Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Aaron Ferderer
CORRESPONDING AUTHOR
Ecology and Biodiversity, Institute for Marine and Antarctic Studies,
University of Tasmania, Hobart, TAS, Australia
Zanna Chase
Ecology and Biodiversity, Institute for Marine and Antarctic Studies,
University of Tasmania, Hobart, TAS, Australia
Fraser Kennedy
Ecology and Biodiversity, Institute for Marine and Antarctic Studies,
University of Tasmania, Hobart, TAS, Australia
Kai G. Schulz
Centre for Coastal Biogeochemistry, School of Environment, Science and
Engineering, Southern Cross University, Lismore, NSW, Australia
Lennart T. Bach
Ecology and Biodiversity, Institute for Marine and Antarctic Studies,
University of Tasmania, Hobart, TAS, Australia
Related authors
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement is a CO2 removal method with significant potential, but it can lead to a perturbation of the ocean with trace metals such as nickel. This study tested the effect of increasing nickel concentrations on phytoplankton growth and photosynthesis. We found that the response to nickel varied across the 11 phytoplankton species tested here, but the majority were rather insensitive. We note, however, that responses may be different under other experimental conditions.
Falilu Adekunbi, Michaël Grelaud, Gerald Langer, Lucian Chukwu, Marta Álvarez, Shakirudeen Odunuga, Kai George Schulz, and Patrizia Ziveri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3201, https://doi.org/10.5194/egusphere-2025-3201, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study is the first to explore seasonal changes in coccolithophores, microscopic algae important for ocean life and the carbon cycle, off the coast of Nigeria. Their abundance and diversity increased during the rainy season, driven by shifts in the Intertropical Convergence Zone. Despite regional differences, these coastal communities show patterns similar to other parts of the world, revealing possible shared environmental pressures.
Zanna Chase, Karen E. Kohfeld, Amy Leventer, David Lund, Xavier Crosta, Laurie Menviel, Helen C. Bostock, Matthew Chadwick, Samuel L. Jaccard, Jacob Jones, Alice Marzocchi, Katrin J. Meissner, Elisabeth Sikes, Louise C. Sime, and Luke Skinner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3504, https://doi.org/10.5194/egusphere-2025-3504, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain. We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by considering theory and modern observations alongside paleo-proxy reconstructions. We found evidence for connections between sea ice and these systems but also conflicting results, which point to missing knowledge. Our work highlights the complex role of sea ice in the Earth system.
Felix Pollak, Frédéric Parrenin, Emilie Capron, Zanna Chase, Lenneke Jong, and Etienne Legrain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2233, https://doi.org/10.5194/egusphere-2025-2233, 2025
Short summary
Short summary
The Mid-Pleistocene Transition (MPT) marked a shift towards extended glacial periods and amplitudes, while its underlying mechanisms are still disputed. Here, we present a new conceptual model capable of simulating the global ice volume over the last 2.6 Ma and reconstructing the MPT. We find that a long-lasting, gradual trend in the climate system is most favourable in reconstructing the MPT and that for the last 900 ka, precession was more important for glacial terminations than obliquity.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Kittu, Joaquín Ortíz-Cortes, and Kai George Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-524, https://doi.org/10.5194/egusphere-2025-524, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester additional atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested Ca- and Si-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Tyler Cyronak, Rebecca Albright, and Lennart T. Bach
State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023, https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. This chapter of the Guide to Best Practices in Ocean Alkalinity Enhancement Research focuses on field experiments.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Lea Pesjak, Andrew McMinn, Zanna Chase, and Helen Bostock
Clim. Past, 19, 419–437, https://doi.org/10.5194/cp-19-419-2023, https://doi.org/10.5194/cp-19-419-2023, 2023
Short summary
Short summary
This study uses diatom assemblages, biogenic silica and Si/Al data over the last 140 kyr from core TAN1302-44 (64°54' S, 144°32' E) to define glacial-to-interglacial paleoenvironments near Antarctica with respect to sea ice duration and ocean circulation. It has found that the sea ice season increased gradually during the last glacial, reaching a maximum before decreasing at the end of MIS 2. Following this, Circumpolar Deep Water increased relative to other times prior to ice sheet retreat.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement is a CO2 removal method with significant potential, but it can lead to a perturbation of the ocean with trace metals such as nickel. This study tested the effect of increasing nickel concentrations on phytoplankton growth and photosynthesis. We found that the response to nickel varied across the 11 phytoplankton species tested here, but the majority were rather insensitive. We note, however, that responses may be different under other experimental conditions.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Alvarez-Fernandez, S., Bach, L. T., Taucher, J., Riebesell, U., Sommer, U.,
Aberle, N., Brussaard, C. P. D., and Boersma, M.: Plankton responses to
ocean acidification: The role of nutrient limitation, Prog. Oceanogr., 165, 11–18,
https://doi.org/10.1016/J.POCEAN.2018.04.006, 2018.
