Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A robust initialization method for accurate soil organic carbon simulations
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
ISTeP, UMR 7193, Sorbonne Université, CNRS, 75005 Paris, France
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
Normandie Université, UNIROUEN, INRAE, ECODIV, 76821 Rouen, France
François Baudin
ISTeP, UMR 7193, Sorbonne Université, CNRS, 75005 Paris, France
Hugues Clivot
Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614,
51097 Reims, France
Fabien Ferchaud
BioEcoAgro Joint Research Unit, INRAE, Université de Liège,
Université de Lille, Université Picardie Jules Verne, 02000 Barenton-Bugny, France
Sabine Houot
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Florent Levavasseur
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Bruno Mary
BioEcoAgro Joint Research Unit, INRAE, Université de Liège,
Université de Lille, Université Picardie Jules Verne, 02000 Barenton-Bugny, France
Laure Soucémarianadin
ACTA – les instituts techniques agricoles, 75012 Paris, France
Claire Chenu
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
Related authors
No articles found.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1875, https://doi.org/10.5194/egusphere-2024-1875, 2024
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need of careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
EGUsphere, https://doi.org/10.5194/egusphere-2024-1284, https://doi.org/10.5194/egusphere-2024-1284, 2024
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depth that need to be preserved.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019, https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Short summary
Soils store large amounts of carbon in soil organic matter, which comes from plant debris and roots. The mechanisms protecting it from biodegradation are not fully understood. Here, we carry out a size-fractionation of soil sampled on different dates in a field experiment. Using carbon and nitrogen content and spectroscopy and microscopy we conclude that organic matter enriched in nitrogen is preferentially protected from biodegradation and that clay minerals have differing protective abilities.
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, https://doi.org/10.5194/bg-15-2835-2018, 2018
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395, https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary
Short summary
Soil C storage is currently discussed at a high political level. This paper discusses whether the concept of soil C saturation deficit can be appropriate to determine quantitatively the soil C storage potential and contribute to answer operational questions raised by policy makers. After a review of the literature, we conclude that for practical and conceptual reasons, the C saturation deficit is not appropriate for assessing quantitatively the soil total OC storage potential.
Related subject area
Biogeochemistry: Modelling, Terrestrial
X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Future projections of Siberian wildfire and aerosol emissions
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulphur and nitrogen atmospheric deposition
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
When and why microbial-explicit soil organic carbon models can be unstable
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Climate-based prediction of carbon fluxes from deadwood in Australia
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
The effect of temperature on photosystem II efficiency across plant functional types and climate
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Elevated atmospheric CO2 concentration and vegetation structural changes contributed to gross primary productivity increase more than climate and forest cover changes in subtropical forests of China
Developing the DO3SE-crop model for Xiaoji, China
Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem
Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2
A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
Representation of the Terrestrial Carbon Cycle in CMIP6
Using Free Air CO2 Enrichment data to constrain land surface model projections of the terrestrial carbon cycle
Multiscale assessment of North American terrestrial carbon balance
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Spatial biases reduce the ability of Earth system models to simulate soil heterotrophic respiration fluxes
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Tropical dry forest response to nutrient fertilization: a model validation and sensitivity analysis
Connecting competitor, stress-tolerator and ruderal (CSR) theory and Lund Potsdam Jena managed Land 5 (LPJmL 5) to assess the role of environmental conditions, management and functional diversity for grassland ecosystem functions
A global fuel characteristic model and dataset for wildfire prediction
Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?
