Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A robust initialization method for accurate soil organic carbon simulations
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
ISTeP, UMR 7193, Sorbonne Université, CNRS, 75005 Paris, France
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
Normandie Université, UNIROUEN, INRAE, ECODIV, 76821 Rouen, France
François Baudin
ISTeP, UMR 7193, Sorbonne Université, CNRS, 75005 Paris, France
Hugues Clivot
Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614,
51097 Reims, France
Fabien Ferchaud
BioEcoAgro Joint Research Unit, INRAE, Université de Liège,
Université de Lille, Université Picardie Jules Verne, 02000 Barenton-Bugny, France
Sabine Houot
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Florent Levavasseur
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Bruno Mary
BioEcoAgro Joint Research Unit, INRAE, Université de Liège,
Université de Lille, Université Picardie Jules Verne, 02000 Barenton-Bugny, France
Laure Soucémarianadin
ACTA – les instituts techniques agricoles, 75012 Paris, France
Claire Chenu
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay,
78850 Thiverval-Grignon, France
Laboratoire de Géologie, École normale supérieure, CNRS,
Université PSL, IPSL, 75005 Paris, France
Related authors
No articles found.
Naoise Nunan, Claire Chenu, Valérie Pouteau, André Soro, Kevin Potard, Célia Regina Montes, Patricia Merdy, Adolpho José Melfi, and Yves Lucas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3356, https://doi.org/10.5194/egusphere-2025-3356, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The vulnerability to decomposition of organic C in Amazonian podzols as a result of predicted drier soil moisture regimes was tested: more than four times as much CO2 was released from soils under oxic conditions with the addition of N relative to soils under the prevailing anoxic conditions. An extrapolation of the data to the whole of the Amazonian podzols suggests that this increased C-CO2 flux to the atmosphere could be equivalent to 8 % of the current net global C flux to the atmosphere.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
SOIL, 11, 467–488, https://doi.org/10.5194/soil-11-467-2025, https://doi.org/10.5194/soil-11-467-2025, 2025
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Johanne Lebrun Thauront, Philippa Ascough, Sebastian Doetterl, Negar Haghipour, Pierre Barré, Christian Walter, and Samuel Abiven
EGUsphere, https://doi.org/10.5194/egusphere-2025-2693, https://doi.org/10.5194/egusphere-2025-2693, 2025
Short summary
Short summary
Fire-derived carbon is a form of organic carbon that has a long persistence in soils. However, its persistence at the landscape scale may be underestimated due to lateral and vertical redistribution. We measured fire-derived carbon in soils of a hilly agricultural watershed to identify the result of transport processes on the centennial time-scale. We show that the subsoil stores a large amount of fire-derived carbon and that erosion can redistribute it to localized accumulation zones.
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J.,
Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan,
G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney,
S., van Wesemael, B., Wander, M., and Chabbi, A.: Towards a global-scale
soil climate mitigation strategy, Nat. Commun., 11, 1–10,
https://doi.org/10.1038/s41467-020-18887-7, 2020.
Andriulo, A. E., Mary, B., and Guerif, J.: Modelling soil carbon dynamics
with various cropping sequences on the rolling pampas, Agronomie, 19, 365–377, 1999.
Aphalo, P. J.: Learn R as you learnt your mother tongue, Leanpub [code], available at: https://leanpub.com/learnr (last access: 19 January 2022), 2016.
Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C.
V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K.
E. O., and Wallenstein, M. D.: Soil carbon cycling proxies: Understanding
their critical role in predicting climate change feedbacks, Glob. Chang. Biol., 24, 895–905,
https://doi.org/10.1111/gcb.13926, 2018.
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting
contents of carbon and its component fractions in Australian soils from
diffuse reflectance mid-infrared spectra, Soil Res., 51, 577–595,
https://doi.org/10.1071/SR13077, 2013.
Balesdent, J. and Arrouays, D.: Usage des terres et stockage de carbone dans
les sols du territoire français. Une estimation des flux nets pour la
période 1900–1999, Comptes rendus l'Académie d'Agriculture Fr., 85, 265–277, 1999.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere–soil carbon transfer as a
function of soil depth, Nature, 559, 599–602,
https://doi.org/10.1038/s41586-018-0328-3, 2018.
