NH3 and CO2 over upland moorland in the vicinity of
agricultural land, J. Geophys. Res.-Atmos., 106, 24169–24181, https://doi.org/10.1029/2001jd900082, 2001.
Min, K.-E., Pusede, S. E., Browne, E. C., LaFranchi, B. W., Wooldridge, P.
J., and Cohen, R. C.: Eddy covariance fluxes and vertical concentration
gradient measurements of NO and NO2 over a ponderosa pine ecosystem:
observational evidence for within canopy chemical removal of NOx,
Atmos. Chem. Phys., 14, 5495–5512,
https://doi.org/10.5194/acp-14-5495-2014, 2014.
Moravek, A., Singh, S., Pattey, E., Pelletier, L., and Murphy, J. G.:
Measurements and quality control of ammonia eddy covariance fluxes: A new
strategy for high frequency attenuation correction, Atmos. Meas.
Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, 2019.
Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S. M., Goulden, M. L.,
Daube, B. C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.:
Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate
deciduous forest and a subarctic woodland: 1. Measurements and mechanisms,
J. Geophys. Res.-Atmos., 101, 12639–12657,
https://doi.org/10.1029/96JD00230, 1996.
Nemitz, E., Sutton, M. A., Wyers, G. P., and Jongejan, P. A. C.:
Gas-particle interactions above a Dutch heathland: I. Surface exchange
fluxes of NH3, SO2, HNO3 and HCl, Atmos. Chem.
Phys., 4, 989–1005, https://doi.org/10.5194/acp-4-989-2004, 2004.
Paulissen, M. P. C. P., Bobbink, R., Robat, S. A., and Verhoeven, J. T. A.:
Effects of Reduced and Oxidised Nitrogen on Rich-Fen Mosses: a 4-Year Field
Experiment, Water Air Soil Pollu., 227, 1–14,
https://doi.org/10.1007/s11270-015-2713-y, 2016.
Paulson, C. A.: The Mathematical Representation of Wind Speed and
Temperature Profiles in the Unstable Atmospheric Surface Layer, J.
Appl. Meteorol., 9, 857–861, https://doi.org/10.1175/1520-0450(1970)009<0857:Tmrows>2.0.Co;2, 1970.
Putaud, J.-P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W.,
Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H., Harrison, R.,
Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A., Kasper-Giebl, A.,
Kiss, G., Kousa, A., Kuhlbusch, T., Löschau, G., Maenhaut, W., Molnar,
A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol,
X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J.,
Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and
Raes, F.: A European aerosol phenomenology – 3: Physical and chemical
characteristics of particulate matter from 60 rural, urban, and kerbside
sites across Europe, Atmos. Environ., 44, 1308–1320, https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl,
A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E.,
Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algorithm, Glob. Change
Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Rosenkranz, P., Brüggemann, N., Papen, H., Xu, Z., Seufert, G., and
Butterbach-Bahl, K.: N2O, NO and CH4 exchange, and microbial N turnover over
a Mediterranean pine forest soil, Biogeosciences, 3, 121–133,
https://doi.org/10.5194/bg-3-121-2006, 2006.
Roth, M., Müller-Meißner, A., Michiels, H.-G., and Hauck, M.:
Vegetation changes in the understory of nitrogen-sensitive temperate forests
over the past 70 years, Forest Ecol. Manag., 503, 119754,
https://doi.org/10.1016/j.foreco.2021.119754 2022.
Rummel, U., Ammann, C., Gut, A., Meixner, F. X., and Andreae, M. O.: Eddy
covariance measurements of nitric oxide flux within an Amazonian rain
forest, J. Geophys. Res.-Atmos., 107, LBA 17-1–LBA
17-9, https://doi.org/10.1029/2001JD000520, 2002.
Sauter, F., Sterk, M., van der Swaluw, E., Wichink Kruit, R., de Vries, W.,
and van Pul, A.: The OPS-model: Description of OPS 5.0.0.0, RIVM, Bilthoven,
https://www.rivm.nl/media/ops/OPS-model.pdf (last access: 14 March 2022),
2020.
Saylor, R. D., Baker, B. D., Lee, P., Tong, D., Pan, L., and Hicks, B. B.:
The particle dry deposition component of total deposition from air quality
models: right, wrong or uncertain?, Tellus B, 71, 1550324,
https://doi.org/10.1080/16000889.2018.1550324, 2019.
