Articles | Volume 19, issue 8
Biogeosciences, 19, 2095–2099, 2022
https://doi.org/10.5194/bg-19-2095-2022
Biogeosciences, 19, 2095–2099, 2022
https://doi.org/10.5194/bg-19-2095-2022
Technical note
19 Apr 2022
Technical note | 19 Apr 2022

Technical note: Incorporating expert domain knowledge into causal structure discovery workflows

Jarmo Mäkelä et al.

Related authors

Implementation and initial calibration of carbon-13 soil organic matter decomposition in Yasso model
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-327,https://doi.org/10.5194/bg-2021-327, 2021
Revised manuscript under review for BG
Short summary
Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020,https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary
Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites
Jarmo Mäkelä, Francesco Minunno, Tuula Aalto, Annikki Mäkelä, Tiina Markkanen, and Mikko Peltoniemi
Biogeosciences, 17, 2681–2700, https://doi.org/10.5194/bg-17-2681-2020,https://doi.org/10.5194/bg-17-2681-2020, 2020
Short summary
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019,https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC
Jouni Susiluoto, Maarit Raivonen, Leif Backman, Marko Laine, Jarmo Makela, Olli Peltola, Timo Vesala, and Tuula Aalto
Geosci. Model Dev., 11, 1199–1228, https://doi.org/10.5194/gmd-11-1199-2018,https://doi.org/10.5194/gmd-11-1199-2018, 2018
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022,https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022,https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022,https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022,https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022,https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Information Sciences, 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012. a
Chickering, D. M.: Optimal Structure Identification with Greedy Search, J. Mach. Learn. Res., 3, 507–554, https://doi.org/10.1162/153244303321897717, 2003. a
Colombo, D. and Maathuis, M. H.: Order-Independent Constraint-Based Causal Structure Learning, J. Mach. Learn. Res., 15, 3741–3782, 2014. a, b
Druzdzel, M. J.: The role of assumptions in causal discovery, in: Workshop on Uncertainty Processing (WUPES-09), University of Pittsburgh, 57–68, http://d-scholarship.pitt.edu/6017/ (last access: 6 April 2022), 2009. a
Download
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Altmetrics
Final-revised paper
Preprint