Research article
05 Feb 2014
Research article
| 05 Feb 2014
Climate and atmospheric drivers of historical terrestrial carbon uptake in the province of British Columbia, Canada
Y. Peng et al.
Related authors
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022, https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Short summary
To build on the previous investigations of the Voronoi model in the remote sensing retrievals of ice cloud products, this paper developed an ice cloud parameterization scheme based on the single-scattering properties of the Voronoi model and evaluate it through simulations with the Community Integrated Earth System Model (CIESM). Compared with four representative ice cloud schemes, results show that the Voronoi model has good capabilities of ice cloud modeling in the climate model.
Hengqi Wang, Yiran Peng, Knut von Salzen, Yan Yang, Wei Zhou, and Delong Zhao
Geosci. Model Dev., 15, 2949–2971, https://doi.org/10.5194/gmd-15-2949-2022, https://doi.org/10.5194/gmd-15-2949-2022, 2022
Short summary
Short summary
The aerosol activation scheme is an important part of the general circulation model, but evaluations using observed data are mostly regional. This research introduced a numerically efficient aerosol activation scheme and evaluated it by using stratus and stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The decent performance indicates that the scheme is suitable for simulations of cloud droplet number concentrations over wide conditions.
Jing Wei, Zhanqing Li, Maureen Cribb, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, https://doi.org/10.5194/acp-20-3273-2020, 2020
Short summary
Short summary
This study introduced an enhanced space–time extremely randomized trees (STET) approach to improve the 1 km resolution ground-level PM2.5 estimates across China using the remote sensing technology. The STET model shows high accuracy and strong predictive power and appears to outperform most models reported by previous studies. Thus, it is of great importance for future air pollution studies at medium- or small-scale areas and will be applied to generate the historical PM2.5 dataset across China.
Xiaoyan Liu, Yan-Lin Zhang, Yiran Peng, Lulu Xu, Chunmao Zhu, Fang Cao, Xiaoyao Zhai, M. Mozammel Haque, Chi Yang, Yunhua Chang, Tong Huang, Zufei Xu, Mengying Bao, Wenqi Zhang, Meiyi Fan, and Xuhui Lee
Atmos. Chem. Phys., 19, 11213–11233, https://doi.org/10.5194/acp-19-11213-2019, https://doi.org/10.5194/acp-19-11213-2019, 2019
Short summary
Short summary
Although a total ban on straw burning has been enforced in eastern China, the regionally transported biomass burning emissions remarkably impacted the chemical and optical properties of carbonaceous aerosols in Nanjing, which were quantified by a calculation based on measured data and a simulation based on a model. Results showed that regionally transported biomass burning emissions significantly contributed to the carbonaceous aerosols and impacted the solar radiation balance of the atmosphere.
Jing Wei, Yiran Peng, Rashed Mahmood, Lin Sun, and Jianping Guo
Atmos. Chem. Phys., 19, 7183–7207, https://doi.org/10.5194/acp-19-7183-2019, https://doi.org/10.5194/acp-19-7183-2019, 2019
Short summary
Short summary
This study evaluates the suitability of 11 satellite-derived aerosol products in describing the spatio-temporal variations over the world. Our results show similar global patterns among these products but noticeable spatial heterogeneity and numerical differences over land regions. In general, MODIS products perform best at reflecting the spatial distributions and capturing the temporal trends of aerosol. This study help readers select a suitable aerosol dataset for their studies.