Barré, P., Montagnier, C., Chenu, C., Abbadie, L., and Velde, B.: Clay
minerals as a soil potassium reservoir: Observation and quantification
through X-ray diffraction, Plant Soil, 302, 213–220,
https://doi.org/10.1007/s11104-007-9471-6, 2008.
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S.,
Kätterer, T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V.,
and Chenu, C.: Quantifying and isolating stable soil organic carbon using
long-term bare fallow experiments, Biogeosciences, 7, 3839–3850,
https://doi.org/10.5194/bg-7-3839-2010, 2010.
Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F.,
Bernard, S., Christensen, B. T., Eglin, T., Fernandez, J. M., Houot, S.,
Kätterer, T., Le Guillou, C., Macdonald, A., van Oort, F., and Chenu,
C.: The energetic and chemical signatures of persistent soil organic matter,
Biogeochemistry, 130, 1–12, https://doi.org/10.1007/s10533-016-0246-0,
2016.
Barthès, B. G., Brunet, D., Hien, E., Enjalric, F., Conche, S.,
Freschet, G. T., d'Annunzio, R., and Toucet-Louri, J.: Determining the
distributions of soil carbon and nitrogen in particle size fractions using
near-infrared reflectance spectrum of bulk soil samples, Soil Biol.
Biochem., 40, 1533–1537, https://doi.org/10.1016/j.soilbio.2007.12.023,
2008.
Baudin, F., Disnar, J. R., Aboussou, A., and Savignac, F.: Guidelines for
Rock-Eval analysis of recent marine sediments, Org. Geochem., 86, 71–80,
https://doi.org/10.1016/j.orggeochem.2015.06.009, 2015.
Behar, F., Beaumont, V., and De B. Penteado, H. L.: Rock-Eval 6 Technology:
Performances and Developments, Oil Gas Sci. Technol., 56, 111–134,
https://doi.org/10.2516/ogst:2001013, 2001.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and
VandenBygaart, A. J.: An approach for estimating net primary productivity
and annual carbon inputs to soil for common agricultural crops in Canada, Agr. Ecosyst. Environ.,
118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bruun, S. and Jensen, L. S.: Initialisation of the soil organic matter pools
of the Daisy model, Ecol. Modell., 153, 291–295, 2002.
Cagnarini, C., Renella, G., Mayer, J., Hirte, J., Schulin, R., Costerousse,
B., Della Marta, A., Orlandini, S., and Menichetti, L.: Multi-objective
calibration of RothC using measured carbon stocks and auxiliary data of a
long-term experiment in Switzerland, Eur. J. Soil Sci., 70, 819–832,
https://doi.org/10.1111/ejss.12802, 2019.
Cécillon, L.: A dual response, Nat. Geosci., 14, 262–263,
https://doi.org/10.1038/s41561-021-00749-6, 2021a.
Cécillon, L.: lauric-cecillon/PARTYsoc: Second version of the
PARTYSOC statistical model, Zenodo [code], https://doi.org/10.5281/zenodo.4446138,
2021b.
Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A. F., Savignac, F., Soucémarianadin, L. N., and Barré, P.: A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, 2018.
Cécillon, L., Baudin, F., Chenu, C., Christensen, B. T., Franko, U.,
Houot, S., Kanari, E., Kätterer, T., Merbach, I., van Oort, F., Poeplau,
C., Quezada, J. C., Savignac, F., Soucémarianadin, L. N., and Barré,
P.: Partitioning soil organic carbon into its centennially stable and active
fractions with machine-learning models based on Rock-Eval®
thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU), Geosci.
Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, 2021.
Chassé, M., Luftalla, S., Cécillon, L., Baudin, F., Abiven, S.,
Chenu, C., and Barré, P.: Long-term bare fallow soil fractions reveal
thermo-chemical properties controlling soil organic carbon dynamics, Biogeosciences, 18,
1703–1718, https://doi.org/10.5194/bg-18-1703-2021, 2021.
Clivot, H., Mouny, J. C., Duparque, A., Dinh, J. L., Denoroy, P., Houot, S.,
Vertès, F., Trochard, R., Bouthier, A., Sagot, S., and Mary, B.:
Modeling soil organic carbon evolution in long-term arable experiments with
AMG model, Environ. Model. Softw., 118, 99–113, https://doi.org/10.1016/j.envsoft.2019.04.004,
2019.
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klír, J.,
Körschens, M., Poulton, P. R., and Richter, D. D.: Simulating trends in
soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29–44,
https://doi.org/10.1016/S0016-7061(97)00079-7, 1997.
