Articles | Volume 17, issue 19
https://doi.org/10.5194/bg-17-4919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Frédéric A. C. Le Moigne
Mediterranean Institute of Oceanography (UM 110, MIO), CNRS, IRD, Aix-Marseille Université, Marseille, France
Insa Rapp
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Jan Lüdke
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Beat Gasser
IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco
Marcus Dengler
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Volker Liebetrau
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Eric P. Achterberg
GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1–3,
24148 Kiel, Germany
Related authors
No articles found.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Cited articles
Abernathey, R. P. and Marshall, J.: Global surface eddy diffusivities
derived from satellite altimetry, J. Geophys. Res.-Oceans,
118, 901-916, https://doi.org/10.1002/jgrc.20066, 2013.
Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P.: Concentration,
oxidation state, and particulate flux of uranium in the Black Sea,
Geochim. Cosmochim. Ac., 53, 2215–2224, https://doi.org/10.1016/0016-7037(89)90345-1, 1989.
Arthur, M. A., Dean, W. E., and Laarkamp, K.: Organic carbon accumulation
and preservation in surface sediments on the Peru margin, Chem. Geol.,
152, 273–286, https://doi.org/10.1016/S0009-2541(98)00120-X,
1998.
Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., and Fleer, A.: Export
flux of carbon at the equator during the EqPac time-series cruises estimated
from 234Th measurements, Deep-Sea Res. Pt. II, 43, 1133–1153, https://doi.org/10.1016/0967-0645(96)00016-1, 1996.
Barnes, C. and Cochran, J.: Uranium removal in oceanic sediments and the
oceanic U balance, Earth Planet. Sc. Lett., 97, 94–101,
https://doi.org/10.1016/0012-821X(90)90101-3, 1990.
Barnes, C. E. and Cochran, J. K.: Geochemistry of uranium in Black Sea
sediments, Deep.-Sea Res., 38,
S1237–S1254, https://doi.org/10.1016/S0198-0149(10)80032-9,
1991.
Barnes, C. E. and Cochran, J. K.: Uranium geochemistry in estuarine
sediments: Controls on removal and release processes, Geochim. Cosmochim. Ac., 57, 555–569, https://doi.org/10.1016/0016-7037(93)90367-6, 1993.
Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon
export, horizontal transport, and vertical eddy diffusivity in the
southwestern Gulf of Maine, Cont. Shelf. Res., 20, 707–736,
https://doi.org/10.1016/S0278-4343(99)00093-X, 2000.
Bentamy, A. and Croize-Fillon: Gridded surface wind fields from Metop/ASCAT
measurements, Int. J. Remote Sens., 33, 1729–1754,
https://doi.org/10.1080/01431161.2011.600348, 2010.
Bewers, J. and Yeats, P.: Oceanic residence times of trace metals, Nature,
268, 595–598, https://doi.org/10.1038/268595a0, 1977.
Bhat, S., Krishnaswamy, S., Lal, D., and Moore, W.: 234Th ∕238U
ratios in the ocean, Earth Planet. Sc. Lett., 5, 483–491,
https://doi.org/10.1016/S0012-821X(68)80083-4, 1968.
Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: 234Th as a
tracer of particulate export and remineralization in the southeastern
tropical Pacific, Mar. Chem., 201, 35–50, https://doi.org/10.1016/j.marchem.2017.06.009, 2018.
Black, E. E., Lam, P. J., Lee, J. M., and Buesseler, K. O.: Insights From
the 238U–234Th Method Into the Coupling of Biological Export and
the Cycling of Cadmium, Cobalt, and Manganese in the Southeast Pacific
Ocean, Global Biogeochem. Cy., 33, 15–36, https://doi.org/10.1029/2018GB005985, 2019.
Böning, P., Brumsack, H.-J., Böttcher, M. E., Schnetger, B., Kriete,
C., Kallmeyer, J., and Borchers, S. L.: Geochemistry of Peruvian
near-surface sediments, Geochim. Cosmochim. Ac., 68, 4429–4451,
https://doi.org/10.1016/j.gca.2004.04.027, 2004.
Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A.
