Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1387-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1387-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties
Dynamic Macroecology, Swiss Federal Research Institute WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT
59717, USA
Cold and Arid Regions Environmental and Engineering
Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
Niklaus E. Zimmermann
Dynamic Macroecology, Swiss Federal Research Institute WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Department of Environmental Systems Science, Swiss Federal
Institute of Technology ETH, 8092 Zürich, Switzerland
Jed O. Kaplan
Institute of Earth Surface Dynamics, University of Lausanne, 1015
Lausanne, Switzerland
Benjamin Poulter
Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT
59717, USA
Related authors
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025, https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the Global Inundation Extent from Multi-Satellites-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25° × 0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025, https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the Global Inundation Extent from Multi-Satellites-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25° × 0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Min Feng, Joseph O. Sexton, Panshi Wang, Paul M. Montesano, Leonardo Calle, Nuno Carvalhais, Benjamin Poulter, Matthew J. Macander, Michael A. Wulder, Margaret Wooten, William Wagner, Akiko Elders, Saurabh Channan, and Christopher S. R. Neigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2268, https://doi.org/10.5194/egusphere-2025-2268, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The boreal forest, warming fastest among forested biomes, shows a northward shift in tree cover. Using the longest, highest-resolution satellite maps, we found an 0.844 million km² increase in tree cover and a 0.45° northward shift from 1985–2020, especially in northern latitudes. Stable disturbance rates suggest climate-driven growth. Young forests' biomass may help reduce global CO2, despite uncertainties in carbon balance, disturbance, and respiration.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Ram Singh, Alexander Koch, Allegra N. LeGrande, Kostas Tsigaridis, Riovie D. Ramos, Francis Ludlow, Igor Aleinov, Reto Ruedy, and Jed O. Kaplan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-219, https://doi.org/10.5194/gmd-2024-219, 2024
Preprint under review for GMD
Short summary
Short summary
This study presents and demonstrates an experimental framework for asynchronous land-atmosphere coupling using the NASA GISS ModelE and LPJ-LMfire models for the 2.5ka period. This framework addresses the limitation of NASA ModelE, which does not have a fully dynamic vegetation model component. It also shows the role of model performance metrics, such as model bias and variability, and the simulated climate is evaluated against the multi-proxy paleoclimate reconstructions for the 2.5ka climate.
Basil A. S. Davis, Marc Fasel, Jed O. Kaplan, Emmanuele Russo, and Ariane Burke
Clim. Past, 20, 1939–1988, https://doi.org/10.5194/cp-20-1939-2024, https://doi.org/10.5194/cp-20-1939-2024, 2024
Short summary
Short summary
During the last ice age (21 000 yr BP) in Europe, the composition and extent of forest and its associated climate remain unclear, with models indicating more forest north of the Alps and a warmer and somewhat wetter climate than suggested by the data. A new compilation of pollen records with improved dating suggests greater agreement with model climates but still suggests models overestimate forest cover, especially in the west.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Andrew F. Feldman, Zhen Zhang, Yasuko Yoshida, Abhishek Chatterjee, and Benjamin Poulter
Atmos. Chem. Phys., 23, 1545–1563, https://doi.org/10.5194/acp-23-1545-2023, https://doi.org/10.5194/acp-23-1545-2023, 2023
Short summary
Short summary
We investigate the conditions under which satellite-retrieved column carbon dioxide concentrations directly hold information about surface carbon dioxide fluxes, without the use of inversion models. We show that OCO-2 column carbon dioxide retrievals, available at 1–3 month latency, can be used to directly detect and roughly estimate extreme biospheric CO2 fluxes. As such, these OCO-2 retrievals have value for rapidly monitoring extreme conditions in the terrestrial biosphere.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022, https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Short summary
Global lightning strokes are recorded continuously by a network of ground-based stations. We consolidated these point observations into a map form and provide these as electronic datasets for research purposes. Here we extend our dataset to include lightning observations from 2021.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren
Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, https://doi.org/10.5194/acp-22-9617-2022, 2022
Short summary
Short summary
We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 13, 3219–3237, https://doi.org/10.5194/essd-13-3219-2021, https://doi.org/10.5194/essd-13-3219-2021, 2021
Short summary
Short summary
Lightning is an important atmospheric phenomenon and natural hazard, but few long-term data are freely available on lightning stroke location, timing, and power. Here, we present a new, open-access dataset of lightning strokes covering 2010–2020, based on a network of low-frequency radio detectors. The dataset is comprised of GIS maps and is intended for researchers, government, industry, and anyone for whom knowing when and where lightning is likely to strike is useful information.