Schaap, M., Wichink Kruit, R., Hendriks, C., Kranenburg, R., Segers, A.,
Builtjes, P., and Banzhaf, S.: Modelling and assessment of acidifying and
eutrophying atmospheric deposition to terrestrial ecosystems (PINETI-2):
Part I: Atmospheric deposition to German natural and semi-natural ecosystems
during 2009, 2010 and 2011, techinal report, Umweltbundesamt,
Dessau-Roßlau, Germany,
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-08-15_texte_62-2017_pineti2-teil1.pdf (last access:
14 March 2022), 2017.
Schaap, M., Hendriks, C., Kranenburg, R., Kuenen, J., Segers, A., Schlutow,
A., Nagel, H.-D., Ritter, A., and Banzhaf, S.: PINETI-3: Modellierung
atmosphärischer Stoffeinträge von 2000 bis 2015 zur Bewertung der
ökosystem-spezifischen Gefährdung von Biodiversität durch
Luftschadstoffe in Deutschland, technical report, Umweltbundesamt,
Dessau-Roßlau, Germany,
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-10-17_texte_79-2018_pineti3.pdf (last access: 14
March 2022), 2018.
Schneider, C., Pelzer, M., Toenges-Schuller, N., Nacken, M., and Niederau,
A.: ArcGIS basierte Lösung zur detaillierten, deutschlandweiten
Verteilung (Gridding) nationaler Emissionsjahreswerte auf Basis des
Inventars zur Emissionsberichterstattung – Kurzfassung; UBA TEXTE 71/2016,
Für Mensch and Umwelt,
https://www.umweltbundesamt.de/publikationen/arcgis-basierte-loesung-zur-detaillierten
(last access: 9 June 2022), 2016.
Schrader, F. and Brümmer, C.: Land Use Specific Ammonia Deposition
Velocities: a Review of Recent Studies (2004–2013), Water Air Soil
Pollut., 225, 2114, https://doi.org/10.1007/s11270-014-2114-7, 2014.
Schrader, F., Brümmer, C., Flechard, C. R., Wichink Kruit, R. J., van
Zanten, M. C., Zöll, U., Hensen, A., and Erisman, J. W.: Non-stomatal
exchange in ammonia dry deposition models: comparison of two
state-of-the-art approaches, Atmos. Chem. Phys., 16,
13417–13430, https://doi.org/10.5194/acp-16-13417-2016, 2016.
Schrader, F., Schaap, M., Zöll, U., Kranenburg, R., and Brümmer, C.:
The hidden cost of using low-resolution concentration data in the estimation
of NH3 dry deposition fluxes, Sci. Rep., 8, 969,
https://doi.org/10.1038/s41598-017-18021-6, 2018.
Schrader, F., Erisman, J. W., and Brümmer, C: Towards a coupled paradigm
of NH3-CO2 biosphere–atmosphere exchange modelling, Glob. Change
Biol., 26, 4654–4663, https://doi.org/10.1111/gcb.15184, 2020.
Schwarz, J., Cusack, M., Karban, J., Chalupníčková, E.,
Havránek, V., Smolík, J., and Ždímal, V.: PM2.5
chemical composition at a rural background site in Central Europe, including
correlation and air mass back trajectory analysis, Atmos. Res.,
176/177, 108–120, https://doi.org/10.1016/j.atmosres.2016.02.017, 2016.
Schwede, D., Zhang, L., Vet, R., and Lear, G.: An intercomparison of the
deposition models used in the CASTNET and CAPMoN networks, Atmos.
Environ., 45, 1337–1346, https://doi.org/10.1016/j.atmosenv.2010.11.050, 2011.
Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., and Verheyen, K.:
Calculating Dry Deposition and Canopy Exchange with the Canopy Budget Model:
Review of Assumptions and Application to Two Deciduous Forests, Water Air
Soil Pollut., 191, 149–169, https://doi.org/10.1007/s11270-008-9614-2, 2008.
Sutton, M. A. and Fowler, D.: A Model for Inferring Bi-directional Fluxes of
Ammonia Over Plant Canopies, in: Proceedings of the WMO conference on the
measurement and modelling of atmospheric composition changes including
pollutant transport, 179–182, WMO/GAW (World Meterological Organization Global
Atmosphere Watch),
Geneva, Switzerland, https://library.wmo.int/doc_num.php?explnum_id=9600 (last access: 11 November 2022), 1993.
Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A New Diffusion
Denuder System for Long-Term, Regional Monitoring of Atmospheric Ammonia and
Ammonium, Water Air Soil Pollut., 1, 145–156,
https://doi.org/10.1023/a:1013138601753, 2001.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A.,
Grennfelt, P., van Grinsven, H., and Grizzetti, B.: The European Nitrogen
Assessment: sources, effects and policy perspectives, Cambridge University
Press, Cambridge, UK, ISBN 9780511976988, https://doi.org/10.1017/CBO9780511976988, 2011.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E.,
Theobald, M. R., Tang, Y. S., Braban, C. F. , Vieno, M., Dore, A. J.,
Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D.,
Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne,
E., Coheur, P. F., Clarisse, L. Van Damme, M., Ngadi, Y., Clerbaux, C.,
Skjoth, C. A., Geels, C., Hertel, O., Wichink Kruit, R. J., Pinder, R. W.,
Bash, J. O., Walker, J. T., Simpson, D., Horvath, L., Misselbrook, T. H.,
Bleeker, A., Dentener, F., and de Vries, W.: Towards a climate-dependent
paradigm of ammonia emission and deposition, Philos. T. R. Soc. Lond. Ser. B., 368, 20130166,
https://doi.org/10.1098/rstb.2013.0166, 2013.
Tang, Y. S., Simmons, I., van Dijk, N., Di Marco, C., Nemitz, E.,
Dämmgen, U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z., Borovecki,
D., Mitosinkova, M., Hanssen, J. E., Uggerud, T. H., Sanz,M. J., Sanz, P.,
Chorda, J. V., Flechard, C. R., Fauvel, Y., Ferm, M., Perrino, C., and
Sutton, M. A.: European scale application of atmospheric reactive nitrogen
measurements in a low-cost approach to infer dry deposition fluxes,
Agriculture, Ecosyst. Environ., 133, 183–195,
https://doi.org/10.1016/j.agee.2009.04.027, 2009.
Tang, Y. S., Cape, J. N., Braban, C. F., Twigg, M. M., Poskitt, J., Jones,
M. R., Rowland, P., Bentley, P., Hockenhull, K., Woods, C., Leaver, D.,
Simmons, I., van Dijk, N., Nemitz, E., and Sutton, M. A.: Development of a
new model DELTA
sampler and assessment of potential sampling artefacts in the UKEAP AGANet
DELTA system: summary and technical report,
Tech. Rep., London,
https://uk-air.defra.gov.uk/library/reports?report_id=861
(last access: 22 July 2022),
2015.
Tang, Y. S., Flechard, C. R., Dämmgen, U., Vidic, S., Djuricic, V.,
Mitosinkova, M., Uggerud, H. T., Sanz, M. J., Simmons,
I., Dragosits, U., Nemitz, E., Twigg, M., van Dijk, N., Fauvel, Y., Sanz,
F., Ferm, M., Perrino, C., Catrambone, M., Leaver, D., Braban, C. F., Cape,
J. N., Heal, M. R., and Sutton, M. A.: Pan-European rural monitoring network
shows dominance of NH3 gas and NH4NO3 aerosol in inorganic
atmospheric pollution load, Atmos. Chem. Phys., 1, 875–914,
https://doi.org/10.5194/acp-21-875-2021, 2021.
Tarnay, L. W., Gertler, A., and Taylor, G. E.: The use of inferential models
for estimating nitric acid vapor deposition to semi-arid conifer-ous
forests, Atmo. Environ., 36, 3277–3287,
https://doi.org/10.1016/S1352-2310(02)00303-5, 2002.
Thoene, B., Rennenberg, H., and Weber, P.: Absorption of atmospheric
NO2 by spruce (Picea abies) trees, New Phytol., 134, 257–266,
https://doi.org/10.1111/j.1469-8137.1996.tb04630.x, 1996.
Ulrich, B.: Nutrient and acid-base budget of central european forest
ecosystems, in: Effects of Acid Rain on Forest Processes, edited by:
Godbold, D. and Hüttermann, A., John Wiley & Sons, New York, USA,
1–50, 1994.
van der Graaf, S. C., Kranenburg, R., Segers, A. J., Schaap, M., and
Erisman, J. W.: Satellite-derived leaf area index and roughness length
information for surface–atmosphere exchange modelling: a case study for
reactive nitrogen deposition in north-western Europe using LOTOS-EUROS v2.0,
Geosci. Model Dev., 13, 2451–2474,
https://doi.org/10.5194/gmd-13-2451-2020, 2020.
van Jaarsveld, J. A.: The Operational Priority Substances model. Description
and validation of OPS-Pro 4.1., RIVM, Bilthoven, report 500045001,
https://www.pbl.nl/sites/default/files/downloads/500045001.pdf (last access:
14 March 2022), 2004.
van Oss, R., Duyzer, J., and Wyers, P.: The influence of gas-to-particle
conversion on measurements of ammonia exchange over forest, Atmos.
