Articles | Volume 19, issue 8
https://doi.org/10.5194/bg-19-2095-2022
https://doi.org/10.5194/bg-19-2095-2022
Technical note
 | 
19 Apr 2022
Technical note |  | 19 Apr 2022

Technical note: Incorporating expert domain knowledge into causal structure discovery workflows

Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki

Related authors

Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in northern Europe
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025,https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024,https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022,https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020,https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary
Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites
Jarmo Mäkelä, Francesco Minunno, Tuula Aalto, Annikki Mäkelä, Tiina Markkanen, and Mikko Peltoniemi
Biogeosciences, 17, 2681–2700, https://doi.org/10.5194/bg-17-2681-2020,https://doi.org/10.5194/bg-17-2681-2020, 2020
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Quantifying the soil sink of atmospheric hydrogen: a full year of field measurements from grassland and forest soils in the UK
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
Biogeosciences, 22, 3449–3461, https://doi.org/10.5194/bg-22-3449-2025,https://doi.org/10.5194/bg-22-3449-2025, 2025
Short summary
Potential of carbon uptake and local aerosol production in boreal and hemi-boreal ecosystems across Finland and in Estonia
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025,https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Altered seasonal sensitivity of net ecosystem exchange to controls driven by nutrient balances in a semi-arid savanna
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025,https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Chemical and stable carbon isotopic compositions of PM2.5 from two typical forests in China: Implication for sources
Mingyu Li, Zhanjie Xu, Zhichao Dong, Junjun Deng, Pingqing Fu, and Chandra Mouli Pavuluri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1335,https://doi.org/10.5194/egusphere-2025-1335, 2025
Short summary
Peltigera lichen thalli produce highly potent ice-nucleating agents
Rosemary J. Eufemio, Galit Renzer, Mariah Rojas, Jolanta Miadlikowska, Todd L. Sformo, François Lutzoni, Boris A. Vinatzer, and Konrad Meister
Biogeosciences, 22, 2087–2096, https://doi.org/10.5194/bg-22-2087-2025,https://doi.org/10.5194/bg-22-2087-2025, 2025
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Information Sciences, 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012. a
Chickering, D. M.: Optimal Structure Identification with Greedy Search, J. Mach. Learn. Res., 3, 507–554, https://doi.org/10.1162/153244303321897717, 2003. a
Colombo, D. and Maathuis, M. H.: Order-Independent Constraint-Based Causal Structure Learning, J. Mach. Learn. Res., 15, 3741–3782, 2014. a, b
Druzdzel, M. J.: The role of assumptions in causal discovery, in: Workshop on Uncertainty Processing (WUPES-09), University of Pittsburgh, 57–68, http://d-scholarship.pitt.edu/6017/ (last access: 6 April 2022), 2009. a
Download
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Share
Altmetrics
Final-revised paper
Preprint