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021, https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Short summary
We present a collection of carbon surface fluxes, the Low-order Flux Inversion (LoFI), derived from satellite observations of the Earth's surface and calibrated to match long-term inventories and atmospheric and oceanic records. Simulations using LoFI reproduce background atmospheric carbon dioxide measurements with comparable skill to the leading surface flux products. Available both retrospectively and as a forecast, LoFI enables the study of the carbon cycle as it occurs.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021, https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
Short summary
We developed a model to simulate and track the age of ecosystems on Earth. We found that the effect of ecosystem age on net primary production and ecosystem respiration is as important as climate in large areas of every vegetated continent. The LPJ-wsl v2.0 age-class model simulates dynamic age-class distributions on Earth and represents another step forward towards understanding the role of demography in global ecosystems.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
Yang Li, Loretta J. Mickley, and Jed O. Kaplan
Atmos. Chem. Phys., 21, 57–68, https://doi.org/10.5194/acp-21-57-2021, https://doi.org/10.5194/acp-21-57-2021, 2021
Short summary
Short summary
Climate models predict a shift toward warmer, drier environments in southwestern North America. Under future climate, the two main drivers of dust trends play opposing roles: (1) CO2 fertilization enhances vegetation and, in turn, decreases dust, and (2) increasing land use enhances dust emissions from northern Mexico. In the worst-case scenario, elevated dust concentrations spread widely over the domain by 2100 in spring, suggesting a large climate penalty on air quality and human health.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Cited articles
Air Force Weather Agency: Data Format Handbook for AGRMET, technical report,
Air Force Weather Agency's (AFWA) Agricultural Metereorological modeling
system (AGRMET), Air Force Weather Agency, available at:
http://www2.mmm.ucar.edu/mm5/documents/DATA_FORMAT_HANDBOOK.pdf (last access: July 2014), 2002.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F.,
Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M.,
Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric
methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model
simulations, J. Geophys. Res.-Atmos., 112, D02304,
https://doi.org/10.1029/2006JD007268, 2007.
Beven, K. J. and Cloke, H. L.: Comment on “Hyperresolution global land
surface modeling: Meeting a grand challenge for monitoring Earth's
terrestrial water” by Eric F. Wood et al., Water Resour. Res., 48, W01801,
https://doi.org/10.1029/2011WR010982,
2012.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences
Bulletin, 24, 43–69, 1979.
Bindlish, R., Jackson, T. J., Gasiewski, A., Stankov, B., Klein, M., Cosh,
M. H., Mladenova, I., Watts, C., Vivoni, E., Lakshmi, V., Bolten, J., and
Keefer, T.: Aircraft based soil moisture retrievals under mixed vegetation
and topographic conditions, Remote Sens. Environ., 112, 375–390,
2008.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.:
Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity
Spaceborne Data, Science, 327, 322–325, 2010.
Bloom, A. A., Palmer, P. I., Fraser, A., and Reay, D. S.: Seasonal
variability of tropical wetland CH4 emissions: the role of the
methanogen-available carbon pool, Biogeosciences, 9, 2821–2830,
https://doi.org/10.5194/bg-9-2821-2012, 2012.
Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D.,
Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov, S., Brovkin,
V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K.
C., Rawlins, M.A., Riley, W. J., Subin, Z. M., Tian, H., Zhuang, Q., and
Kaplan, J. O.: WETCHIMP-WSL: intercomparison of wetland methane emissions
models over West Siberia, Biogeosciences, 12, 3321–3349,
https://doi.org/10.5194/bg-12-3321-2015, 2015.
Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D.
A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C.,
Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele,
L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic and natural
sources to atmospheric methane variability, Nature, 443, 439–443, 2006.
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G.,
Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C.,
Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M.,
Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.:
Source attribution of the changes in atmospheric methane for 2006–2008,
Atmos. Chem. Phys., 11, 3689–3700, https://doi.org/10.5194/acp-11-3689-2011, 2011.
Brown, J., Ferrians Jr., O. J., Heginbottom J. A., and Melnikov, E. S.: Circum-arctic map of
permafrost and ground ice conditions, edited by National Snow and Ice Data
Center, Boulder, CO, USA, available at:
http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/ (last access:
December 2014), 2001.