Colomb, B., Debaeke, P., Jouany, C., and Nolot, J. M.: Phosphorus management
in low input stockless cropping systems: Crop and soil responses to
contrasting P regimes in a 36-year experiment in southern France, Eur. J. Agron., 26,
154–165, https://doi.org/10.1016/j.eja.2006.09.004, 2007.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D.,
Mo, L., Averill, C., and Maynard, D. S.: The global soil community and its
influence on biogeochemistry, Science, 365, eaav0550,
https://doi.org/10.1126/science.aav0550, 2019.
Dangal, S. R. S., Schwalm, C., Cavigelli, M. A., Gollany, H. T., Jin, V. L.,
and Sanderman, J.: Improving soil carbon estimates by linking conceptual
pools against measurable carbon fractions in the DAYCENT Model Version 4.5,
ESSOAR, https://doi.org/10.1002/essoar.10507190.1, 2021.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14,
https://doi.org/10.1007/s13593-017-0421-2, 2017.
Dimassi, B., Mary, B., Wylleman, R., Labreuche, J. Ô., Couture, D.,
Piraux, F., and Cohan, J. P.: Long-term effect of contrasted tillage and
crop management on soil carbon dynamics during 41 years, Agr. Ecosyst. Environ., 188, 134–146,
https://doi.org/10.1016/j.agee.2014.02.014, 2014.
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.:
Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: Scope and
limitations, Org. Geochem., 34, 327–343, https://doi.org/10.1016/S0146-6380(02)00239-5,
2003.
Erb, K. H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.
D., Marín-Spiotta, E., McCallum, I., Robertson, E., Seufert, V., Fritz,
S., Valade, A., Wiltshire, A., and Dolman, A. J.: Land management: data
availability and process understanding for global change studies, Glob. Chang. Biol., 23,
512–533, https://doi.org/10.1111/gcb.13443, 2017.
FAO: Recarbonization of global soils: a dynamic response to offset global
emissions, FAO, Rome, Italy, 8 pp., available at: https://www.fao.org/documents/card/en/c/e4839d17-c6aa-44ca-85cc-b4a6de25c143/ (last access: 19 January 2022), 2019.
FAO: Technical specifications and country guidelines for Global Soil Organic
Carbon Sequestration Potential Map (GSOCseq), FAO, Rome, Italy, 48 pp., available at: https://www.fao.org/3/cb0353en/CB0353EN.pdf (last access: 19 January 2022), 2020.
Farina, R., Sándor, R., Abdalla, M., Álvaro-Fuentes, J., Bechini,
L., Bolinder, M. A., Brilli, L., Chenu, C., Clivot, H., De Antoni
Migliorati, M., Di Bene, C., Dorich, C. D., Ehrhardt, F., Ferchaud, F.,
Fitton, N., Francaviglia, R., Franko, U., Giltrap, D. L., Grant, B. B.,
Guenet, B., Harrison, M. T., Kirschbaum, M. U. F., Kuka, K., Kulmala, L.,
Liski, J., McGrath, M. J., Meier, E., Menichetti, L., Moyano, F., Nendel,
C., Recous, S., Reibold, N., Shepherd, A., Smith, W. N., Smith, P.,
Soussana, J. F., Stella, T., Taghizadeh-Toosi, A., Tsutskikh, E., and
Bellocchi, G.: Ensemble modelling, uncertainty and robust predictions of
organic carbon in long-term bare-fallow soils, Glob. Chang. Biol., 27, 904–928,
https://doi.org/10.1111/gcb.15441, 2021.
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W., and Eberle, J.:
Gross changes in reconstructions of historic land cover/use for Europe
between 1900 and 2010, Glob. Chang. Biol., 21, 299–313, https://doi.org/10.1111/gcb.12714,
2015.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H., and
Yanni, S. F.: Evaluating biodegradability of soil organic matter by its
thermal stability and chemical composition, Soil Biol. Biochem.,
91, 182–191, https://doi.org/10.1016/j.soilbio.2015.08.032, 2015.
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaugh, L. J. S.,
Allison, S. D., and Randerson, J. T.: Radiocarbon constraints imply reduced
carbon uptake by soils during the 21st century, Science, 353, 1419–1424, https://doi.org/10.1126/science.aad4273, 2016.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231,
https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hénin, S. and Dupuis, M.: Essai de bilan de la matière organique du
sol, in: Ann. Agron. 11, Dunod (impr. de Chaix), Paris, 17–29, 1945.
Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H.,
Gaiser, T., Herrmann, F., Amelung, W., and Vanderborght, J.: Correspondence
of measured soil carbon fractions and RothC pools for equilibrium and
non-equilibrium states, Geoderma, 314, 37–46,
https://doi.org/10.1016/j.geoderma.2017.10.047, 2018.
IPCC: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., The Intergovernmental Panel on Climate Change, available at: https://www.ipcc.ch/srccl/ (last access: 19 January 2022), 2019.
Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of Soil Organic
Carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, 2000.
Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F.,
Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunié, S., Anthelme, F.,
Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S.,
Compostella, C., Clague, J., Tielidze, L., Messager, E., Choler, P., and
Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around
the world, Glob. Change Biol., 27, 1662–1677,
https://doi.org/10.1111/gcb.15496, 2021.
Lee, J., Viscarra Rossel, R. A., Zhang, M., Luo, Z., and Wang, Y.-P.: Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework, Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, 2021.
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S.,
Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., and
Kögel-Knabner, I.: Persistence of soil organic carbon caused by
functional complexity, Nat. Geosci., 13, 529–534,
https://doi.org/10.1038/s41561-020-0612-3, 2020.
Leifeld, J., Reiser, R., and Oberholzer, H. R.: Consequences of conventional
versus organic farming on soil carbon: Results from a 27-year field
experiment, Agron. J., 101, 1204–1218, https://doi.org/10.2134/agronj2009.0002, 2009a.
Leifeld, J., Zimmermann, M., Fuhrer, J., and Conen, F.: Storage and turnover
of carbon in grassland soils along an elevation gradient in the Swiss Alps, Glob. Change Biol.,
15, 668–679, https://doi.org/10.1111/j.1365-2486.2008.01782.x, 2009b.
Levavasseur, F., Mary, B., Christensen, B. T., Duparque, A., Ferchaud, F.,
Kätterer, T., Lagrange, H., Montenach, D., Resseguier, C., and Houot,
S.: The simple AMG model accurately simulates organic carbon storage in
soils after repeated application of exogenous organic matter, Nutr. Cycl. Agroecosyst., 117, 215–229,
https://doi.org/10.1007/s10705-020-10065-x, 2020.
Lubet, E., Plénet, D., and Juste, C.: Effet à long terme de la
monoculture sur le rendement en grain du maïs (Zea mays L) en
conditions non irriguées, Agronomie, 13, 673–683,
https://doi.org/10.1051/agro:19930801, 1993.
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.:
Different climate sensitivity of particulate and mineral-associated soil
organic matter, Nat. Geosci., 14, 295–300,
https://doi.org/10.1038/s41561-021-00744-x, 2021.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, Robert, B., Jones, C. D., Lara, M. J., Liang,
J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A.,
Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., Van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xu, X.,
Xu, X., and Zhou, T.: Towards more realistic projections of soil carbon
dynamics by Earth system models, Global Biogeochem. Cy., 30, 40–56,
https://doi.org/10.1002/2015GB005239, 2016.
Luo, Z., Wang, E., Fillery, I. R. P., Macdonald, L. M., Huth, N., and
Baldock, J.: Modelling soil carbon and nitrogen dynamics using measurable
and conceptual soil organic matter pools in APSIM, Agr. Ecosyst. Environ., 186, 94–104,
https://doi.org/10.1016/j.agee.2014.01.019, 2014.
Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization:
Theory and models across scales, Soil Biol. Biochem., 41, 1355–1379,
https://doi.org/10.1016/j.soilbio.2009.02.031, 2009.
Martin, M., Dimassi, B., Millet, F., Picaud, C., Bounoua, E.-M., Bardy, M.,
Bispo, A., Boulonne, L., Bouthier, A., Duparque, A., Eglin, T., Guenet, B.,
Huard, F., Mary, B., Mathias, E., Mignolet, C., Robert, C., Saby, N., Sagot,
S., Schott, C., and Toutain, B. R.: Méthodes de comptabilisation du
stockage de carbone organique des sols sous l'effet des pratiques culturales
(CSopra), ADEME, available at: https://librairie.ademe.fr/produire-autrement/ (last access: 19 January 2022),
2019.