Xiaoning Xie, He Zhang, Xiaodong Liu, Yiran Peng, and Yangang Liu
Atmos. Chem. Phys., 17, 5877–5892, https://doi.org/10.5194/acp-17-5877-2017, https://doi.org/10.5194/acp-17-5877-2017, 2017
Short summary
Short summary
New complete cloud parameterizations of cloud droplet effective radius and the two-moment cloud-to-rain autoconversion process explicitly accounting for dispersion are implemented into CAM5.1. The results show that the consideration of dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, which reduces the AIF substantially at a global scale, especially in the Northern Hemisphere.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
EGUsphere, https://doi.org/10.5194/egusphere-2022-923, https://doi.org/10.5194/egusphere-2022-923, 2022
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Guido Ceccherini, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Matthew J. McGrath, Julia Nabel, Benjamin Poulter, Simone Rossi, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-245, https://doi.org/10.5194/essd-2022-245, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing transparency and confidence in land-use CO2 flux estimates.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
EGUsphere, https://doi.org/10.5194/egusphere-2022-641, https://doi.org/10.5194/egusphere-2022-641, 2022
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how the nature works. Of course, the nature doesn't care about our understanding. Since our understanding is not perfect, evaluating models is challenging and there are uncertainties. This manuscript illustrates this uncertainty for land models and argues that evaluating models in the light of uncertainty in various components provides useful information.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022, https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Short summary
To build on the previous investigations of the Voronoi model in the remote sensing retrievals of ice cloud products, this paper developed an ice cloud parameterization scheme based on the single-scattering properties of the Voronoi model and evaluate it through simulations with the Community Integrated Earth System Model (CIESM). Compared with four representative ice cloud schemes, results show that the Voronoi model has good capabilities of ice cloud modeling in the climate model.
Hengqi Wang, Yiran Peng, Knut von Salzen, Yan Yang, Wei Zhou, and Delong Zhao
Geosci. Model Dev., 15, 2949–2971, https://doi.org/10.5194/gmd-15-2949-2022, https://doi.org/10.5194/gmd-15-2949-2022, 2022
Short summary
Short summary
The aerosol activation scheme is an important part of the general circulation model, but evaluations using observed data are mostly regional. This research introduced a numerically efficient aerosol activation scheme and evaluated it by using stratus and stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The decent performance indicates that the scheme is suitable for simulations of cloud droplet number concentrations over wide conditions.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021, https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
Short summary
This study evaluates how well the CLASSIC land surface model reproduces the energy, water, and carbon cycle when compared against a wide range of global observations. Special attention is paid to how uncertainties in the data used to drive and evaluate the model affect model skill. Our results show the importance of incorporating uncertainties when evaluating land surface models and that failing to do so may potentially misguide future model development.
Ali Asaadi and Vivek K. Arora
Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, https://doi.org/10.5194/bg-18-669-2021, 2021
Short summary
Short summary
More than a quarter of the current anthropogenic CO2 emissions are taken up by land, reducing the atmospheric CO2 growth rate. This is because of the CO2 fertilization effect which benefits 80 % of global vegetation. However, if nitrogen and phosphorus nutrients cannot keep up with increasing atmospheric CO2, the magnitude of this terrestrial ecosystem service may reduce in future. This paper implements nitrogen constraints on photosynthesis in a model to understand the mechanisms involved.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Joe R. Melton, Vivek K. Arora, Eduard Wisernig-Cojoc, Christian Seiler, Matthew Fortier, Ed Chan, and Lina Teckentrup
Geosci. Model Dev., 13, 2825–2850, https://doi.org/10.5194/gmd-13-2825-2020, https://doi.org/10.5194/gmd-13-2825-2020, 2020
Short summary
Short summary
We transitioned the CLASS-CTEM land surface model to an open-source community model format by modernizing the code base to make the model easier to use and understand, providing a complete software environment to run the model within, developing a benchmarking suite for model evaluation, and creating an infrastructure to support community involvement. The new model, the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC), is now available for the community to use and develop.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Jing Wei, Zhanqing Li, Maureen Cribb, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, https://doi.org/10.5194/acp-20-3273-2020, 2020
Short summary
Short summary
This study introduced an enhanced space–time extremely randomized trees (STET) approach to improve the 1 km resolution ground-level PM2.5 estimates across China using the remote sensing technology. The STET model shows high accuracy and strong predictive power and appears to outperform most models reported by previous studies. Thus, it is of great importance for future air pollution studies at medium- or small-scale areas and will be applied to generate the historical PM2.5 dataset across China.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Xiaoyan Liu, Yan-Lin Zhang, Yiran Peng, Lulu Xu, Chunmao Zhu, Fang Cao, Xiaoyao Zhai, M. Mozammel Haque, Chi Yang, Yunhua Chang, Tong Huang, Zufei Xu, Mengying Bao, Wenqi Zhang, Meiyi Fan, and Xuhui Lee
Atmos. Chem. Phys., 19, 11213–11233, https://doi.org/10.5194/acp-19-11213-2019, https://doi.org/10.5194/acp-19-11213-2019, 2019
Short summary
Short summary
Although a total ban on straw burning has been enforced in eastern China, the regionally transported biomass burning emissions remarkably impacted the chemical and optical properties of carbonaceous aerosols in Nanjing, which were quantified by a calculation based on measured data and a simulation based on a model. Results showed that regionally transported biomass burning emissions significantly contributed to the carbonaceous aerosols and impacted the solar radiation balance of the atmosphere.