Armbrust, E.: The life of diatoms in the world's oceans, Nature, 459, 185–192, https://doi.org/10.1038/nature08057, 2009.
Bach, L. T. and Taucher, J.: CO2 effects on diatoms: a synthesis of more
than a decade of ocean acidification experiments with natural communities, Ocean Sci.,
15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019, 2019.
Bach, L. T., Alvarez-Fernandez, S., Hornick, T., Stuhr, A., and Riebesell,
U.: Simulated ocean acidification reveals winners and losers in coastal
phytoplankton, PLoS One, 12, e0188198, https://doi.org/10.1371/JOURNAL.PONE.0188198,
2017.
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2
Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential
Risks and Co-benefits for Marine Pelagic Ecosystems, Front. Clim., 1, 7, https://doi.org/10.3389/fclim.2019.00007, 2019.
Bach, L. T., Tamsitt, V., Gower, J., Hurd, C. L., Raven, J. A., and Boyd, P.
W.: Testing the climate intervention potential of ocean afforestation using
the Great Atlantic Sargassum Belt, Nat. Commun., 12, 1–10,
https://doi.org/10.1038/s41467-021-22837-2, 2021.
Bakker, D. C. E., Bozec, Y., Nightingale, P. D., Goldson, L., Messias, M.
J., de Baar, H. J. W., Liddicoat, M., Skjelvan, I., Strass, V., and Watson,
A. J.: Iron and mixing affect biological carbon uptake in SOIREE and
EisenEx, two Southern Ocean iron fertilisation experiments, Deep-Sea Res. Pt. I, 52, 1001–1019,
https://doi.org/10.1016/J.DSR.2004.11.015, 2005.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Berge, T., Daugbjerg, N., Andersen, B. B., and Hansen, P. J.: Effect of
lowered pH on marine phytoplankton growth rates, Mar. Ecol. Prog. Ser., 416, 79–91,
https://doi.org/10.3354/MEPS08780, 2010.
Carpenter, S. R.: Microcosm experiments have limited relevance for community
and ecosystem ecology, Ecology, 77, 677–680,
https://doi.org/10.2307/2265490, 1996.
Chen, C. Y. and Durbin, E. G.: Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 109, 83–94, https://doi.org/10.3354/meps109083, 1994.
Crawfurd, K. J., Riebesell, U., and Brussaard, C. P. D.: Shifts in the
microbial community in the Baltic Sea with increasing CO2, Biogeosciences Discuss., 1–51,
https://doi.org/10.5194/bg-2015-606, 2016.
Davidson, A. T., McKinlay, J., Westwood, K., Thomson, P. G., van den Enden,
R., de Salas, M., Wright, S., Johnson, R., and Berry, K.: Enhanced CO2
concentrations change the structure of Antarctic marine microbial
communities, Mar. Ecol. Prog. Ser., 552, 93–113, https://doi.org/10.3354/MEPS11742, 2016.
de Lannoy, C. F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W.,
Hannun, K., and Rivest, J. L. B.: Indirect ocean capture of atmospheric CO2:
Part I. Prototype of a negative emissions technology, Int. J. Greenhouse Gas Con., 70, 243–253,
https://doi.org/10.1016/J.IJGGC.2017.10.007, 2018.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practice for Ocean CO2 Measurements, PICES Special Publication, 3, 191 pp.,
2007.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts
of Ocean Acidification on Marine Ecosystems and Reliant Human Communities, Ann. Rev. Environ. Resour.,
45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Engel, A. and Passow, U.: Carbon and nitrogen content of transparent
exopolymer particles (TEP) in relation to their Alcian Blue adsorption, Mar. Ecol. Prog. Ser., 219,
1–10, https://doi.org/10.3354/MEPS219001, 2001.
Engel, A., Schulz, K. G., Riebesell, U., Bellerby, R., Delille, B., and Schartau, M.: Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II), Biogeosciences, 5, 509–521, https://doi.org/10.5194/bg-5-509-2008, 2008.
Evans, C. A., O'Reilly, J. E., and Thomas, J. P.: A handbook for the
measurement of chlorophyll a and primary production, College Station, College Station, Texas, USA, A&M Univ., ISBN 0948277076,
1987.