Temporal variability of observed and simulated gross primary productivity, modulated by vegetation state and hydrometeorological drivers
Does dynamically modelled leaf area improve predictions of land surface water and carbon fluxes? – Insights into dynamic vegetation modules
Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia
A modeling approach to investigate drivers, variability and uncertainties in O2 fluxes and O2 : CO2 exchange ratios in a temperate forest
Modeling coupled nitrification–denitrification in soil with an organic hotspot
A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland
Enabling a process-oriented hydro-biogeochemical model to simulate soil erosion and nutrient losses
Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium limitation of forest productivity – Part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
Global evaluation of terrestrial biogeochemistry in the Energy Exascale Earth System Model (E3SM) and the role of the phosphorus cycle in the historical terrestrial carbon balance
Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts and climate change on future soil weathering rates in Sweden
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Observational benchmarks inform representation of soil organic carbon dynamics in land surface models
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024, https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Short summary
We provide an ensemble-model-based GPP dataset (ERF_GPP) that explains 85.1 % of the monthly variation in GPP across 170 sites, which is higher than other GPP estimate models. In addition, ERF_GPP improves the phenomenon of “high-value underestimation and low-value overestimation” in GPP estimation to some extent. Overall, ERF_GPP provides a more reliable estimate of global GPP and will facilitate further development of carbon cycle research.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1973, https://doi.org/10.5194/egusphere-2024-1973, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data and socioeconomic data to determine what affects burning in cropland and non-cropland area Europe. We found different drivers of burning in cropland burning vs non-cropland, to the point that some variable, e.g. population density, had completely the opposite effects.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024, https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate-change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024, https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Short summary
A first-of-its-kind global-scale model of temperature resilience and tolerance of photosystem II maximum quantum yield informs how plants maintain their efficiency of converting light energy to chemical energy for photosynthesis under temperature changes. Our finding explores this variation across plant functional types and habitat climatology, highlighting diverse temperature response strategies and a method to improve global-scale photosynthesis modeling under climate change.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-694, https://doi.org/10.5194/egusphere-2024-694, 2024
Short summary
Short summary
The DO3SE-crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-Crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, it integrates into Earth System Models for a comprehensive understanding of agriculture's interaction with global systems.
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024, https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary
Short summary
Stomata are pores on leaves that regulate gas exchange between plants and the atmosphere. Existing land models unrealistically assume stomata can jump between steady states when the environment changes. We implemented dynamic modeling to predict gradual stomatal responses at different scales. Results suggested that considering this effect on plant behavior patterns in diurnal cycles was important. Our framework also simplified simulations and can contribute to further efficiency improvements.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2024-277, https://doi.org/10.5194/egusphere-2024-277, 2024
Short summary
Short summary
This study investigates present day carbon cycle variables in CMIP5 and CMIP6 simulations. A significant improvement in the simulation of photosynthesis in models with nitrogen cycle is found, as well as only small differences between emission and concentration based simulations. Thus, we recommend the use of emission driven simulations in CMIP7 as default setup, and to view the nitrogen cycle as a necessary part of all future carbon cycle models.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2023-3037, https://doi.org/10.5194/egusphere-2023-3037, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes with important implications to their climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands to a source of methane but the magnitude varied regionally. In forests, changes in water table level influenced methane fluxes and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Shuyue Li, Bonnie Waring, Jennifer Powers, and David Medvigy
Biogeosciences, 21, 455–471, https://doi.org/10.5194/bg-21-455-2024, https://doi.org/10.5194/bg-21-455-2024, 2024
Short summary
Short summary
We used an ecosystem model to simulate primary production of a tropical forest subjected to 3 years of nutrient fertilization. Simulations parameterized such that relative allocation to fine roots increased with increasing soil phosphorus had leaf, wood, and fine root production consistent with observations. However, these simulations seemed to over-allocate to fine roots on multidecadal timescales, affecting aboveground biomass. Additional observations across timescales would benefit models.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Joe R. McNorton and Francesca Di Giuseppe
Biogeosciences, 21, 279–300, https://doi.org/10.5194/bg-21-279-2024, https://doi.org/10.5194/bg-21-279-2024, 2024
Short summary
Short summary
Wildfires have wide-ranging consequences for local communities, air quality and ecosystems. Vegetation amount and moisture state are key components to forecast wildfires. We developed a combined model and satellite framework to characterise vegetation, including the type of fuel, whether it is alive or dead, and its moisture content. The daily data is at high resolution globally (~9 km). Our characteristics correlate with active fire data and can inform fire danger and spread modelling efforts.
Brooke A. Eastman, William R. Wieder, Melannie D. Hartman, Edward R. Brzostek, and William T. Peterjohn
Biogeosciences, 21, 201–221, https://doi.org/10.5194/bg-21-201-2024, https://doi.org/10.5194/bg-21-201-2024, 2024
Short summary
Short summary
We compared soil model performance to data from a long-term nitrogen addition experiment in a forested ecosystem. We found that in order for soil carbon models to accurately predict future forest carbon sequestration, two key processes must respond dynamically to nitrogen availability: (1) plant allocation of carbon to wood versus roots and (2) rates of soil organic matter decomposition. Long-term experiments can help improve our predictions of the land carbon sink and its climate impact.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
EGUsphere, https://doi.org/10.5194/egusphere-2023-2101, https://doi.org/10.5194/egusphere-2023-2101, 2023
Short summary
Short summary
Plants at the land surface mediates between soil and atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to care for this dynamics. Here, two models which predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness which is caused by a mismatch between implemented physical relations and observable connections.
