Articles | Volume 16, issue 23
Biogeosciences, 16, 4731–4745, 2019
https://doi.org/10.5194/bg-16-4731-2019
Biogeosciences, 16, 4731–4745, 2019
https://doi.org/10.5194/bg-16-4731-2019

Research article 13 Dec 2019

Research article | 13 Dec 2019

Nitrogen use efficiency and N2O and NH3 losses attributed to three fertiliser types applied to an intensively managed silage crop

Nicholas Cowan et al.

Related authors

Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021,https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Surface–atmosphere exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural grassland pre- and postfertilisation
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Marsailidh M. Twigg, Nicholas Cowan, Matthew R. Jones, Sarah R. Leeson, William J. Bloss, Louisa J. Kramer, Leigh Crilley, Matthias Sörgel, Meinrat Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 18, 16953–16978, https://doi.org/10.5194/acp-18-16953-2018,https://doi.org/10.5194/acp-18-16953-2018, 2018
Short summary
The influence of tillage on N2O fluxes from an intensively managed grazed grassland in Scotland
Nicholas J. Cowan, Peter E. Levy, Daniela Famulari, Margaret Anderson, Julia Drewer, Marco Carozzi, David S. Reay, and Ute M. Skiba
Biogeosciences, 13, 4811–4821, https://doi.org/10.5194/bg-13-4811-2016,https://doi.org/10.5194/bg-13-4811-2016, 2016
Short summary
Spatial variability and hotspots of soil N2O fluxes from intensively grazed grassland
N. J. Cowan, P. Norman, D. Famulari, P. E. Levy, D. S. Reay, and U. M. Skiba
Biogeosciences, 12, 1585–1596, https://doi.org/10.5194/bg-12-1585-2015,https://doi.org/10.5194/bg-12-1585-2015, 2015
Short summary
Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method
N. J. Cowan, D. Famulari, P. E. Levy, M. Anderson, D. S. Reay, and U. M. Skiba
Atmos. Meas. Tech., 7, 4455–4462, https://doi.org/10.5194/amt-7-4455-2014,https://doi.org/10.5194/amt-7-4455-2014, 2014

Related subject area

Biogeochemistry: Air - Land Exchange
Isoprene and monoterpene emissions from alder, aspen and spruce short-rotation forest plantations in the United Kingdom
Gemma Purser, Julia Drewer, Mathew R. Heal, Robert A. S. Sircus, Lara K. Dunn, and James I. L. Morison
Biogeosciences, 18, 2487–2510, https://doi.org/10.5194/bg-18-2487-2021,https://doi.org/10.5194/bg-18-2487-2021, 2021
Short summary
Winter atmospheric nutrient and pollutant deposition on Western Sayan Mountain lakes (Siberia)
Daniel Diaz-de-Quijano, Aleksander Vladimirovich Ageev, Elena Anatolevna Ivanova, and Olesia Valerevna Anishchenko
Biogeosciences, 18, 1601–1618, https://doi.org/10.5194/bg-18-1601-2021,https://doi.org/10.5194/bg-18-1601-2021, 2021
Short summary
Methane efflux from an American bison herd
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021,https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Technical note: Inexpensive modification of Exetainers for the reliable storage of trace-level hydrogen and carbon monoxide gas samples
Philipp A. Nauer, Eleonora Chiri, Thanavit Jirapanjawat, Chris Greening, and Perran L. M. Cook
Biogeosciences, 18, 729–737, https://doi.org/10.5194/bg-18-729-2021,https://doi.org/10.5194/bg-18-729-2021, 2021
Short summary
A climate-dependent global model of ammonia emissions from chicken farming
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton
Biogeosciences, 18, 135–158, https://doi.org/10.5194/bg-18-135-2021,https://doi.org/10.5194/bg-18-135-2021, 2021
Short summary

Cited articles

Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., and Vallejo, A.: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency, Agriculture, Ecosystems & Environment, 189, 136–144, https://doi.org/10.1016/j.agee.2014.03.036, 2014. 
Auernhammer, H.: Precision farming – the environmental challenge, Comput. Electron. Agr., 30, 31–43, https://doi.org/10.1016/S0168-1699(00)00153-8, 2001. 
Azeem, B., KuShaari, K., Man, Z. B., Basit, A., and Thanh, T. H.: Review on materials & methods to produce controlled release coated urea fertilizer, J. Control. Release, 181, 11–21, https://doi.org/10.1016/j.jconrel.2014.02.020, 2014. 
Bertram, T. H., Heckel, A., Richter, A., Burrows, J. P., and Cohen, R. C.: Satellite measurements of daily variations in soil NOx emissions, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL024640, 2005. 
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97GB02266, 1997. 
Download
Short summary
Commonly used nitrogen fertilisers, ammonium nitrate, urea and urea coated with a urease inhibitor, were applied to experimental plots. Fertilisation with ammonium nitrate supported the largest yields but also resulted in the largest nitrous oxide emissions. Urea was the largest emitter of ammonia. The coated urea did not significantly increase yields; however, ammonia emissions were substantially smaller than urea. The coated urea was the best environmentally but is economically unattractive.
Altmetrics
Final-revised paper
Preprint