Mary, B., Clivot, H., Blaszczyk, N., Labreuche, J., and Ferchaud, F.: Soil
carbon storage and mineralization rates are affected by carbon inputs rather
than physical disturbance: Evidence from a 47-year tillage experiment, Agr. Ecosyst. Environ., 299,
106972, https://doi.org/10.1016/j.agee.2020.106972, 2020.
Messiga, A. J., Ziadi, N., Plénet, D., Parent, L. E., and Morel, C.:
Long-term changes in soil phosphorus status related to P budgets under maize
monoculture and mineral P fertilization, Soil Use Manag., 26, 354–364,
https://doi.org/10.1111/j.1475-2743.2010.00287.x, 2010.
Morel, C., Ziadi, N., Messiga, A., Bélanger, G., Denoroy, P., Jeangros,
B., Jouany, C., Fardeau, J. C., Mollier, A., Parent, L. E., Proix, N.,
Rabeharisoa, L., and Sinaj, S.: Modeling of phosphorus dynamics in
contrasting agroecosystems using long-term field experiments, Can. J. Soil Sci., 94, 377–387,
https://doi.org/10.4141/CJSS2013-024, 2014.
Nave, L., Johnson, K., Ingen, C. van, Agarwal, D., Humphrey, M., and
Beekwilder, N.: International Soil Carbon Network (ISCN) Database V3-1, International Soil Carbon Network,
https://doi.org/10.17040/ISCN/1305039, 2015.
Nemo, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A.,
Jones, M. B., Leifeld, J., Osborne, B., Saunders, M., Scott, T., Teh, Y. A.,
and Smith, P.: Soil Organic Carbon (SOC) Equilibrium and Model
Initialisation Methods: an Application to the Rothamsted Carbon (RothC)
Model, Environ. Model. Assess., 22, 215–229, https://doi.org/10.1007/s10666-016-9536-0, 2016.
Noirot-Cosson, P. E., Vaudour, E., Gilliot, J. M., Gabrielle, B., and Houot,
S.: Modelling the long-term effect of urban waste compost applications on
carbon and nitrogen dynamics in temperate cropland, Soil Biol. Biochem., 94, 138–153,
https://doi.org/10.1016/j.soilbio.2015.11.014, 2016.
Oberholzer, H. R., Leifeld, J., and Mayer, J.: Changes in soil carbon and
crop yield over 60 years in the Zurich Organic Fertilization Experiment,
following land-use change from grassland to cropland, J. Plant Nutr. Soil Sci., 177, 696–704,
https://doi.org/10.1002/jpln.201300385, 2014.
Obriot, F.: Epandage de produits résiduaires organiques et
fonctionnement biologique des sols: De la quantification des impacts sur
les cycles carbone et azote à l'évaluation multicritère de la
pratique à l'échelle de la parcelle (PhD), AgroParisTech, 456 pp., available at: https://hal.inrae.fr/tel-02801385 (last access: 19 January 2022),
2016.
Otto, S. A., Kadin, M., Casini, M., Torres, M. A., and Blenckner, T.: A
quantitative framework for selecting and validating food web indicators, Ecol. Indic., 84,
619–631, https://doi.org/10.1016/j.ecolind.2017.05.045, 2018.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon
after land-use change in the temperate zone – carbon response functions as a
model approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J.,
Senapati, N., and Wiesmeier, M.: Reproducibility of a soil organic carbon
fractionation method to derive RothC carbon pools, Eur. J. Soil Sci., 64, 735–746,
https://doi.org/10.1111/ejss.12088, 2013.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate
agricultural soils – A comprehensive method comparison, Soil Biol. Biochem., 125, 10–26,
https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Poeplau, C., Barré, P., Cécillon, L., Baudin, F., and Sigurdsson, B.
D.: Changes in the Rock-Eval signature of soil organic carbon upon extreme
soil warming and chemical oxidation – A comparison, Geoderma, 337, 181–190,
https://doi.org/10.1016/j.geoderma.2018.09.025, 2019.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing,
Vienna, Austria, available at: https://www.R-project.org/ (last access: 19 January 2022), 2017.
Rumpel, C., Amiraslani, F., Koutika, L. S., Smith, P., Whitehead, D., and
Wollenberg, E.: Put more carbon in soils to meet Paris climate pledges, Nature, 564,
32–34, https://doi.org/10.1038/d41586-018-07587-4, 2018.