Falkenberg, L. J., Bellerby, R. G. J., Connell, S. D., Fleming, L. E.,
Maycock, B., Russell, B. D., Sullivan, F. J., and Dupont, S.: Ocean
Acidification and Human Health, Int. J. Env. Res. Pub. He., 17, 4563,
https://doi.org/10.3390/IJERPH17124563, 2020.
Fassbender, A. J., Orr, J. C., and Dickson, A. G.: Technical note:
Interpreting pH changes, Biogeosciences, 18, 1407–1415,
https://doi.org/10.5194/bg-18-1407-2021, 2021.
Ferderer, A.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community – manuscript data, Institute for Marine and Antarctic Studies (IMAS),
University of Tasmania (UTAS), IMAS Metadata [data set], https://doi.org/10.25959/8PEA-SW88, 2021a.
Ferderer, A.: Convective mixing vs no mixing inside two microcosms, TIB [video supplement], https://doi.org/10.5446/55861, 2021b.
Ferderer, A.: Aggregates suspended in microcosm, TIB [video supplement], https://doi.org/10.5446/55860, 2021c.
Feng, E. Y., Koeve, W., Keller, D. P., and Oschlies, A.: Model-Based
Assessment of the CO2 Sequestration Potential of Coastal Ocean
Alkalinization, Earth's Future, 5, 1252–1266, https://doi.org/10.1002/2017EF000659, 2017.
Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R.,
Beardall, J., Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at
the exterior surface of plankton with ocean acidification, Nat. Clim. Change, 2, 510–513,
https://doi.org/10.1038/nclimate1489, 2012.
Fukao, T., Kimoto, K., and Kotani, Y.: Production of transparent exopolymer
particles by four diatom species, Fish. Sci., 76, 755–760, 2010.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann,
T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer,
G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., del Mar
Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs,
potentials and side effects, Environ.l Res. Lett., 13, 063002,
https://doi.org/10.1088/1748-9326/AABF9F, 2018.
Gattuso, J., Epitalon, J., Lavigne, H., Orr, J., Gentili, B., Hagens, M.,
Hofman, A., Mueller, J., Proye, A., Rae, J., and Soetaert, K.: Seacarb:
seawater carbonate chemistry, R package version 3.3.0,
https://CRAN.R-project.org/package=seacarb, last access: 15 December 2021.
Gnanadesikan, A. and Marinov, I.: Export is not enough: nutrient cycling and
carbon sequestration, Mar. Ecol. Prog. Ser., 364, 289–294, https://doi.org/10.3354/MEPS07550,
2008.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of
Seawater Analysis, John Wiley & Sons, Ltd., 159–228,
https://doi.org/10.1002/9783527613984.ch10, 1999.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., Rocha, C. L. D. la,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys., 51, 113–149,
https://doi.org/10.1002/ROG.20004, 2013.
Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., mac Dowell,
N., Minx, J. C., Smith, P., and Williams, C. K.: The technological and
economic prospects for CO2 utilization and removal, Nature, 575, 87–97,
https://doi.org/10.1038/s41586-019-1681-6, 2019.
Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., and Lopez, P.
J.: Multiparametric Analyses Reveal the pH-Dependence of Silicon
Biomineralization in Diatoms, PLoS One, 7, e46722,
https://doi.org/10.1371/JOURNAL.PONE.0046722, 2012.
Hinga, K. R.: Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser., 238, 281–300,
https://doi.org/10.3354/meps238281, 2002.
Hoppe, C. J. M., Flintrop, C. M., and Rost, B.: The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification, Biogeosciences, 15, 4353–4365, https://doi.org/10.5194/bg-15-4353-2018, 2018.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Jones, J.-P., Prakash, G. K. S., and Olah, G. A.: Electrochemical CO2
Reduction: Recent Advances and Current Trends, Israel J. Chem., 54, 1451–1466,
https://doi.org/10.1002/IJCH.201400081, 2014.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean
alkalinity, Energy, 20, 915–922, https://doi.org/10.1016/0360-5442(95)00035-F,
1995.
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering
potential of artificially enhanced silicate weathering of olivine, P. Natl. Acad. Sci. USA, 107,
20228–20233, https://doi.org/10.1073/PNAS.1000545107, 2010.
le Quesne, W. J. F. and Pinnegar, J. K.: The potential impacts of ocean acidification: Scaling from physiology to fisheries, Fish Fish., 13, 333–344, https://doi.org/10.1111/J.1467-2979.2011.00423.x, 2012.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0,
2000.