Jing Wei, Yiran Peng, Rashed Mahmood, Lin Sun, and Jianping Guo
Atmos. Chem. Phys., 19, 7183–7207, https://doi.org/10.5194/acp-19-7183-2019, https://doi.org/10.5194/acp-19-7183-2019, 2019
Short summary
Short summary
This study evaluates the suitability of 11 satellite-derived aerosol products in describing the spatio-temporal variations over the world. Our results show similar global patterns among these products but noticeable spatial heterogeneity and numerical differences over land regions. In general, MODIS products perform best at reflecting the spatial distributions and capturing the temporal trends of aerosol. This study help readers select a suitable aerosol dataset for their studies.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ali Asaadi, Vivek K. Arora, Joe R. Melton, and Paul Bartlett
Biogeosciences, 15, 6885–6907, https://doi.org/10.5194/bg-15-6885-2018, https://doi.org/10.5194/bg-15-6885-2018, 2018
Short summary
Short summary
Non-structural carbohydrates (NSCs), which play a central role in a plant's life processes and its response to environmental conditions, are typically not included in terrestrial biogeochemistry models used in Earth system models (ESMs). In this study, we include NSC pools in the framework of the land component of the Canadian ESM and show how they help address the long-standing problem of delayed leaf phenology.
Vivek K. Arora, Joe R. Melton, and David Plummer
Biogeosciences, 15, 4683–4709, https://doi.org/10.5194/bg-15-4683-2018, https://doi.org/10.5194/bg-15-4683-2018, 2018
Short summary
Short summary
Earth system models (ESMs) project future changes in climate in response to changes in anthropogenic emissions of greenhouse gases (GHGs). However, before this can be achieved the natural fluxes of a given GHG must also be modelled. This paper evaluates the natural methane fluxes simulated by the CLASS-CTEM model (which is the land component of the Canadian ESM) against observations to show that the simulated methane emissions from wetlands and fires, and soil uptake of methane are realistic.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Bakr Badawy, Saroja Polavarapu, Dylan B. A. Jones, Feng Deng, Michael Neish, Joe R. Melton, Ray Nassar, and Vivek K. Arora
Geosci. Model Dev., 11, 631–663, https://doi.org/10.5194/gmd-11-631-2018, https://doi.org/10.5194/gmd-11-631-2018, 2018
Short summary
Short summary
We assess the impact of using the meteorological fields from GEM-MACH-GHG to drive CLASS-CTEM. This coupling is considered an important step toward understanding how meteorological uncertainties affect both CO2 flux estimates and modeled atmospheric transport. Ultimately, such an approach will provide more direct feedback to the CLASS-CTEM developers and thus help to improve the performance of CLASS-CTEM by identifying the model limitations based on atmospheric constraints.
Rudra K. Shrestha, Vivek K. Arora, Joe R. Melton, and Laxmi Sushama
Biogeosciences, 14, 4733–4753, https://doi.org/10.5194/bg-14-4733-2017, https://doi.org/10.5194/bg-14-4733-2017, 2017
Short summary
Short summary
Computer models of vegetation provide a tool to assess how future changes in climate may the affect geographical distribution of vegetation. However, such models must first be assessed for their ability to reproduce the present-day geographical distribution of vegetation. Here, we assess the ability of one such dynamic vegetation model. We find that while the model is broadly successful in reproducing the geographical distribution of trees and grasses in North America some limitations remain.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Xiaoning Xie, He Zhang, Xiaodong Liu, Yiran Peng, and Yangang Liu
Atmos. Chem. Phys., 17, 5877–5892, https://doi.org/10.5194/acp-17-5877-2017, https://doi.org/10.5194/acp-17-5877-2017, 2017
Short summary
Short summary
New complete cloud parameterizations of cloud droplet effective radius and the two-moment cloud-to-rain autoconversion process explicitly accounting for dispersion are implemented into CAM5.1. The results show that the consideration of dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, which reduces the AIF substantially at a global scale, especially in the Northern Hemisphere.