Buytaert, W.: TOPMODEL, available at:
http://cran.r-project.org/web/packages/topmodel/index.html, last
access: February 2015.
Chang, R. Y.-W., Miller, C. E., Dinardo, S. J., Karion, A., Sweeney, C.,
Daube, B. C., Henderson, J. M., Mountain, M. E., Eluszkiewicz, J., Miller, J.
B., Bruhwiler, L. M. P., and Wofsy, S. C.: Methane emissions from Alaska in
2012 from CARVE airborne observations, P. Natl. Acad. Sci.
USA, 111, 16694–16699,
https://doi.org/10.1073/pnas.1412953111, 2014.
Chen, X., Bohn, T. J., and Lettenmaier, D. P.: Model estimates of climate
controls on pan-Arctic wetland methane emissions, Biogeosciences, 12,
6259–6277, https://doi.org/10.5194/bg-12-6259-2015, 2015.
Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.:
Regional methane emission from West Siberia mire landscapes, Environ. Res.
Lett., 6, 045214, https://doi.org/10.1088/1748-9326/6/4/045214, 2011.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran,
P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin,
G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire,
A., and Woodward, S.: Development and evaluation of an Earth-System model –
HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011,
2011.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A Statistical
Exploration of the Relationships of Soil Moisture Characteristics to the
Physical Properties of Soils, Water Resour. Res., 20, 682–690, 1984.
Danielson, J. J. and Gesch, D. B.: Global Multi-resolution Terrain Elevation
Data 2010, available at: http://topotools.cr.usgs.gov/gmted_viewer/
(last access: September 2014), 2011.
de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., and
Isaksen, L.: A simplified Extended Kalman Filter for the global operational
soil moisture analysis at ECMWF, Q. J. Roy. Meteor. Soc., 139, 1199–1213,
2013.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A.,
Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and
Jackson, T.: The International Soil Moisture Network: a data hosting facility
for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15,
1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Ducharne, A.: Reducing scale dependence in TOPMODEL using a dimensionless
topographic index, Hydrol. Earth Syst. Sci., 13, 2399–2412,
https://doi.org/10.5194/hess-13-2399-2009, 2009.
Ducharne, A., Koster, R. D., Suarez, M. J., and Kumar, P.: A catchment-based
land surface model for GCMs and the framework for its evaluation, Phys. Chem.
Earth, 24, 769–773, 1999.
Durand, M., Lee-Lueng, F., Lettenmaier, D. P., Alsdorf, D. E., Rodriguez, E.,
and Esteban-Fernandez, D.: The Surface Water and Ocean Topography Mission:
Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies, P. IEEE,
98, 766–779, 2010.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Leung, T., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP)
Mission, P. IEEE, 98, 704–716, 2010.
Fan, Y. and Miguez-Macho, G.: A simple hydrologic framework for simulating
wetlands in climate and earth system models, Clim. Dynam., 37, 253–278,
2011.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table
Depth, Science, 339, 940–943, 2013.
Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M., Fowler, C.
M. R., James, R. H., Hermansen, O., Lund Myhre, C., Stohl, A., Greinert, J.,
Nisbet-Jones, P. B. R., Mienert, J., and Nisbet, E. G.: Arctic methane
sources: Isotopic evidence for atmospheric inputs, Geophys. Res. Lett., 38,
L21803, https://doi.org/10.1029/2011GL049319, 2011.
Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., and Hamilton, S.
K.: Development of a global inundation map at high spatial resolution from
topographic downscaling of coarse-scale remote sensing data, Remote Sens.
Environ., 158, 348–361, 2015.
Gedney, N. and Cox, P. M.: The Sensitivity of Global Climate Model
Simulations to the Representation of Soil Moisture Heterogeneity, J.
Hydrometeorol., 4, 1265–1275, 2003.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance–hydrological evaluation of a
dynamic global vegetation model, J. Hydrol., 286, 249–270, 2004.
Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.:
Regional methane emission from West Siberia mire landscapes, Environ. Res.
Lett., 6, 045214, https://doi.org/10.1088/1748-9326/6/4/045214, 2011.
Grabs, T., Seibert, J., Bishop, K., and Laudon, H.: Modeling spatial patterns
of saturated areas: A comparison of the topographic wetness index and a
dynamic distributed model, J. Hydrol., 373, 15–23, 2009.