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, and Albert I. J. M. Van Dijk
Biogeosciences, 20, 4109–4134, https://doi.org/10.5194/bg-20-4109-2023, https://doi.org/10.5194/bg-20-4109-2023, 2023
Short summary
Short summary
Australia's land-based ecosystems play a critical role in controlling the variability in the global land carbon sink. However, uncertainties in the methods used for quantifying carbon fluxes limit our understanding. We develop high-resolution estimates of Australia's land carbon fluxes using machine learning methods and find that Australia is, on average, a stronger carbon sink than previously thought and that the seasonal dynamics of the fluxes differ from those described by other methods.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023, https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) is a useful constraint for estimating photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a novel temperature function for enzyme carbonic anhydrase (CA) activity and optimize conductances using observations. The optimal activity of CA occurs below 40 °C, and Ball–Woodrow–Berry parameters are slightly changed. These reduce/increase uptakes in the tropics/higher latitudes and contribute to resolving discrepancies in the COS global budget.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, https://doi.org/10.5194/bg-20-2265-2023, 2023
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences, 20, 1879–1899, https://doi.org/10.5194/bg-20-1879-2023, https://doi.org/10.5194/bg-20-1879-2023, 2023
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health.
In this study, climate change effects on weathering were studied on sites in Sweden using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer and increases with global warming but that weathering during drought summers can become as low as winter weathering.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-50, https://doi.org/10.5194/bg-2023-50, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon climate feedbacks. We used machine learning to develop and compare predictive relationships in observations and ESMs. We found different relationships between environmental factors and SOC stocks in observations and ESMs. SOC predictions in ESMs may be improved by representing the functional relationships of environmental controllers consistent with observations.
Cited articles
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J.,
Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan,
G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney,
S., van Wesemael, B., Wander, M., and Chabbi, A.: Towards a global-scale
soil climate mitigation strategy, Nat. Commun., 11, 1–10,
https://doi.org/10.1038/s41467-020-18887-7, 2020.
Andriulo, A. E., Mary, B., and Guerif, J.: Modelling soil carbon dynamics
with various cropping sequences on the rolling pampas, Agronomie, 19, 365–377, 1999.
Aphalo, P. J.: Learn R as you learnt your mother tongue, Leanpub [code], available at: https://leanpub.com/learnr (last access: 19 January 2022), 2016.
Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C.
V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K.
E. O., and Wallenstein, M. D.: Soil carbon cycling proxies: Understanding
their critical role in predicting climate change feedbacks, Glob. Chang. Biol., 24, 895–905,
https://doi.org/10.1111/gcb.13926, 2018.
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting
contents of carbon and its component fractions in Australian soils from
diffuse reflectance mid-infrared spectra, Soil Res., 51, 577–595,
https://doi.org/10.1071/SR13077, 2013.
Balesdent, J. and Arrouays, D.: Usage des terres et stockage de carbone dans
les sols du territoire français. Une estimation des flux nets pour la
période 1900–1999, Comptes rendus l'Académie d'Agriculture Fr., 85, 265–277, 1999.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere–soil carbon transfer as a
function of soil depth, Nature, 559, 599–602,
https://doi.org/10.1038/s41586-018-0328-3, 2018.
Barré, P., Montagnier, C., Chenu, C., Abbadie, L., and Velde, B.: Clay
minerals as a soil potassium reservoir: Observation and quantification
through X-ray diffraction, Plant Soil, 302, 213–220,
https://doi.org/10.1007/s11104-007-9471-6, 2008.
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S.,
Kätterer, T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V.,
and Chenu, C.: Quantifying and isolating stable soil organic carbon using
long-term bare fallow experiments, Biogeosciences, 7, 3839–3850,
https://doi.org/10.5194/bg-7-3839-2010, 2010.
Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F.,
Bernard, S., Christensen, B. T., Eglin, T., Fernandez, J. M., Houot, S.,
Kätterer, T., Le Guillou, C., Macdonald, A., van Oort, F., and Chenu,
C.: The energetic and chemical signatures of persistent soil organic matter,
Biogeochemistry, 130, 1–12, https://doi.org/10.1007/s10533-016-0246-0,
2016.
Barthès, B. G., Brunet, D., Hien, E., Enjalric, F., Conche, S.,
Freschet, G. T., d'Annunzio, R., and Toucet-Louri, J.: Determining the
distributions of soil carbon and nitrogen in particle size fractions using
near-infrared reflectance spectrum of bulk soil samples, Soil Biol.
Biochem., 40, 1533–1537, https://doi.org/10.1016/j.soilbio.2007.12.023,
2008.
Baudin, F., Disnar, J. R., Aboussou, A., and Savignac, F.: Guidelines for
Rock-Eval analysis of recent marine sediments, Org. Geochem., 86, 71–80,
https://doi.org/10.1016/j.orggeochem.2015.06.009, 2015.
Behar, F., Beaumont, V., and De B. Penteado, H. L.: Rock-Eval 6 Technology:
Performances and Developments, Oil Gas Sci. Technol., 56, 111–134,
https://doi.org/10.2516/ogst:2001013, 2001.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and
VandenBygaart, A. J.: An approach for estimating net primary productivity
and annual carbon inputs to soil for common agricultural crops in Canada, Agr. Ecosyst. Environ.,
118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bruun, S. and Jensen, L. S.: Initialisation of the soil organic matter pools
of the Daisy model, Ecol. Modell., 153, 291–295, 2002.
Cagnarini, C., Renella, G., Mayer, J., Hirte, J., Schulin, R., Costerousse,
B., Della Marta, A., Orlandini, S., and Menichetti, L.: Multi-objective
calibration of RothC using measured carbon stocks and auxiliary data of a
long-term experiment in Switzerland, Eur. J. Soil Sci., 70, 819–832,
https://doi.org/10.1111/ejss.12802, 2019.
Cécillon, L.: A dual response, Nat. Geosci., 14, 262–263,
https://doi.org/10.1038/s41561-021-00749-6, 2021a.
Cécillon, L.: lauric-cecillon/PARTYsoc: Second version of the
PARTYSOC statistical model, Zenodo [code], https://doi.org/10.5281/zenodo.4446138,
2021b.
Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A. F., Savignac, F., Soucémarianadin, L. N., and Barré, P.: A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, 2018.
Cécillon, L., Baudin, F., Chenu, C., Christensen, B. T., Franko, U.,
Houot, S., Kanari, E., Kätterer, T., Merbach, I., van Oort, F., Poeplau,
C., Quezada, J. C., Savignac, F., Soucémarianadin, L. N., and Barré,
P.: Partitioning soil organic carbon into its centennially stable and active
fractions with machine-learning models based on Rock-Eval®
thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU), Geosci.
Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, 2021.
Chassé, M., Luftalla, S., Cécillon, L., Baudin, F., Abiven, S.,
Chenu, C., and Barré, P.: Long-term bare fallow soil fractions reveal
thermo-chemical properties controlling soil organic carbon dynamics, Biogeosciences, 18,
1703–1718, https://doi.org/10.5194/bg-18-1703-2021, 2021.
Clivot, H., Mouny, J. C., Duparque, A., Dinh, J. L., Denoroy, P., Houot, S.,
Vertès, F., Trochard, R., Bouthier, A., Sagot, S., and Mary, B.:
Modeling soil organic carbon evolution in long-term arable experiments with
AMG model, Environ. Model. Softw., 118, 99–113, https://doi.org/10.1016/j.envsoft.2019.04.004,
2019.
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klír, J.,
Körschens, M., Poulton, P. R., and Richter, D. D.: Simulating trends in
soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29–44,
https://doi.org/10.1016/S0016-7061(97)00079-7, 1997.
Colomb, B., Debaeke, P., Jouany, C., and Nolot, J. M.: Phosphorus management
in low input stockless cropping systems: Crop and soil responses to
contrasting P regimes in a 36-year experiment in southern France, Eur. J. Agron., 26,
154–165, https://doi.org/10.1016/j.eja.2006.09.004, 2007.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D.,
Mo, L., Averill, C., and Maynard, D. S.: The global soil community and its
influence on biogeochemistry, Science, 365, eaav0550,
https://doi.org/10.1126/science.aav0550, 2019.