Roberto Pilli, Giacomo Grassi, Werner A. Kurz, Giulia Fiorese, and Alessandro Cescatti
Biogeosciences, 14, 2387–2405, https://doi.org/10.5194/bg-14-2387-2017, https://doi.org/10.5194/bg-14-2387-2017, 2017
Short summary
Short summary
We modeled, for 26 European countries, the C budget and fluxes of the main forest pools from 2000 to 2030 under different management scenarios. Our findings show an incipient aging process for the existing forests, but specific conditions, such as the harvest rate and the current age structure, may have different impacts on the country-specific evolution of biomass stock. This provides a useful framework for more detailed analyses of the mitigation potential of the forest sector.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Vivek K. Arora and John F. Scinocca
Geosci. Model Dev., 9, 2357–2376, https://doi.org/10.5194/gmd-9-2357-2016, https://doi.org/10.5194/gmd-9-2357-2016, 2016
Short summary
Short summary
This paper uses observed features of the global carbon cycle to constrain how much carbon the land should take up in an Earth system model in response to increasing fossil fuel CO2 emissions since the start of the industrial era. These models are the only tool available to us for projecting future climate change. Despite their uncertainties, if current observations can be used to constrain models then more confidence can be places in models' future climate change projections.
Arelia T. Werner and Alex J. Cannon
Hydrol. Earth Syst. Sci., 20, 1483–1508, https://doi.org/10.5194/hess-20-1483-2016, https://doi.org/10.5194/hess-20-1483-2016, 2016
Short summary
Short summary
Seven gridded statistical downscaling methods are tested for strength in simulating climate and hydrologic extremes. A recently developed technique, which is a post-processed version of bias corrected constructed analogues where the final bias correction is based on the bias corrected climate imprint method, is shown to be an especially strong method for hydrologic extremes versus other more commonly applied methods, including the popular bias corrected spatial disaggregation method.
J. R. Melton and V. K. Arora
Geosci. Model Dev., 9, 323–361, https://doi.org/10.5194/gmd-9-323-2016, https://doi.org/10.5194/gmd-9-323-2016, 2016
Short summary
Short summary
We use a modified form of the Lotka–Volterra (L–V) equations to simulate competition between plant functional types (PFTs) on a global scale with the Canadian Terrestrial Ecosystem Model (CTEM) version 2.0. Our modified L–V simulations compare well against observation-based records of PFT distributions, while simulations with unmodified L–V equations show significant biases. We include an appendix detailing all aspects of CTEM v. 2.0.
C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones
Biogeosciences, 12, 5211–5228, https://doi.org/10.5194/bg-12-5211-2015, https://doi.org/10.5194/bg-12-5211-2015, 2015
Short summary
Short summary
Terrestrial carbon feedbacks are a large uncertainty in climate change. We separate modeled feedback responses into those governed by changed carbon inputs (productivity) and changed outputs (turnover). The disaggregated responses show that both are important in controlling inter-model uncertainty. Interactions between productivity and turnover are also important, and research must focus on these interactions for more accurate projections of carbon cycle feedbacks.
J. R. Melton, R. K. Shrestha, and V. K. Arora
Biogeosciences, 12, 1151–1168, https://doi.org/10.5194/bg-12-1151-2015, https://doi.org/10.5194/bg-12-1151-2015, 2015
Short summary
Short summary
Net ecosystem productivity (NEP) in seasonally dry Amazon forests varies
greatly between sites with similar precipitation patterns. We ran CLASS-CTEM at two LBA Amazon sites (Tapajós 83km & Jarú Reserve) that exhibit opposite seasonal NEP cycles despite reasonably similar meteorological conditions. We find the influence of soil texture and depth, through soil moisture, on seasonal patterns of GPP and, especially, heterotrophic respiration is important for correctly simulating NEP seasonality.