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y.,
Gloor, M., Heimann, M., Higuchi, K. A. Z., John, J., Kowalczyk, E. V. A.,
Maki, T., Maksyutov, S., Peylin, P., Prather, M., Pak, B. C., Sarmiento, J.,
Taguchi, S., Takahashi, T., and Yuen, C.-W.: TransCom 3 CO2 inversion
intercomparison: 1. Annual mean control results and sensitivity to transport
and prior flux information, Tellus B, 55, 555–579, 2003.
Güntner, A., Seibert, J., and Uhlenbrook, S.: Modeling spatial patterns
of saturated areas: An evaluation of different terrain indices, Water Resour.
Res., 40, W05114, https://doi.org/10.1029/2003WR002864, 2004.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hess, L., Melack, J., Affonso, A., Barbosa, C., Gastil-Buhl, M., and Novo, E.
L. M.: Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and
Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar,
Wetlands, 35, 1–12, https://doi.org/10.1007/s13157-015-0666-y, 2015.
Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C., and Kaplan, J.
O.: The El Niño–Southern Oscillation and wetland methane interannual
variability, Geophys. Res. Lett., 38, L08810, https://doi.org/10.1890/08-0588.1, 2011.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013.
Ito, A. and Inatomi, M.: Use of a process-based model for assessing the
methane budgets of global terrestrial ecosystems and evaluation of
uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.
Jennifer, D. W., John, S. K., Annett, B., and Kyle, C. M.: Surface water
inundation in the boreal-Arctic: potential impacts on regional methane
emissions, Environ. Res. Lett., 9, 075001,
https://doi.org/10.1088/1748-9326/9/7/075001, 2014.
Junk, W., Piedade, M., Schöngart, J., Cohn-Haft, M., Adeney, J. M., and
Wittmann, F.: A Classification of Major Naturally-Occurring Amazonian Lowland
Wetlands, Wetlands, 31, 623–640, 2011.
Kaplan, J. O.: Wetlands at the Last Glacial Maximum: Distribution and methane
emissions, Geophys. Res. Lett., 29, 3-1–3-4, 2002.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin,
J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S. E.,
Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS
Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle, P.
IEEE, 98, 666–687, 2010.
Kim, Y., Kimball, J. S., Zhang, K., and McDonald, K. C.: Satellite detection
of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008:
Implications for regional vegetation growth, Remote Sens. Environ., 121,
472–487, 2012.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel,
P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quere, C., Naik, V.,
O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R.
G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, 2013.
Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland
extent and peat accumulation: results for the Holocene, Biogeosciences, 9,
235–248, https://doi.org/10.5194/bg-9-235-2012, 2012.
Kopecký, M. and Čížková, Š.: Using topographic
wetness index in vegetation ecology: does the algorithm matter?, Appl. Veg.
Sci., 13, 450–459, 2010.
Leff, B., Ramankutty, N., and Foley, J. A.: Geographic distribution of major
crops across the world, Global Biogeochem. Cy., 18, GB1009,
https://doi.org/10.1029/2003GB002108, 2004.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, 2013.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos, Transactions American Geophysical Union, 89,
93–94, 2008.
Lei, H., Huang, M., Leung, L. R., Yang, D., Shi, X., Mao, J., Hayes, D. J.,
Schwalm, C. R., Wei, Y., and Liu, S.: Sensitivity of global terrestrial gross
primary production to hydrologic states simulated by the Community Land Model
using two runoff parameterizations, Journal of Advances in Modeling Earth
Systems, 6, 658–679, 2014.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, 1994.
Lin, K., Zhang, Q., and Chen, X.: An evaluation of impacts of DEM resolution
and parameter correlation on TOPMODEL modeling uncertainty, J. Hydrol., 394,
370–383, 2010.
Lin, S., Jing, C., Coles, N., Chaplot, V., Moore, N., and Wu, J.: Evaluating
DEM source and resolution uncertainties in the Soil and Water Assessment
Tool, Stoch. Environ. Res. Risk Assess., 27, 209–221, 2013.
Marthews, T. R., Quesada, C. A., Galbraith, D. R., Malhi, Y., Mullins, C. E.,
Hodnett, M. G., and Dharssi, I.: High-resolution hydraulic parameter maps for
surface soils in tropical South America, Geosci. Model Dev., 7, 711–723,
https://doi.org/10.5194/gmd-7-711-2014, 2014.
Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.:
High-resolution global topographic index values for use in large-scale
hydrological modelling, Hydrol. Earth Syst. Sci., 19, 91–104,
https://doi.org/10.5194/hess-19-91-2015, 2015.
Matthews, E. and Fung, I.: Methane emission from natural wetlands: Global
distribution, area, and environmental characteristics of sources, Global
Biogeochem. Cy., 1, 61–86, 1987.
Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K.,
Lima, I. B. T., and Novo, E. M. L. M.: Regionalization of methane emissions
in the Amazon Basin with microwave remote sensing, Glob. Change Biol., 10,
530–544, 2004.
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni,
R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V.,
Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J.,
Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van
Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of
global wetland extent and wetland methane modelling: conclusions from a model
inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788,
https://doi.org/10.5194/bg-10-753-2013, 2013.
Meng, L., Hess, P. G. M., Mahowald, N. M., Yavitt, J. B., Riley, W. J.,
Subin, Z. M., Lawrence, D. M., Swenson, S. C., Jauhiainen, J., and Fuka, D.
R.: Sensitivity of wetland methane emissions to model assumptions:
application and model testing against site observations, Biogeosciences, 9,
2793–2819, https://doi.org/10.5194/bg-9-2793-2012, 2012.
Mulligan, M. and Wainwright, J.: Modelling and Model Building, in:
Environmental Modelling, John Wiley & Sons, Ltd, Chichester, UK, 7–26,
2013.
Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn,
K., Van Engelen, V., Fischer, G., Jones, A., Montanarella, L., and Petri,
M.: Harmonized world soil database, FAO, Rome, Italy and IIASA, Laxenburg,
Austria, 2008.
National Wetland Working Group: Wetlands of Canada, Ecolgoical Land
Classification Series, No. 24, Canada Committee on Ecological Land
Classification, Sustainable Development Branch, Environment Canada and
Polyscience Publications Inc, Montreal, Quebec, Canada, 1997.
Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the
Rise–Again, Science, 343, 493–495, 2014.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res.-Atmos., 110, D21106, https://doi.org/10.1029/2005JD006111,
2005.
Pan, F., Peters-Lidard, C. D., Sale, M. J., and King, A. W.: A comparison of
geographical information systems–based algorithms for computing the TOPMODEL
topographic index, Water Resour. Res., 40, W06303,
https://doi.org/10.1029/2004WR003069, 2004.
Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Interannual variability of surface water extent at the global scale,
1993–2004, J. Geophys. Res.-Atmos., 115, D12111, https://doi.org/10.1029/2009JD012674,
2010.
Peregon, A., Maksyutov, S., Kosykh, N. P., and Mironycheva-Tokareva, N. P.:
Map-based inventory of wetland biomass and net primary production in western
Siberia, J. Geophys. Res.-Biogeo., 113, G01007, https://doi.org/10.1029/2007JG000441,
2008.
Petrescu, A. M. R., van Beek, L. P. H., van Huissteden, J., Prigent, C.,
Sachs, T., Corradi, C. A. R., Parmentier, F. J. W., and Dolman, A. J.:
Modeling regional to global CH4 emissions of boreal and arctic wetlands,
Global Biogeochem. Cy., 24, GB4009, https://doi.org/10.1029/2009GB003610, 2010.
Petrescu, A. M. R., Lohila, A., Tuovinen, J.-P., Baldocchi, D. D., Desai, A.
R., Roulet, N. T., Vesala, T., Dolman, A. J., Oechel, W. C., Marcolla, B.,
Friborg, T., Rinne, J., Matthes, J. H., Merbold, L., Meijide, A., Kiely, G.,
Sottocornola, M., Sachs, T., Zona, D., Varlagin, A., Lai, D. Y. F.,
Veenendaal, E., Parmentier, F.-J. W., Skiba, U., Lund, M., Hensen, A., van
Huissteden, J., Flanagan, L. B., Shurpali, N. J., Grünwald, T.,
Humphreys, E. R., Jackowicz-Korczyński, M., Aurela, M. A., Laurila, T.,
Grüning, C., Corradi, C. A. R., Schrier-Uijl, A. P., Christensen, T. R.,
Tamstorf, M. P., Mastepanov, M., Martikainen, P. J., Verma, S. B., Bernhofer,
C., and Cescatti, A.: The uncertain climate footprint of wetlands under human
pressure, P. Natl. Acad. Sci. USA, 112, 4594–4599, 2015.