Environ., 32, 465–471, https://doi.org/10.1016/S1352-2310(97)00280-X, 1998.
van Pul, W. A. J. and Jacobs, A. F. G.: The conductance of a maize crop and
the underlying soil to ozone under various environmental conditions,
Bound.-Lay. Meteorol., 69, 83–99, https://doi.org/10.1007/BF00713296, 1994.
van Zanten, M. C., Sauter, F. J., Wichink Kruit, R. J., van Jaarsveld, J.
A., and van Pul, W. A. J.: Description of the DEPAC module, Dry deposition
modeling with DEPAC_GCN2010, Tech. Rep., RIVM, Bilthoven, NL, https://www.rivm.nl/bibliotheek/rapporten/680180001.pdf (last access: 11 November 2022),
2010.
VDI: VDI-Guideline 3782 Part 5: Environmental meteorology – Atmospheric
dispersion models – Deposition parameters, Tech. rep., Verein Deutscher
Ingenieure, Düsseldorf, DE, 2006.
Webb, E. K.: Profile relationships: The log-linear range, and extension to
strong stability, Q. J. Roy. Meteorol. Soc., 96,
67–90, https://doi.org/10.1002/qj.49709640708, 1970.
Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J., and Collett Jr., J. L.: The role of dew as a night-time reservoir and morning source for atmospheric ammonia, Atmos. Chem. Phys., 16, 7435–7449, https://doi.org/10.5194/acp-16-7435-2016, 2016.
Whitehead, J. D., Twigg, M., Famulari, D., Nemitz, E., Sutton, M. A.,
Gallagher, M. W., and Fowler, D.: Evaluation of laser absorption
spectroscopic techniques for eddy covariance flux measurements of ammonia,
Environ. Sci. Technol., 42, 2041, https://doi.org/10.1021/es071596u, 2008.
Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van den Broek, M.,
Nemitz, E., Sutton, M. A., Krol, M., and Holtslag, A. A. M.: Modeling the
surface–atmosphere exchange of ammonia, Atmos. Environ., 44,
945–957, https://doi.org/10.1016/j.atmosenv.2009.11.049, 2010.
Wichink Kruit, R. J., Schaap, M., Sauter, F. J., van Zanten, M. C., and van
Pul, W. A. J.: Modeling the distribution of ammonia across Europe including
bi-directional surface–atmosphere exchange, Biogeosciences, 9, 5261–5277,
https://doi.org/10.5194/bg-9-5261-2012, 2012.
Wichink Kruit, R. J., Aben, J., de Vries, W., Sauter, 1180 F., van der
Swaluw, E., van Zanten, M. C., and van Pul, W.
A. J.: Modelling trends in ammonia in the Netherlands over the period
1990–2014, Atmos. Environ., 154, 20–30, https://doi.org/10.1016/j.atmosenv.2017.01.031, 2017.
Wintjen, P., Ammann, C., Schrader, F., and Brümmer, C.: Correcting
high-frequency losses of reactive nitrogen flux measurements, Atmos.
Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, 2020.
Wintjen, P., Schrader, F., Schaap, M., Beudert, B., and Brümmer, C.:
Forest–atmosphere exchange of reactive nitrogen in a remote region –
Part I: Measuring temporal dynamics, Biogeosciences, 19, 389–413,
https://doi.org/10.5194/bg-19-389-2022, 2022.
Wyers, G. and Duyzer, J.: Micrometeorological measurement of the dry
deposition flux of sulphate and nitrate aerosols to coniferous forest,
Atmos. Environ., 31, 333–343, https://doi.org/10.1016/S1352-2310(96)00188-4,
1997.
Wyers, G. P. and Erisman, J. W.: Ammonia exchange over coniferous forest,
Atmos. Environ., 32, 441–451,
https://doi.org/10.1016/S1352-2310(97)00275-6, 1998.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle
dry deposition scheme for an atmospheric aerosol module, Atmos.
Environ., 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zöll, U., Brümmer, C., Schrader, F., Ammann, C., Ibrom, A.,
Flechard, C. R., Nelson, D. D., Zahniser, M., and Kutsch, W. L.:
Surface–atmosphere exchange of ammonia over peatland using QCL-based
eddy-covariance measurements and inferential modeling, Atmos. Chem.
Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, 2016.
Zöll, U., Lucas-Moffat, A. M., Wintjen, P., Schrader, F., Beudert, B.,
and Brümmer, C.: Is the biosphere-atmosphere exchange of total reactive
nitrogen above forest driven by the same factors as carbon dioxide? An
analysis using artificial neural networks, Atmos. Environ., 206,
108–118, https://doi.org/10.1016/j.atmosenv.2019.02.042, 2019.
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
For the first time, we compared four methods for estimating the annual dry deposition of total...
Altmetrics
Final-revised paper
Preprint