A. W. King, R. J. Andres, K. J. Davis, M. Hafer, D. J. Hayes, D. N. Huntzinger, B. de Jong, W. A. Kurz, A. D. McGuire, R. Vargas, Y. Wei, T. O. West, and C. W. Woodall
Biogeosciences, 12, 399–414, https://doi.org/10.5194/bg-12-399-2015, https://doi.org/10.5194/bg-12-399-2015, 2015
N. C. Swart, J. C. Fyfe, O. A. Saenko, and M. Eby
Biogeosciences, 11, 6107–6117, https://doi.org/10.5194/bg-11-6107-2014, https://doi.org/10.5194/bg-11-6107-2014, 2014
Short summary
Short summary
Estimates of ocean carbon uptake from ocean biogeochemical models are key to our understanding of the global carbon cycle. Such estimates suggest that ocean carbon uptake is decreasing due to climate change, and particularly due to strengthening of the Southern Hemisphere winds. We show that these model-based estimates are highly uncertain due to poorly resolved physical processes (mesoscale ocean eddies) and uncertainty in the observed surface wind forcing used to drive the models.
L. R. Boysen, V. Brovkin, V. K. Arora, P. Cadule, N. de Noblet-Ducoudré, E. Kato, J. Pongratz, and V. Gayler
Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, https://doi.org/10.5194/esd-5-309-2014, 2014
V. K. Arora and G. J. Boer
Biogeosciences, 11, 4157–4171, https://doi.org/10.5194/bg-11-4157-2014, https://doi.org/10.5194/bg-11-4157-2014, 2014
C. E. Smyth, G. Stinson, E. Neilson, T. C. Lemprière, M. Hafer, G. J. Rampley, and W. A. Kurz
Biogeosciences, 11, 3515–3529, https://doi.org/10.5194/bg-11-3515-2014, https://doi.org/10.5194/bg-11-3515-2014, 2014
K. E. O. Todd-Brown, J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison
Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, https://doi.org/10.5194/bg-11-2341-2014, 2014
J. R. Melton and V. K. Arora
Biogeosciences, 11, 1021–1036, https://doi.org/10.5194/bg-11-1021-2014, https://doi.org/10.5194/bg-11-1021-2014, 2014
Related subject area
Biogeochemistry: Modelling, Terrestrial
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Effect of land use legacy on the future carbon sink for the conterminous U.S.
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model
Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2
Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget
Historical CO2 emissions from land use and land cover change and their uncertainty
A Bayesian approach to evaluation of soil biogeochemical models
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions
Modeling biological nitrogen fixation in global natural terrestrial ecosystems
The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Benjamin Seth Felzer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-208, https://doi.org/10.5194/bg-2022-208, 2022
Revised manuscript accepted for BG
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land use legacy in the conterminous U.S. from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Thomas Gasser, Léa Crepin, Yann Quilcaille, Richard A. Houghton, Philippe Ciais, and Michael Obersteiner
Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020, https://doi.org/10.5194/bg-17-4075-2020, 2020
Short summary
Short summary
We combine several lines of evidence to provide a robust estimate of historical CO2 emissions from land use change. Our novel approach leads to reduced uncertainty and identifies key remaining sources of uncertainty and discrepancy.
We also quantify the carbon removal by natural ecosystems that would have occurred if these ecosystems had not been destroyed (mostly via deforestation). Over the last decade, this foregone carbon sink amounted to about 50 % of the actual emissions.
Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison
Biogeosciences, 17, 4043–4057, https://doi.org/10.5194/bg-17-4043-2020, https://doi.org/10.5194/bg-17-4043-2020, 2020
Short summary
Short summary
Soil biogeochemical models (SBMs) are needed to predict future soil CO2 emissions levels, but we presently lack statistically rigorous frameworks for assessing the predictive utility of SBMs. In this study, we demonstrate one possible approach to evaluating SBMs by comparing the fits of two models to soil CO2 respiration data with recently developed Bayesian statistical goodness-of-fit metrics. Our results demonstrate that our approach is a viable one for continued development and refinement.