Malerba, M. E., Marshall, D. J., Palacios, M. M., Raven, J. A., and
Beardall, J.: Cell size influences inorganic carbon acquisition in
artificially selected phytoplankton, New Phytol., 229, 2647–2659,
https://doi.org/10.1111/NPH.17068, 2021.
Mallin, M. A. and Paerl, H. W.: Planktonic Trophic Transfer in an Estuary:
Seasonal, Diel, and Community Structure Effects, Ecology, 75, 2168–2184,
https://doi.org/10.2307/1940875, 1994.
Maugendre, L., Gattuso, J. P., Louis, J., de Kluijver, A., Marro, S.,
Soetaert, K., and Gazeau, F.: Effect of ocean warming and acidification on a
plankton community in the NW Mediterranean Sea, ICES J. Mar. Sci., 72, 1744–1755,
https://doi.org/10.1093/ICESJMS/FSU161, 2015.
Meakin, N. G. and Wyman, M.: Rapid shifts in picoeukaryote community
structure in response to ocean acidification, ISME J., 5, 1397–1405,
https://doi.org/10.1038/ismej.2011.18, 2011.
Milligan, A. J., Varela, D. E., Brzezinski, M. A., and Morel, F. M. M.:
Dynamics of silicon metabolism and silicon isotopic discrimination in a
marine diatomas a function of pCO2, Limnol. Oceanogr., 49, 322–329,
https://doi.org/10.4319/LO.2004.49.2.0322, 2004.
Newbold, L. K., Oliver, A. E., Booth, T., Tiwari, B., Desantis, T., Maguire,
M., Andersen, G., van der Gast, C. J., and Whiteley, A. S.: The response of
marine picoplankton to ocean acidification, Environ. Microbiol., 14, 2293–2307,
https://doi.org/10.1111/J.1462-2920.2012.02762.X, 2012.
Orr, J. C. and Sarmiento, J. L.: Potential of marine macroalgae as a sink
for CO2: Constraints from a 3-D general circulation model of the global
ocean, Water Air Soil Pollut., 64, 405–421, https://doi.org/10.1007/BF00477113, 1992.
Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P.: Comparison of ten packages that compute ocean carbonate chemistry, Biogeosciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-2015, 2015.
Pardo, P., Tilbrook, B., van Ooijen, E., Passmore, A., Neill, C., Jansen,
P., Sutton, A. J., and Trull, T. W.: Surface ocean carbon dioxide
variability in South Pacific boundary currents and Subantarctic waters, Nature, 9,
7592, https://doi.org/10.1038/s41598-019-44109-2, 2019.
Passow, U.: Production of transparent exopolymer particles (TEP) by phyto-
and bacterioplankton, Mar. Ecol. Prog. Ser., 236, 1–12, https://doi.org/10.3354/MEPS236001, 2002.
Paul, A. J. and Bach, L. T.: Universal response pattern of phytoplankton
growth rates to increasing CO2, New Phytol., 228, 1710–1716,
https://doi.org/10.1111/NPH.16806, 2020.
Pedersen, M. F. and Hansen, P. J.: Effects of high pH on a natural marine
planktonic community, Mar. Ecol. Prog. Ser., 260, 19–31, https://doi.org/10.3354/MEPS260019, 2003.
Petrou, K., Baker, K. G., Nielsen, D. A., Hancock, A. M., Schulz, K. G., and
Davidson, A. T.: Acidification diminishes diatom silica production in the
Southern Ocean, Nat. Clim. Change, 9, 781–786, https://doi.org/10.1038/s41558-019-0557-y,
2019.
Quéguiner, B.: Iron fertilization and the structure of planktonic
communities in high nutrient regions of the Southern Ocean, Deep-Sea Res. Pt. II, 90, 43–54,
https://doi.org/10.1016/J.DSR2.2012.07.024, 2013.
Rau, G. H., Carroll, S. A., Bourcier, W. L., Singleton, M. J., Smith, M. M.,
and Aines, R. D.: Direct electrolytic dissolution of silicate minerals for
air CO2 mitigation and carbon-negative H2 production, Earth Atmos. Planet. Sc., 110, 10095–10100,
2013.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon
sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016RG000533, 2017.
Rickels, W., Proelß, A., Geden, O., Burhenne, J., and Fridahl, M.:
Integrating Carbon Dioxide Removal Into European Emissions Trading, Front. Clim., 3, 690023,
https://doi.org/10.3389/FCLIM.2021.690023, 2021.
Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide
limitation of marine phytoplankton growth rates, Nature, 361, 249–251,
https://doi.org/10.1038/361249a0, 1993.