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S.,
and Zimmermann, N. E.: Plant functional type mapping for earth system models,
Geosci. Model Dev., 4, 993–1010, https://doi.org/10.5194/gmd-4-993-2011, 2011.
Poulter, B., Bousquet, P., Canadell, P., Ciais, P., Peregon, A., Arora, V.,
Beerling, D., Brovkin, V., Hopcroft, P., Jones, C., Joos, F., Gedney, N.,
Ito, A., Kleinen, T., Koven, C., MacDonald, K., Melton, J., Peng, C., Peng,
S., Schroder, R., Prigent, C., Riley, B., Saito, M., Spahni, R., Tian, H.,
Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X., and Zhang, Z.,:
Global wetland contribution to increasing atmospheric methane concentrations
(2000–2012), in preparation, 2015.
Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global
inundation dynamics inferred from multiple satellite observations,
1993–2000, J. Geophys. Res.-Atmos., 112, D12107, https://doi.org/10.1029/2006JD007847,
2007.
Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Changes in land surface water dynamics since the 1990s and relation to
population pressure, Geophys. Res. Lett., 39, L08403,
https://doi.org/10.1029/2012GL051276, 2012.
Quinn, P. F., Beven, K. J., and Lamb, R.: The in(a/tan/β) index: How to
calculate it and how to use it within the topmodel framework, Hydrol.
Process., 9, 161–182, 1995.
Quiquet, A., Archibald, A. T., Friend, A. D., Chappellaz, J., Levine, J. G.,
Stone, E. J., Telford, P. J., and Pyle, J. A.: The relative importance of
methane sources and sinks over the Last Interglacial period and into the last
glaciation, Quaternary Sci. Rev., 112, 1–16, 2015.
Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., de
Noblet-Ducoudré, N., Prigent, C., Friedlingstein, P., Gouttevin, I., Koven,
C., and Ducharne, A.: Modelling sub-grid wetland in the ORCHIDEE global land
surface model: evaluation against river discharges and remotely sensed data,
Geosci. Model Dev., 5, 941–962, https://doi.org/10.5194/gmd-5-941-2012, 2012.
Ringeval, B., Houweling, S., van Bodegom, P. M., Spahni, R., van Beek, R.,
Joos, F., and Röckmann, T.: Methane emissions from floodplains in the Amazon
Basin: challenges in developing a process-based model for global
applications, Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014,
2014.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen,
J.-P., Tuittila, E.-S., and Vesala, T.: Annual cycle of methane emission from
a boreal fen measured by the eddy covariance technique, Tellus B, 59,
449–457, 2007.
Schroeder, R., McDonald, K., Chan, S., Chapman, B., Podest, E., Bohn, T.,
Jones, L., Kimball, J., Zimmermann, R., and Küppers, M.: Development and
evaluation of a multi-year global inundated area dataset derived from
combined active/passive microwave remote sensing, in preparation, 2016.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, 2010.
Sheng, Y., Smith, L. C., MacDonald, G. M., Kremenetski, K. V., Frey, K. E.,
Velichko, A. A., Lee, M., Beilman, D. W., and Dubinin, P.: A high-resolution
GIS-based inventory of the west Siberian peat carbon pool, Global Biogeochem.
Cy., 18, GB3004, https://doi.org/10.1029/2003GB002190, 2004.
Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., and
Beerling, D. J.: Late Holocene methane rise caused by orbitally controlled
increase in tropical sources, Nature, 470, 82–85, 2011.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, 2003.
Sivapalan, M., Beven, K., and Wood, E. F.: On hydrologic similarity: 2. A
scaled model of storm runoff production, Water Resour. Res., 23, 2266–2278,
1987.
Sørensen, R. and Seibert, J.: Effects of DEM resolution on the calculation
of topographical indices: TWI and its components, J. Hydrol., 347, 79–89,
2007.
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P.,
Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven,
P.: Constraining global methane emissions and uptake by ecosystems,
Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.
Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C.: An Efficient
Approach to Modeling the Topographic Control of Surface Hydrology for
Regional and Global Climate Modeling, J. Climate, 10, 118–137, 1997.
Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S.,
Bouwman, L., Xu, R., and Prentice, I. C.: Multiple greenhouse-gas feedbacks
from the land biosphere under future climate change scenarios, Nature Climate
Change, 3, 666–672, 2013.