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Short summary
Carbon dioxide is produced by soil microbes through respiration, which is particularly fast when soils are moistened by rain. Will respiration increase with future more intense rains and longer dry spells? With a mathematical model, we show that wetter conditions increase respiration. In contrast, if rainfall totals stay the same, but rain comes all at once after long dry spells, the average respiration will not change, but the contribution of the respiration bursts after rain will increase.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Tong Yu and Qianlai Zhuang
Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020, https://doi.org/10.5194/bg-17-3643-2020, 2020
Short summary
Short summary
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle. However, the fixation rate has usually been measured or estimated at a particular observational site. This study develops a BNF model considering the symbiotic relationship between legume plants and bacteria. The model is extensively calibrated with site-level observational data and then extrapolated to the global terrestrial ecosystems to quantify the fixation rate in the 1990s.
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Andy Wiltshire, Karina Williams, Nicholas C. Parazoo, Junjie Liu, Antonio C. L. da Costa, Patrick Meir, Maurizio Mencuccini, and Anna B. Harper
Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, https://doi.org/10.5194/bg-17-3589-2020, 2020
Short summary
Short summary
Non-structural carbohydrates (NSCs) are an important set of molecules that help plants to grow and respire when photosynthesis is restricted by extreme climate events. In this paper we present a simple model of NSC storage and assess the effect that it has on simulations of vegetation at the ecosystem scale. Our model has the potential to significantly change predictions of plant behaviour in global vegetation models, which would have large implications for predictions of the future climate.
Cited articles
Ahlström, A., Smith, B., Lindström, J., Rummukainen, M., and Uvo, C. B.: GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance, Biogeosciences, 10, 1517–1528, https://doi.org/10.5194/bg-10-1517-2013, 2013.
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Glob. Change Biol., 11, 39–59, 2005a.
Arora V. K. and Boer, G. J.: Fire as an interactive component of dynamic vegetation models, J. Geophys. Res., 110, G02008, https://doi.org/10.1029/2005JG000042, 2005b.
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16, 3327–3348, 2010.
Arora, V. K., Boer, G. J., Christian, J. R., Curry, C. L., Denman, K. L., Zahariev, K., Flato, G. M., Scinocca, J. F., Merryfield, W. J., and Lee, W. G.: The effect of terrestrial photosynthesis down-regulation on the 20th century carbon budget simulated with the CCCma Earth System Model, J. Clim., 22, 6066–6088, 2009.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models, J. Climate, 26, 5289–5314, 2013.
Batjes, N. H. (Ed.): A homogenized soil data file for global environmental research: A subset of FAO, ISRIC and NRCS profiles (Version 1.0), Working Paper and Preprint 95/10b, International Soil Reference and Information Centre, Wageningen, 1995.
B.C. Ministry of Forests & Range: Tree Species Composition and Diversity in British Columbia, B.C. Min. For. Ran., For. Prac. Br., Victoria, B.C. FREP, http://www.for.gov.bc.ca/hfp/frep/publications/index.htm, 2008.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate, Science, 329, 834–838, 2010.
Box, E. O.: Plant functional types and climate at a global scale, J. Veg. Sci., 7, 309–320, 1996.
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci., 104, 18666–18870, 2007.
Ciais, P., Canadell, J. G., Luyssaert, S., Chevallier, F., Shvidenko, A., Poussi, Z., Jonas, M., Peylin, P., King, A. W., Schulze, E.-D., Piao, S., Rodenbeck, C., Peters, W., and Breon, F.-M.: Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?, Current Opinion in Environmental Sustainbility, 2, 225–230, 2010.
Deng, F. and Chen, J. M.: Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses, Biogeosciences, 8, 3263–3281, https://doi.org/10.5194/bg-8-3263-2011, 2011.
Deng, F., Chen, J. M., Plummer, S., Chen, M., and Pisek, J.: Algorithm for global leaf area index retrieval using satellite imagery, IEEE T. Geosci. Remote, 44, 2219–2228, 2006.