L. M., Le Sommer, J., Ajayi, A. O., and Naveira Garabato, A. C.: The
Contribution of Surface and Submesoscale Processes to Turbulence in the Open
Ocean Surface Boundary Layer, J. Adv. Model. Earth Sy.,
11, 4066–4094, https://doi.org/10.1029/2019MS001801, 2019.
Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R.,
Chai, F., and Chao, Y.: Upper ocean export of particulate organic carbon in
the Arabian Sea derived from thorium-234, Deep-Sea Res. Pt. II, 45, 2461–2487, https://doi.org/10.1016/S0967-0645(98)80022-2, 1998.
Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.:
Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment
estimated from 234Th : 238U disequilibria, Deep.-Sea Res., 39, 1115–1137, https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai,
F.: Regional estimates of the export flux of particulate organic carbon
derived from thorium-234 during the JGOFS EqPac program, Deep-Sea Res. Pt. II, 42, 777–804, https://doi.org/10.1016/0967-0645(95)00043-P, 1995.
Buesseler, K. O., Andrews, J., Pike, S. M., Charette, M. A., Goldson, L. E.,
Brzezinski, M. A., and Lance, V.: Particle export during the southern ocean
iron experiment (SOFeX), Limnol. Oceanogr., 50, 311–327, https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M.,
Cochran, J. K., Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An
assessment of particulate organic carbon to thorium-234 ratios in the ocean
and their impact on the application of 234Th as a POC flux proxy,
Mar. Chem., 100, 213–233, https://doi.org/10.1016/j.marchem.2005.10.013, 2006.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.:
A high-resolution study of particle export in the southern South China Sea
based on 234Th : 238U disequilibrium, J. Geophys. Res.-Oceans, 113, C04019, https://doi.org/10.1029/2007JC004268,
2008.
Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating
the carbon cycle in the Gulf of Maine using the natural tracer thorium 234,
J. Geophys. Res.-Oceans, 106, 11553–11579, https://doi.org/10.1029/1999JC000277, 2001.
Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G.,
Planquette, H., Salter, I., and Garabato, A. N.: Radium isotopes as tracers
of iron sources fueling a Southern Ocean phytoplankton bloom, Deep-Sea Res. Pt. II, 54, 1989–1998, https://doi.org/10.1016/j.dsr2.2007.06.003, 2007.
Chen, J., Edwards, R. L., and Wasserburg, G. J.: 238U, 234U and
232Th in seawater, Earth Planet. Sc. Lett., 80, 241–251,
https://doi.org/10.1016/0012-821X(86)90108-1, 1986.
Coale, K. H. and Bruland, K. W.: 234Th: 238U disequilibria within
the California Current 1, Limnol. Oceanogr., 30, 22–33, https://doi.org/10.4319/lo.1985.30.1.0022, 1985.
Coale, K. H. and Bruland, K. W.: Oceanic stratified euphotic zone as
elucidated by 234Th: 238U disequilibria 1, Limnol. Oceanogr., 32, 189–200, https://doi.org/10.4319/lo.1987.32.1.0189, 1987.
Cochran, J. and Masqué, P.: Short-lived U/Th series radionuclides in
the ocean: tracers for scavenging rates, export fluxes and particle
dynamics, Rev. Mineral. Geochem., 52, 461–492, https://doi.org/10.2113/0520461, 2003.
Dengler, M. and Sommer, S.: Coupled benthic and pelagic oxygen, nutrient
and trace metal cycling, ventilation and carbon degradation in the oxygen
minimum zone of the Peruvian continental margin (SFB 754), Cruise No. M 136,
11.04.–03.05.2017 Callao (Peru)–Callao Solute-Flux Peru I,
METEOR-Berichte, https://doi.org/10.3289/CR_M136, 2017.
Dunne, J. P. and Murray, J. W.: Sensitivity of 234Th export to
physical processes in the central equatorial Pacific, Deep-Sea Res. Pt. I, 46, 831–854, https://doi.org/10.1016/S0967-0637(98)00098-3, 1999.
Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez,
L., and Gutierrez, D.: Forcings and evolution of the 2017 coastal El
Niño off Northern Peru and Ecuador, Front. Mar. Sci., 5, 367,
https://doi.org/10.3389/fmars.2018.00367, 2018.
Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.:
Surveying the upper ocean with the Ocean Surveyor: a new phased array
Doppler current profiler, J. Atmos. Ocean. Tech., 20,
742–751, https://doi.org/10.1175/1520-0426(2003)20<742:STUOWT>2.0.CO;2, 2003.
Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El
Niño, Int. J. Climatol., 38, e1296–e1302, https://doi.org/10.1002/joc.5426, 2018.
Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing efficiency in the
ocean, Annu. Rev. Mar. Sci., 10, 443–473, https://doi.org/10.1146/annurev-marine-121916-063643, 2018.
Gustafsson, Ö., Buesseler, K. O., Rockwell Geyer, W., Bradley Moran, S.,
and Gschwend, P. M.: An assessment of the relative importance of horizontal
and vertical transport of particle-reactive chemicals in the coastal ocean,
Cont. Shelf. Res., 18, 805–829, https://doi.org/10.1016/S0278-4343(98)00015-6, 1998.
Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Körtzinger,
A.: Oxygen variance and meridional oxygen supply in the Tropical North East
Atlantic oxygen minimum zone, Clim. Dynam., 43, 2999–3024, https://doi.org/10.1007/s00382-014-2065-0, 2014.
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, L04606, https://doi.org/10.1029/2011gl046735,
2011.
Kadko, D.: Upwelling and primary production during the US GEOTRACES East
Pacific Zonal Transect, Global Biogeochem. Cy., 31, 218–232,
https://doi.org/10.1002/2016GB005554, 2017.
Kaufman, A., Li, Y.-H., and Turekian, K. K.: The removal rates of 234Th
and 228Th from waters of the New York Bight, Earth Planet. Sc. Lett., 54, 385–392, https://doi.org/10.1016/0012-821X(81)90054-6, 1981.
Keeling, R. F. and Garcia, H. E.: The change in oceanic O2 inventory
associated with recent global warming, P. Natl. Acad. Sci. USA, 99, 7848–7853, https://doi.org/10.1073/pnas.122154899, 2002.
Kim, G., Hussain, N., and Church, T. M.: How accurate are the 234Th
based particulate residence times in the ocean?, Geophys. Res. Lett., 26, 619–622, https://doi.org/10.1029/1999GL900037,
1999.
Ku, T.-L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean:
concentration and isotopic composition, Deep-Sea Res., 24, 1005–1017,
https://doi.org/10.1016/0146-6291(77)90571-9, 1977.
Law, C., Martin, A., Liddicoat, M., Watson, A., Richards, K., and Woodward,
E.: A Lagrangian SF6 tracer study of an anticyclonic eddy in the North
Atlantic: Patch evolution, vertical mixing and nutrient supply to the mixed
layer, Deep-Sea Res. Pt. II, 48,
705–724, https://doi.org/10.1016/S0967-0645(00)00112-0, 2001.
Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global
database of surface ocean particulate organic carbon export fluxes diagnosed
from the 234Th technique, Earth Syst. Sci. Data, 5, 295–304, https://doi.org/10.5194/essd-5-295-2013, 2013.
Lee, C., Murray, D., Barber, R., Buesseler, K., Dymond, J., Hedges, J.,
Honjo, S., Manganini, S., Marra, J., and Moser, C.: Particulate organic
carbon fluxes: compilation of results from the 1995 US JGOFS Arabian Sea
process study: By the Arabian Sea carbon flux group, Deep-Sea Res. Pt. II, 45, 2489–2501, https://doi.org/10.1016/S0967-0645(98)00079-4, 1998.
Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann,
G., Dale, A. W., Achterberg, E. P., and Visbeck, M.: Influence of
intraseasonal eastern boundary circulation variability on hydrography and
biogeochemistry off Peru, Ocean Sci. Discuss., 2019, 1–31, https://doi.org/10.5194/os-2019-93, in review 2020.
McDougall, T., Feistel, R., Millero, F., Jackett, D., Wright, D., King, B.,
Marion, G., Chen, C., Spitzer, P., and Seitz, S.: The International
Thermodynamic Equation Of Seawater 2010 (TEOS-10): Calculation and Use of
Thermodynamic Properties, Global Ship-based Repeat Hydrography Manual, IOCCP
Report No. 14, 2009.
McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Uranium geochemistry on
the Amazon shelf: Evidence for uranium release from bottom sediments,
Geochim. Cosmochim. Ac., 51, 2779–2786, https://doi.org/10.1016/0016-7037(87)90157-8, 1987.
Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.:
234Th-derived particulate organic carbon export from an island-induced
phytoplankton bloom in the Southern Ocean, Deep-Sea Res. Pt. II, 54, 2208–2232, https://doi.org/10.1016/j.dsr2.2007.06.002, 2007.
Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L., and Jannasch, H. W.:
Nutrient assimilation, export production and 234Th scavenging in the
eastern equatorial Pacific, Deep.-Sea Res., 36, 1471–1489, https://doi.org/10.1016/0198-0149(89)90052-6, 1989.
Nameroff, T., Balistrieri, L., and Murray, J.: Suboxic trace metal
geochemistry in the eastern tropical North Pacific, Geochim. Cosmochim. Ac., 66, 1139–1158, https://doi.org/10.1016/S0016-7037(01)00843-2, 2002.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T.,
Graco, M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 57, 851–867,
https://doi.org/10.4319/lo.2012.57.3.0851, 2012.
Osborn, T.: Estimates of the local rate of vertical diffusion from
dissipation measurements, J. Phys. Oceanogr., 10, 83–89,
https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980.
Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the 238U-salinity
relationship in seawater: Implications for the 238U–234Th
disequilibrium method, Mar. Chem., 127, 31–39, https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of
particle dynamics and upper ocean export in the Atlantic Ocean, Deep-Sea Res. Pt. II, 116, 42–59, https://doi.org/10.1016/j.dsr2.2014.11.010, 2015.
Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled
ocean-atmosphere dynamics of the 2017 extreme coastal El Niño, Nat. Commun., 10, 298, https://doi.org/10.1038/s41467-018-08258-8, 2019.
Pike, S., Buesseler, K., Andrews, J., and Savoye, N.: Quantification of
234Th recovery in small volume sea water samples by inductively coupled
plasma-mass spectrometry, J. Radioanal. Nucl. Ch.,
263, 355–360, https://doi.org/10.1007/s10967-005-0594-z, 2005.
Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database
of ratios of particulate organic carbon to thorium-234 in the ocean:
improving estimates of the biological carbon pump, Earth Syst. Sci. Data,
12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, 2020.
Rapp, I., Schlosser, C., Menzel Barraqueta, J.-L., Wenzel, B., Lüdke, J., Scholten, J., Gasser, B., Reichert, P., Gledhill, M., Dengler, M., and Achterberg, E. P.: Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone, Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, 2019.
Rengarajan, R., Sarin, M., and Krishnaswami, S.: Uranium in the Arabian Sea:
role of denitrification in controlling its distribution, Oceanol. Acta.,
26, 687–693, https://doi.org/10.1016/j.oceact.2003.05.001,
2003.
Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A.,
Mémery, L., Lévy, M., and Sanders, R.: How does dynamical spatial
variability impact 234Th-derived estimates of organic export?, Deep-Sea Res. Pt. I, 68, 24–45, https://doi.org/10.1016/j.dsr.2012.05.015, 2012.
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate
polynomial expressions for the density and specific volume of seawater using
the TEOS-10 standard, Ocean Model., 90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015.
Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt, Biogeosciences, 12, 3953–3971, https://doi.org/10.5194/bg-12-3953-2015, 2015.
Santschi, P., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L.,
Hung, C.-C., Lamborg, C., Moran, S., Passow, U., and Roy-Barman, M.: Thorium
speciation in seawater, Mar. Chem., 100, 250–268, https://doi.org/10.1016/j.marchem.2005.10.024, 2006.
Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M.,
Buesseler, K. O., Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens,
M.: 234Th sorption and export models in the water column: a review,
Mar. Chem., 100, 234–249, https://doi.org/10.1016/j.marchem.2005.10.014, 2006.
Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal-induced
mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region,
J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2009jc005940, 2010.
Schmidt, S. and Reyss, J.: Uranium concentrations of Mediterranean seawater
with high salinities, Comptes Rendus de l'Academie des Sciences. Serie 2,
312, 479–484, 1991.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335, https://doi.org/10.1038/nature21399, 2017.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann,
K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling
area–response to ENSO-related oxygen fluctuations in the water column,
Geochim. Cosmochim. Ac., 75, 7257–7276, https://doi.org/10.1016/j.gca.2011.08.007, 2011.
Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The
impact of ocean deoxygenation on iron release from continental margin
sediments, Nat. Geosci., 7, 433–437, https://doi.org/10.1038/ngeo2162, 2014.
Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean
ventilation and deoxygenation in a warming world: introduction and overview,
Philos. T. R. Soc. A, 375, 20170240, https://doi.org/10.1098/rsta.2017.0240, 2017.
Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind
profiles as a function of wind speed and temperature, J. Geophys. Res.-Oceans, 93, 15467–15472, https://doi.org/10.1029/JC093iC12p15467, 1988.
Steinfeldt, R., Sültenfuß, J., Dengler, M., Fischer, T., and Rhein, M.: Coastal upwelling off Peru and Mauritania inferred from helium isotope disequilibrium, Biogeosciences, 12, 7519–7533, https://doi.org/10.5194/bg-12-7519-2015, 2015.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, https://doi.org/10.1126/science.1153847, 2008.
Suess, E., Kulm, L., and Killingley, J.: Coastal upwelling and a history of
organic-rich mudstone deposition off Peru, Geological Society, London,
Special Publications, 26, 181–197, https://doi.org/10.1144/GSL.SP.1987.026.01.11, 1987.
Swarzenski, P., Campbell, P., Porcelli, D., and McKee, B.: The estuarine
chemistry and isotope systematics of 234,238U in the Amazon and Fly
Rivers, Cont. Shelf. Res., 24, 2357–2372, https://doi.org/10.1016/j.csr.2004.07.025, 2004.
Thomsen, S. and Lüdke, J.: Microstructure measurements during METEOR cruise M136, PANGAEA, https://doi.org/10.1594/PANGAEA.890121, 2018.
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and
Lavik, G.: The formation of a subsurface anticyclonic eddy in the
Peru-Chile Undercurrent and its impact on the near-coastal salinity,
oxygen, and nutrient distributions, J. Geophys. Res.-Oceans,
121, 476–501, https://doi.org/10.1002/2015JC010878, 2016.
Van Der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C.,
Buesseler, K. O., Charette, M., Dai, M., Gustafsson, Ö., Masque, P., and
Morris, P. J.: A review of present techniques and methodological advances in
analyzing 234Th in aquatic systems, Mar. Chem., 100, 190–212,
https://doi.org/10.1016/j.marchem.2005.10.012, 2006.
Waples, J. T., Benitez-Nelson, C., Savoye, N., van der Loeff, M. R.,
Baskaran, M., and Gustafsson, Ö.: An introduction to the application and
future use of 234Th in aquatic systems, Mar. Chem., 100, 166–189,
https://doi.org/10.1016/j.marchem.2005.10.011, 2006.
Weinstein, S. E. and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb,
and Ba from the upper ocean estimated from 234Th ∕238U
disequilibria, Deep-Sea Res. Pt. I, 52,
1477–1488, https://doi.org/10.1016/j.dsr.2005.03.008, 2005.
Xie, R. C., Le Moigne, F. A. C., Rapp, I., Lüdke, J., Gasser, B.,
Degnler, M., Liebetrau, V., and Achterberg, E. P.: Activities of total 234Th
and dissolved 238U during cruises M136 and M138 from the Peruvian Oxygen
Minimum Zone, PANGAEA, https://doi.org/10.1594/PANGAEA.921917,
2020.
Zhurbas, V. and Oh, I. S.: Drifter-derived maps of lateral diffusivity in
the Pacific and Atlantic oceans in relation to surface circulation patterns,
J. Geophys. Res.-Oceans, 109, C05015, https://doi.org/10.1029/2003JC002241, 2004.
Zimmerman, J. T. F.: Mixing and flushing of tidal embayments in the western
Dutch Wadden Sea part I: Distribution of salinity and calculation of mixing
time scales, Neth. J. Sea Res., 10, 149–191, https://doi.org/10.1016/0077-7579(76)90013-2, 1976.
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But...
Altmetrics
Final-revised paper
Preprint