Stocker, B. D., Spahni, R., and Joos, F.: DYPTOP: a cost-efficient TOPMODEL
implementation to simulate sub-grid spatio-temporal dynamics of global
wetlands and peatlands, Geosci. Model Dev., 7, 3089–3110,
https://doi.org/10.5194/gmd-7-3089-2014, 2014.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P.,
Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H.,
Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N.,
Tuittila, E.-S., Waddington, J. M., White, J. R., Wickland, K. P., and
Wilmking, M.: A synthesis of methane emissions from 71 northern, temperate,
and subtropical wetlands, Glob. Change Biol., 20, 2183–2197, 2014.
USGS: HYDRO1k Elevation Derivative Database, US Geological Survey Earth
Resources Observation and Science (EROS) Data Center (EDC), Sioux Falls,
South Dakota, USA, 1996.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res.
Lett., 41, 6396–6402, 2014.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and
permafrost into a dynamic global vegetation model: 1. Evaluation and
sensitivity of physical land surface processes, Global Biogeochem. Cy., 23,
GB3014, https://doi.org/10.1029/2008GB003412, 2009.
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni,
R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley,
W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C.,
Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J.,
Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of
global wetland extent and wetland methane modelling: methodology of a model
inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641,
https://doi.org/10.5194/gmd-6-617-2013, 2013.
Ward, R. C. and Robinson, M.: Principles of Hydrology, 4th Edn, McGraw-Hill,
Maidenhead, UK, 2000.
Whalen, S. C. and Reeburgh, W. S.: Interannual variations in tundra methane
emission: A 4-year time series at fixed sites, Global Biogeochem. Cy., 6,
139–159, 1992.
Wilson, J. P. and Gallant, J. C.: Terrain analysis: principles and
applications, John Wiley & Sons, New York, NY, USA, 2000.
Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F.
P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D.,
van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B.,
Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade,
A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting
a grand challenge for monitoring Earth's terrestrial water, Water Resour.
Res., 47, W05301,
https://doi.org/10.1029/2010WR010090,
2011.
Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E., and Zawadzki, A.:
The hydrological legacy of deforestation on global wetlands, Science, 346,
844–847, 2014.
Zhang, Z., Jiang, H., Liu, J., Ju, W., and Zhang, X.: Effect of
heterogeneous atmospheric CO2 on simulated global carbon budget, Global
Planet. Change, 101, 33–51, 2013.
Zhu, X., Zhuang, Q., Lu, X., and Song, L.: Spatial scale-dependent
land-atmospheric methane exchanges in the northern high latitudes from 1993
to 2004, Biogeosciences, 11, 1693–1704, https://doi.org/10.5194/bg-11-1693-2014, 2014.
Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., and
Yang, G.: Estimating global natural wetland methane emissions using process
modelling: spatio-temporal patterns and contributions to atmospheric methane
fluctuations, Global Ecol. Biogeogr., 24, 959–972, https://doi.org/10.1111/geb.12307,
2015.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D.,
Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between
terrestrial ecosystems and the atmosphere at northern high latitudes during
the past century: A retrospective analysis with a process-based
biogeochemistry model, Global Biogeochem. Cy., 18, GB3010,
https://doi.org/10.1029/2004GB002239, 2004.
Zona, D., Oechel, W. C., Kochendorfer, J., Paw, U. K. T., Salyuk, A. N.,
Olivas, P. C., Oberbauer, S. F., and Lipson, D. A.: Methane fluxes during the
initiation of a large-scale water table manipulation experiment in the
Alaskan Arctic tundra, Global Biogeochem. Cy., 23, GB2013,
https://doi.org/10.1029/2009GB003487, 2009.
Zürcher, S., Spahni, R., Joos, F., Steinacher, M., and Fischer, H.:
Impact of an abrupt cooling event on interglacial methane emissions in
northern peatlands, Biogeosciences, 10, 1963–1981,
https://doi.org/10.5194/bg-10-1963-2013, 2013.
Short summary
This study investigates improvements and uncertainties associated with estimating global inundated area and wetland CH4 emissions using TOPMODEL. Different topographic information and catchment aggregation schemes are evaluated against seasonal and permanently inundated wetland observations. Reducing uncertainty in prognostic wetland dynamics modeling must take into account forcing data as well as topographic scaling schemes.
This study investigates improvements and uncertainties associated with estimating global...
Altmetrics
Final-revised paper
Preprint