Deng, F., Chen, J. M., Ishizawa, M., Yuen, C. W., Mo, G., Higuchi, K., Chan, D., and Maksyutov, S.: Global monthly CO2 flux inversion with a focus over North America, Tellus B, 59, 179–190, 2007.
FAO: The digital soil map of the world, version 3.5. FAO, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 1995.
Fonseca, W., Rey-Benayas, J. M., and Alice, F. E.: Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica, Forest Ecol. Manage., 262, 1400–1408, 2011.
Global Soil Data Task: Global Soil Data Products CD-ROM (IGBP-DIS). CD-ROM. International Geosphere-Biosphere Programme, Data and Information System, Potsdam, Germany, Available from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, 2000.
Gourdji, S. M., Mueller, K. L., Yadav, V., Huntzinger, D. N., Andrews, A. E., Trudeau, M., Petron, G., Nehrkorn, T., Eluszkiewicz, J., Henderson, J., Wen, D., Lin, J., Fischer, M., Sweeney, C., and Michalak, A. M.: North American CO2 exchange: inter-comparison of modeled estimates with results from a fine-scale atmospheric inversion, Biogeosciences, 9, 457–475, https://doi.org/10.5194/bg-9-457-2012, 2012.
Hember, R. A., Kurz, W. A., Metsaranta, J. M., Black, T. A., Guy, R. D., and Coops, N. C.: Accelerating regrowth of temperate-maritime forests due to environmental change, Glob. Change Biol., 18, 2026–2040, https://doi.org/10.1111/j.1365-2486.2012.02669.x, 2012.
Hickler, T., Smith, B., Colin Prentice, I., Mjofors, K., Miller, P., Arneth, A., and Sykes, M. T.: CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests, Glob. Change Biol., 14, 1531–1542, 2008.
Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., Baker, I. T., Chen, J. M., Davis, K. J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, S., McGuire, A. D., Neilson, R. P., Potter, C., Poulter, B., Price, D., Raczka, B. M., Tian, H. Q., Thornton, P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, R.: North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison, Ecol. Model., 232, 144–157, 2012.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DEO AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643, 2002.
Krishnan, P., Black, T. A., Barr, A. G., Grant, N. J., Gaumont-Guay, D., and Nesic, Z.: Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest, J. Geophys. Res., 113, D09109, https://doi.org/10.1029/2007JD008965, 2008.
Kurz, W. A., Apps, M. J., Comeau, P. G., and Trofymow, J. A.: The Carbon Budget of British Columbia's Forests, 1920-1989: Preliminary Analysis and Recommendations for Refinements, Canada-British Columbia Partnership Agreement on Forest Resource Development: FRDA 11, Joint publication of Canadian Forest Service, Pacific Forestry Centre and BC Ministry of Forests, Research Branch, Victoria, BC, FRDA Rept. 261, 62 pp. (available at: http://www.bookstore.cfs.nrcan.gc.ca/publications?id=4665), 1996.
Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change, Nature, 452, 987–990, https://doi.org/10.1038/nature06777, 2008.
Kurz, W. A., Dymond, C. C., White, T. M., Stinson, G., Shaw, C. H., Rampley, G. J., Smyth, C., Simpson, B. N., Neilson, E. T., Trofymow, J. A., Metsaranta, J., and Apps, M. J.: CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecol. Model., 220, 480–504, https://doi.org/10.1016/j.ecolmodel.2008.10.018, 2009.
Lamlom, S. H. and Savidge, R. A.: A reassessment of carbon content in wood: variation within and between 41 North American species, Biomass and Bioenergy, 25, 381–388, 2003.
Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, 2013.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355, 1995.
Li, R. and Arora, V. K.: Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances, Biogeosciences, 9, 593–605, https://doi.org/10.5194/bg-9-593-2012, 2012.
Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E.-D., Jung, M., Zaehle, S., Schelhaas, M. J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G. J., Verbeeck, H., Sulkava, M., van der Werf, G. R., Janssens, I. A., and members of the carboeurope-ip synthesis team: The European carbon balance. Part 3: forests, Glob. Change Biol., 16, 1429–1450, 2010.