Dangal, S. R. S., Schwalm, C., Cavigelli, M. A., Gollany, H. T., Jin, V. L.,
and Sanderman, J.: Improving soil carbon estimates by linking conceptual
pools against measurable carbon fractions in the DAYCENT Model Version 4.5,
ESSOAR, https://doi.org/10.1002/essoar.10507190.1, 2021.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14,
https://doi.org/10.1007/s13593-017-0421-2, 2017.
Dimassi, B., Mary, B., Wylleman, R., Labreuche, J. Ô., Couture, D.,
Piraux, F., and Cohan, J. P.: Long-term effect of contrasted tillage and
crop management on soil carbon dynamics during 41 years, Agr. Ecosyst. Environ., 188, 134–146,
https://doi.org/10.1016/j.agee.2014.02.014, 2014.
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.:
Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: Scope and
limitations, Org. Geochem., 34, 327–343, https://doi.org/10.1016/S0146-6380(02)00239-5,
2003.
Erb, K. H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.
D., Marín-Spiotta, E., McCallum, I., Robertson, E., Seufert, V., Fritz,
S., Valade, A., Wiltshire, A., and Dolman, A. J.: Land management: data
availability and process understanding for global change studies, Glob. Chang. Biol., 23,
512–533, https://doi.org/10.1111/gcb.13443, 2017.
FAO: Recarbonization of global soils: a dynamic response to offset global
emissions, FAO, Rome, Italy, 8 pp., available at: https://www.fao.org/documents/card/en/c/e4839d17-c6aa-44ca-85cc-b4a6de25c143/ (last access: 19 January 2022), 2019.
FAO: Technical specifications and country guidelines for Global Soil Organic
Carbon Sequestration Potential Map (GSOCseq), FAO, Rome, Italy, 48 pp., available at: https://www.fao.org/3/cb0353en/CB0353EN.pdf (last access: 19 January 2022), 2020.
Farina, R., Sándor, R., Abdalla, M., Álvaro-Fuentes, J., Bechini,
L., Bolinder, M. A., Brilli, L., Chenu, C., Clivot, H., De Antoni
Migliorati, M., Di Bene, C., Dorich, C. D., Ehrhardt, F., Ferchaud, F.,
Fitton, N., Francaviglia, R., Franko, U., Giltrap, D. L., Grant, B. B.,
Guenet, B., Harrison, M. T., Kirschbaum, M. U. F., Kuka, K., Kulmala, L.,
Liski, J., McGrath, M. J., Meier, E., Menichetti, L., Moyano, F., Nendel,
C., Recous, S., Reibold, N., Shepherd, A., Smith, W. N., Smith, P.,
Soussana, J. F., Stella, T., Taghizadeh-Toosi, A., Tsutskikh, E., and
Bellocchi, G.: Ensemble modelling, uncertainty and robust predictions of
organic carbon in long-term bare-fallow soils, Glob. Chang. Biol., 27, 904–928,
https://doi.org/10.1111/gcb.15441, 2021.
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W., and Eberle, J.:
Gross changes in reconstructions of historic land cover/use for Europe
between 1900 and 2010, Glob. Chang. Biol., 21, 299–313, https://doi.org/10.1111/gcb.12714,
2015.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H., and
Yanni, S. F.: Evaluating biodegradability of soil organic matter by its
thermal stability and chemical composition, Soil Biol. Biochem.,
91, 182–191, https://doi.org/10.1016/j.soilbio.2015.08.032, 2015.
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaugh, L. J. S.,
Allison, S. D., and Randerson, J. T.: Radiocarbon constraints imply reduced
carbon uptake by soils during the 21st century, Science, 353, 1419–1424, https://doi.org/10.1126/science.aad4273, 2016.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231,
https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hénin, S. and Dupuis, M.: Essai de bilan de la matière organique du
sol, in: Ann. Agron. 11, Dunod (impr. de Chaix), Paris, 17–29, 1945.
Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H.,
Gaiser, T., Herrmann, F., Amelung, W., and Vanderborght, J.: Correspondence
of measured soil carbon fractions and RothC pools for equilibrium and
non-equilibrium states, Geoderma, 314, 37–46,
https://doi.org/10.1016/j.geoderma.2017.10.047, 2018.
IPCC: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., The Intergovernmental Panel on Climate Change, available at: https://www.ipcc.ch/srccl/ (last access: 19 January 2022), 2019.
Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of Soil Organic
Carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, 2000.
Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F.,
Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunié, S., Anthelme, F.,
Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S.,
Compostella, C., Clague, J., Tielidze, L., Messager, E., Choler, P., and
Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around
the world, Glob. Change Biol., 27, 1662–1677,
https://doi.org/10.1111/gcb.15496, 2021.
Lee, J., Viscarra Rossel, R. A., Zhang, M., Luo, Z., and Wang, Y.-P.: Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework, Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, 2021.
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S.,
Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., and
Kögel-Knabner, I.: Persistence of soil organic carbon caused by
functional complexity, Nat. Geosci., 13, 529–534,
https://doi.org/10.1038/s41561-020-0612-3, 2020.
Leifeld, J., Reiser, R., and Oberholzer, H. R.: Consequences of conventional
versus organic farming on soil carbon: Results from a 27-year field
experiment, Agron. J., 101, 1204–1218, https://doi.org/10.2134/agronj2009.0002, 2009a.
Leifeld, J., Zimmermann, M., Fuhrer, J., and Conen, F.: Storage and turnover
of carbon in grassland soils along an elevation gradient in the Swiss Alps, Glob. Change Biol.,
15, 668–679, https://doi.org/10.1111/j.1365-2486.2008.01782.x, 2009b.
Levavasseur, F., Mary, B., Christensen, B. T., Duparque, A., Ferchaud, F.,
Kätterer, T., Lagrange, H., Montenach, D., Resseguier, C., and Houot,
S.: The simple AMG model accurately simulates organic carbon storage in
soils after repeated application of exogenous organic matter, Nutr. Cycl. Agroecosyst., 117, 215–229,
https://doi.org/10.1007/s10705-020-10065-x, 2020.
Lubet, E., Plénet, D., and Juste, C.: Effet à long terme de la
monoculture sur le rendement en grain du maïs (Zea mays L) en
conditions non irriguées, Agronomie, 13, 673–683,
https://doi.org/10.1051/agro:19930801, 1993.
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.:
Different climate sensitivity of particulate and mineral-associated soil
organic matter, Nat. Geosci., 14, 295–300,
https://doi.org/10.1038/s41561-021-00744-x, 2021.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, Robert, B., Jones, C. D., Lara, M. J., Liang,
J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A.,
Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., Van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xu, X.,
Xu, X., and Zhou, T.: Towards more realistic projections of soil carbon
dynamics by Earth system models, Global Biogeochem. Cy., 30, 40–56,
https://doi.org/10.1002/2015GB005239, 2016.
Luo, Z., Wang, E., Fillery, I. R. P., Macdonald, L. M., Huth, N., and
Baldock, J.: Modelling soil carbon and nitrogen dynamics using measurable
and conceptual soil organic matter pools in APSIM, Agr. Ecosyst. Environ., 186, 94–104,
https://doi.org/10.1016/j.agee.2014.01.019, 2014.
Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization:
Theory and models across scales, Soil Biol. Biochem., 41, 1355–1379,
https://doi.org/10.1016/j.soilbio.2009.02.031, 2009.
Martin, M., Dimassi, B., Millet, F., Picaud, C., Bounoua, E.-M., Bardy, M.,
Bispo, A., Boulonne, L., Bouthier, A., Duparque, A., Eglin, T., Guenet, B.,
Huard, F., Mary, B., Mathias, E., Mignolet, C., Robert, C., Saby, N., Sagot,
S., Schott, C., and Toutain, B. R.: Méthodes de comptabilisation du
stockage de carbone organique des sols sous l'effet des pratiques culturales
(CSopra), ADEME, available at: https://librairie.ademe.fr/produire-autrement/ (last access: 19 January 2022),
2019.
Mary, B., Clivot, H., Blaszczyk, N., Labreuche, J., and Ferchaud, F.: Soil
carbon storage and mineralization rates are affected by carbon inputs rather
than physical disturbance: Evidence from a 47-year tillage experiment, Agr. Ecosyst. Environ., 299,
106972, https://doi.org/10.1016/j.agee.2020.106972, 2020.