Rogelj, J., Popp, A., Calvin, K. v., Luderer, G., Emmerling, J., Gernaat,
D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V.,
Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L.,
Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F.,
Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean
temperature increase below 1.5 ∘C, Nat. Clim. Change, 8, 325–332,
https://doi.org/10.1038/s41558-018-0091-3, 2018.
RStudio Team: RStudio: Integrated Development for R,
http://www.rstudio.com/ (last access: 28 December 2021), 2022.
Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E.,
Cardelús, C., Cros, L., Gomes, A., López-Sanz, A., Malits, A.,
Martínez, R. A., Mestre, M., Movilla, J., Sarmento, H.,
Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A.,
Calvo, E., Gasol, J. M., Pelejero, C., and Marrasé, C.: Contrasting
effects of ocean acidification on the microbial food web under different
trophic conditions, ICES J. Mar. Sci., 73, 670–679, https://doi.org/10.1093/ICESJMS/FSV130,
2016.
Schaum, E., Rost, B., Millar, A. J., and Collins, S.: Variation in plastic
responses of a globally distributed picoplankton species to ocean
acidification, Nat. Clim. Change, 3, 298–302, https://doi.org/10.1038/nclimate1774, 2012.
Schuiling, R. D. and Krijgsman, P.: Enhanced Weathering: An Effective and
Cheap Tool to Sequester CO2, Climatic Change, 74, 349–354,
https://doi.org/10.1007/S10584-005-3485-Y, 2006.
Schulz, K. G., Bach, L. T., Bellerby, R. G. J., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A.,
Meyerhöfer, M., Larsen, A., Paul, A. J., Sswat, M., and Riebesell, U.:
Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide:
Experimental Evidence for Negative Effects on Prymnesiophytes and Positive
on Small Picoeukaryotes, Front Mar. Sci., 4, 64,
https://doi.org/10.3389/FMARS.2017.00064, 2017.
Sswat, M., Stiasny, M. H., Taucher, J., Algueró-Muñiz, M., Bach, L.
T., Jutfelt, F., Riebesell, U., and Clemmesen, C.: Food web changes under
ocean acidification promote herring larvae survival, Nat. Ecol. Evol., 2, 836–840,
https://doi.org/10.1038/s41559-018-0514-6, 2018.
Taucher, J., Boxhammer, T., Bach, L. T., Paul, A. J., Schartau, M., Stange,
P., and Riebesell, U.: Changing carbon-to-nitrogen ratios of organic-matter
export under ocean acidification, Nat. Clim. Change, 11, 52–57,
https://doi.org/10.1038/s41558-020-00915-5, 2020.
Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J.,
Ridgwell, A., Lomas, M. R., Banwart, S. A., and Beerling, D. J.: Enhanced
weathering strategies for stabilizing climate and averting ocean
acidification, Nat. Clim. Change, 6, 402–406, https://doi.org/10.1038/nclimate2882, 2016.
Thomson, P. G., Davidson, A. T., and Maher, L.: Increasing CO2 changes
community composition of pico- and nano-sized protists and prokaryotes at a
coastal Antarctic site, Mar. Ecol. Prog. Ser., 554, 51–69, https://doi.org/10.3354/MEPS11803,
2016.
Tyka, M. D., Arsdale, C. van, and Platt, J. C.: CO2 capture by pumping
surface acidity to the deep ocean, Energ. Environ. Sci., 15, 786–798, https://doi.org/10.1039/D1EE01532J, 2022.
Wassmànn, P.: Retention versus export food chains: processes controlling
sinking loss from marine pelagic systems, Hydrobiologia, 363, 29–57,
https://doi.org/10.1023/A:1003113403096, 1997.
White, E., Hoppe, C. J. M., and Rost, B.: The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light, Biogeosciences, 17, 635–647, https://doi.org/10.5194/bg-17-635-2020, 2020.
Wolf-Gladrow, D. and Riebesell, U.: Diffusion and reactions in the vicinity
of plankton: A refined model for inorganic carbon transport, Mar. Chem., 59, 17–34,
https://doi.org/10.1016/S0304-4203(97)00069-8, 1997.
Wood, S.: Mixed GAM computation vehicle with automatic smoothness estimation, CRAN, https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (last access: 10 December 2021), 2015.
Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. v.:
Ocean acidification enhances the growth rate of larger diatoms, Limnol. Oceanogr., 59,
1027–1034, https://doi.org/10.4319/LO.2014.59.3.1027, 2014.
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the...
Altmetrics
Final-revised paper
Preprint