McGuire, A. D., Hayes, D. J., Kicklighter, D. W., Manizza, M., Zhuang, Q., Chen, M., Follows, M. J., Gurney, K. R., Mcclelland, J. W., Melillo, J. M., Peterson, B. J., and Prinn, R. G.: An analysis of the carbon balance of the Arctic Basin from 1997 to 2006, Tellus 62B, 455–474, https://doi.org/10.1111/j.1600-0889.2010.00497.x, 2010.
Mekis, É. and Vincent, L. A.: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada, Atmos.-Ocean, 49, 163–177, 2011.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993, 2011.
Penner, M., Power, K., Muhairwe, C., Tellier, R., and Wang, Y.: Canada's forest biomass resources: Deriving estimates from Canada's forest inventory, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Information Report BC-X-370, 33 pp., 1997.
Power, K. and Gillis, M.: Canadian Forest Inventory 2001. Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Information Report BC-X-408, 140 pp., 2006.
Reich, P. B., Koike, T., Gower, S. T., and Schoettle, A. W.: Causes and consequences of variation in conifer leaf life-span, in: Ecophysiology of coniferous forests, edited by: Smith, W. K. and Hinkley, T. M., 225–253, Academic Press, San Diego, California, 1995.
Ruesch, A. S. and Gibbs, H.: New IPCC Tier-1 global biomass carbon map for the year 2000, Available online from the carbon dioxide information analysis center [http://cdiac.ornl.gov/], Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2008.
Sarmiento, G., Pinillos, M., and Garay, I.: Biomass variability in tropical American lowland rainforests, Ecotropicos, 18, 1–20, 2005.
Schnorbus, M. A., Bennett, K. E., Werner, A. T., and Berland, A. J.: Hydrologic impacts of climate change in the Peace, Campbell and Columbia Watersheds, British Columbia, Canada, Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, 157 pp., 2011.
Stinson, G., Kurz, W., Smyth, C., Neilson, E., Dymond, C., Metsaranta, J., Boisvenue, C., Rampley, G., Li, Q., White, T., and Blain, D.: An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008, Glob. Change Biol., 17, 2227–2244, 2011.
Verseghy, D. L.: CLASS – A Canadian land surface scheme for GCMs. 1. soil model, Int. J. Climatol., 11, 111–133, 1991.
Verseghy, D. L., Mcfarlane, N. A., and Lazare, M.: CLASS – A Canadian land surface scheme for GCMs. 2. Vegetation model and coupled runs, Int. J. Climatol., 13, 347–370, 1993.
Wulder, M. A., Dechka, J. A., Gillis, M. A., Luther, J. E., Hall, R. J., and Beaudoin, A.: Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program, The Forestry Chronicle, 79, 1075–1083, 2003.
Wulder, M. A., White, J. C., Cranny, M. M., Hall, R. J., Luther, J. E., Beaudoin, A., Goodenough, D. G., and Dechka, J. A.: Monitoring Canada's forests. Part 1: Completion of the EOSD land cover project, Canadian Journal of Remote Sensing, 34, 549–562, 2008.
Yuan, W., Luo, Y., Richardson, A. D., Oren, R., Luyssaert, S., Janssens, I. A., Ceulemans, R., Zhou, X., Grunwald, T., Aubinet, M., Berhofer, C., Baldocchi, D. D., Chen, J., Dunn, A. L., Deforest, J., Dragoni, D., Goldstein, A. H., Moors, E., Munger, J. W., Monson, R. K., Suyker, A. E., Starr, G., Scott, R. L., Tenhunen, J., Verma, S. B., Vesala, T., and Wofsy, S. C.: Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables, Glob. Change Biol., 15, 2905–2920, 2009.
Zhang, F., Chen, J. M., Pan, Y., Birdsey, R. A., Shen, S., Ju, W., and He, L.: Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010, J. Geophys. Res., 117, G02021, https://doi.org/10.1029/2011JG001930, 2012.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(1274 KB) - Metadata XML
Altmetrics
Final-revised paper
Preprint