Saffih-Hdadi, K. and Mary, B.: Modeling consequences of straw residues
export on soil organic carbon, Soil Biol. Biochem., 40, 594–607,
https://doi.org/10.1016/j.soilbio.2007.08.022, 2008.
Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S.,
Rivard, C., and Savage, K.: Soil organic carbon fractions in the Great
Plains of the United States: an application of mid-infrared spectroscopy, Biogeochemistry, 156, 97–114,
https://doi.org/10.1007/s10533-021-00755-1, 2021.
Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J.: How accurately
can soil organic carbon stocks and stock changes be quantified by soil
inventories?, Biogeosciences, 8, 1193–1212, https://doi.org/10.5194/bg-8-1193-2011, 2011.
Shi, Z., Crowell, S., Luo, Y., and Moore, B.: Model structures amplify
uncertainty in predicted soil carbon responses to climate change, Nat.
Commun., 9, 2171, https://doi.org/10.1038/s41467-018-04526-9, 2018.
Skjemstad, J. O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration
of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using
measurable soil organic carbon pools, Aust. J. Soil Res., 42, 79–88,
https://doi.org/10.1071/SR03013, 2004.
Smith, J. U., Smith, P., and Addiscot, T.: Quantitative methods to evaluate
and compare soil organic matter (SOM) models, in: Evaluation of Soil Organic
Matter Models Using existing Long-Term Datasets, edited by: Powlson, D. S., Smith, J. U., and Smith, P., Springer Berlin,
Heidelberg, 181–199, 1996.
Smith, P. and Falloon, P. D.: Modelling refractory soil organic matter, Biol. Fertil. Soils, 30,
388–398, https://doi.org/10.1007/s003740050019, 2000.
Taghizadeh-Toosi, A., Cong, W. F., Eriksen, J., Mayer, J., Olesen, J. E.,
Keel, S. G., Glendining, M., Kätterer, T., and Christensen, B. T.:
Visiting dark sides of model simulation of carbon stocks in European
temperate agricultural soils: allometric function and model initialization, Plant Soil,
450, 255–272, https://doi.org/10.1007/s11104-020-04500-9, 2020.
Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T.,
Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q.,
and Allison, S. D.: Changes in soil organic carbon storage predicted by
Earth system models during the 21st century, Biogeosciences, 11, 2341–2356,
https://doi.org/10.5194/bg-11-2341-2014, 2014.
UN General Assembly: UN General Assembly, Transforming our world: the 2030
Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, General assembly seventieth session, New York, available at: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (last access: 19 January 2022), 2015.
Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C.,
Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R.,
Reddy, M., Sunga, I., Von Unger, M., and Warnken, M.: A global agenda for
collective action on soil carbon, Nat. Sustain., 2, 2–4,
https://doi.org/10.1038/s41893-018-0212-z, 2019.
Vertès, F., Simon, J.-C., Laurent, F., and Besnard, A.: Prairies et
qualité de l'eau. Evaluation des risques de lixiviation d'azote et
optimisation des pratiques, Fourrag., 192, 423–440, 2007.
Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., and
Richards, A.: Continental-scale soil carbon composition and vulnerability
modulated by regional environmental controls, Nat. Geosci., 12, 547–552,
https://doi.org/10.1038/s41561-019-0373-z, 2019.
Wallach, D.: Evaluating Crop Models, in: Working with Dynamic Crop Models Evaluation, Analysis, Parameterization, and Applications, edited by: Wallach, D., Makowski, D., and Jones, J. W., Elsevier, Amsterdam, 11–54, 2006.
Wickham, H.: Reshaping Data with the reshape Package, J. Stat. Softw., 21, 1–20,
https://doi.org/10.18637/jss.v021.i12, 2007.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, ISBN 978-3-319-24277-4, 2016.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils – A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wutzler, T. and Reichstein, M.: Soils apart from equilibrium – Consequences
for soil carbon balance modelling, Biogeosciences, 4, 125–136,
https://doi.org/10.5194/bg-4-125-2007, 2007.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x,
2007a.
Zimmermann, M., Leifeld, J., and Fuhrer, J.: Quantifying soil organic carbon
fractions by infrared-spectroscopy, Soil Biol. Biochem., 39, 224–231,
https://doi.org/10.1016/j.soilbio.2006.07.010, 2007b.
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security....
Altmetrics
Final-revised paper
Preprint