Messiga, A. J., Ziadi, N., Plénet, D., Parent, L. E., and Morel, C.:
Long-term changes in soil phosphorus status related to P budgets under maize
monoculture and mineral P fertilization, Soil Use Manag., 26, 354–364,
https://doi.org/10.1111/j.1475-2743.2010.00287.x, 2010.
Morel, C., Ziadi, N., Messiga, A., Bélanger, G., Denoroy, P., Jeangros,
B., Jouany, C., Fardeau, J. C., Mollier, A., Parent, L. E., Proix, N.,
Rabeharisoa, L., and Sinaj, S.: Modeling of phosphorus dynamics in
contrasting agroecosystems using long-term field experiments, Can. J. Soil Sci., 94, 377–387,
https://doi.org/10.4141/CJSS2013-024, 2014.
Nave, L., Johnson, K., Ingen, C. van, Agarwal, D., Humphrey, M., and
Beekwilder, N.: International Soil Carbon Network (ISCN) Database V3-1, International Soil Carbon Network,
https://doi.org/10.17040/ISCN/1305039, 2015.
Nemo, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A.,
Jones, M. B., Leifeld, J., Osborne, B., Saunders, M., Scott, T., Teh, Y. A.,
and Smith, P.: Soil Organic Carbon (SOC) Equilibrium and Model
Initialisation Methods: an Application to the Rothamsted Carbon (RothC)
Model, Environ. Model. Assess., 22, 215–229, https://doi.org/10.1007/s10666-016-9536-0, 2016.
Noirot-Cosson, P. E., Vaudour, E., Gilliot, J. M., Gabrielle, B., and Houot,
S.: Modelling the long-term effect of urban waste compost applications on
carbon and nitrogen dynamics in temperate cropland, Soil Biol. Biochem., 94, 138–153,
https://doi.org/10.1016/j.soilbio.2015.11.014, 2016.
Oberholzer, H. R., Leifeld, J., and Mayer, J.: Changes in soil carbon and
crop yield over 60 years in the Zurich Organic Fertilization Experiment,
following land-use change from grassland to cropland, J. Plant Nutr. Soil Sci., 177, 696–704,
https://doi.org/10.1002/jpln.201300385, 2014.
Obriot, F.: Epandage de produits résiduaires organiques et
fonctionnement biologique des sols: De la quantification des impacts sur
les cycles carbone et azote à l'évaluation multicritère de la
pratique à l'échelle de la parcelle (PhD), AgroParisTech, 456 pp., available at: https://hal.inrae.fr/tel-02801385 (last access: 19 January 2022),
2016.
Otto, S. A., Kadin, M., Casini, M., Torres, M. A., and Blenckner, T.: A
quantitative framework for selecting and validating food web indicators, Ecol. Indic., 84,
619–631, https://doi.org/10.1016/j.ecolind.2017.05.045, 2018.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon
after land-use change in the temperate zone – carbon response functions as a
model approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J.,
Senapati, N., and Wiesmeier, M.: Reproducibility of a soil organic carbon
fractionation method to derive RothC carbon pools, Eur. J. Soil Sci., 64, 735–746,
https://doi.org/10.1111/ejss.12088, 2013.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate
agricultural soils – A comprehensive method comparison, Soil Biol. Biochem., 125, 10–26,
https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Poeplau, C., Barré, P., Cécillon, L., Baudin, F., and Sigurdsson, B.
D.: Changes in the Rock-Eval signature of soil organic carbon upon extreme
soil warming and chemical oxidation – A comparison, Geoderma, 337, 181–190,
https://doi.org/10.1016/j.geoderma.2018.09.025, 2019.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing,
Vienna, Austria, available at: https://www.R-project.org/ (last access: 19 January 2022), 2017.
Rumpel, C., Amiraslani, F., Koutika, L. S., Smith, P., Whitehead, D., and
Wollenberg, E.: Put more carbon in soils to meet Paris climate pledges, Nature, 564,
32–34, https://doi.org/10.1038/d41586-018-07587-4, 2018.
Saffih-Hdadi, K. and Mary, B.: Modeling consequences of straw residues
export on soil organic carbon, Soil Biol. Biochem., 40, 594–607,
https://doi.org/10.1016/j.soilbio.2007.08.022, 2008.
Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S.,
Rivard, C., and Savage, K.: Soil organic carbon fractions in the Great
Plains of the United States: an application of mid-infrared spectroscopy, Biogeochemistry, 156, 97–114,
https://doi.org/10.1007/s10533-021-00755-1, 2021.
Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J.: How accurately
can soil organic carbon stocks and stock changes be quantified by soil
inventories?, Biogeosciences, 8, 1193–1212, https://doi.org/10.5194/bg-8-1193-2011, 2011.
Shi, Z., Crowell, S., Luo, Y., and Moore, B.: Model structures amplify
uncertainty in predicted soil carbon responses to climate change, Nat.
Commun., 9, 2171, https://doi.org/10.1038/s41467-018-04526-9, 2018.
Skjemstad, J. O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration
of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using
measurable soil organic carbon pools, Aust. J. Soil Res., 42, 79–88,
https://doi.org/10.1071/SR03013, 2004.
Smith, J. U., Smith, P., and Addiscot, T.: Quantitative methods to evaluate
and compare soil organic matter (SOM) models, in: Evaluation of Soil Organic
Matter Models Using existing Long-Term Datasets, edited by: Powlson, D. S., Smith, J. U., and Smith, P., Springer Berlin,
Heidelberg, 181–199, 1996.
Smith, P. and Falloon, P. D.: Modelling refractory soil organic matter, Biol. Fertil. Soils, 30,
388–398, https://doi.org/10.1007/s003740050019, 2000.
Taghizadeh-Toosi, A., Cong, W. F., Eriksen, J., Mayer, J., Olesen, J. E.,
Keel, S. G., Glendining, M., Kätterer, T., and Christensen, B. T.:
Visiting dark sides of model simulation of carbon stocks in European
temperate agricultural soils: allometric function and model initialization, Plant Soil,
450, 255–272, https://doi.org/10.1007/s11104-020-04500-9, 2020.
Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T.,
Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q.,
and Allison, S. D.: Changes in soil organic carbon storage predicted by
Earth system models during the 21st century, Biogeosciences, 11, 2341–2356,
https://doi.org/10.5194/bg-11-2341-2014, 2014.
UN General Assembly: UN General Assembly, Transforming our world: the 2030
Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, General assembly seventieth session, New York, available at: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (last access: 19 January 2022), 2015.
Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C.,
Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R.,
Reddy, M., Sunga, I., Von Unger, M., and Warnken, M.: A global agenda for
collective action on soil carbon, Nat. Sustain., 2, 2–4,
https://doi.org/10.1038/s41893-018-0212-z, 2019.
Vertès, F., Simon, J.-C., Laurent, F., and Besnard, A.: Prairies et
qualité de l'eau. Evaluation des risques de lixiviation d'azote et
optimisation des pratiques, Fourrag., 192, 423–440, 2007.
Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., and
Richards, A.: Continental-scale soil carbon composition and vulnerability
modulated by regional environmental controls, Nat. Geosci., 12, 547–552,
https://doi.org/10.1038/s41561-019-0373-z, 2019.
Wallach, D.: Evaluating Crop Models, in: Working with Dynamic Crop Models Evaluation, Analysis, Parameterization, and Applications, edited by: Wallach, D., Makowski, D., and Jones, J. W., Elsevier, Amsterdam, 11–54, 2006.
Wickham, H.: Reshaping Data with the reshape Package, J. Stat. Softw., 21, 1–20,
https://doi.org/10.18637/jss.v021.i12, 2007.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, ISBN 978-3-319-24277-4, 2016.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils – A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wutzler, T. and Reichstein, M.: Soils apart from equilibrium – Consequences
for soil carbon balance modelling, Biogeosciences, 4, 125–136,
https://doi.org/10.5194/bg-4-125-2007, 2007.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x,
2007a.
Zimmermann, M., Leifeld, J., and Fuhrer, J.: Quantifying soil organic carbon
fractions by infrared-spectroscopy, Soil Biol. Biochem., 39, 224–231,
https://doi.org/10.1016/j.soilbio.2006.07.010, 2007b.
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security....
Altmetrics
Final-revised paper
Preprint