Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Thomas Luke Smallman
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Mathew Williams
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Related authors
Vasileios Myrgiotis, Mathew Williams, Robert M. Rees, and Cairistiona F. E. Topp
Biogeosciences, 16, 1641–1655, https://doi.org/10.5194/bg-16-1641-2019, https://doi.org/10.5194/bg-16-1641-2019, 2019
Short summary
Short summary
This study focuses on a northwestern European cropland region and shows that the type of crop growing on a soil has notable effects on the emission of nitrous oxide (N2O – a greenhouse gas) from that soil. It was found that N2O emissions from soils under oilseed cultivation are significantly higher than soils under cereal cultivation. This variation is mostly explained by the fact that oilseeds require more nitrogen (fertiliser) than cereals, especially at early crop growth stages.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
EGUsphere, https://doi.org/10.5194/egusphere-2023-19, https://doi.org/10.5194/egusphere-2023-19, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropical forests like Amazon are historically an important carbon sink, helping to mitigate global climate change. Using an atmospheric model and regional and global atmospheric CO2 observations, we quantified Amazonian carbon emissions between 2010 and 2018. We estimated that Amazon acted as a small carbon source to the atmosphere, mostly due to fire emissions. However, the forest uptake compensated 50 % of these fire emissions. We do not find an increasing time trend of carbon emissions.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and Luke T. Smallman
EGUsphere, https://doi.org/10.5194/egusphere-2022-1265, https://doi.org/10.5194/egusphere-2022-1265, 2022
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-160, https://doi.org/10.5194/bg-2022-160, 2022
Preprint under review for BG
Short summary
Short summary
Model-Data Fusion (MDF) allows us to combine ecosystem models with earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to ensure ecological fidelity of the calibrated models.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Thomas Luke Smallman and Mathew Williams
Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, https://doi.org/10.5194/gmd-12-2227-2019, 2019
Short summary
Short summary
Photosynthesis and evapotranspiration are processes with global significance for climate, carbon and water cycling. Process-orientated simulation of these processes and their interactions have till now come at high computational cost. Here we present a new coupled model of intermediate complexity operating at orders of magnitude greater speed. Independent evaluation at FLUXNET sites for a single, global parameterization shows good agreement, with a typical R2 value of ~ 0.60.
Efrén López-Blanco, Jean-François Exbrayat, Magnus Lund, Torben R. Christensen, Mikkel P. Tamstorf, Darren Slevin, Gustaf Hugelius, Anthony A. Bloom, and Mathew Williams
Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, https://doi.org/10.5194/esd-10-233-2019, 2019
Short summary
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
Vasileios Myrgiotis, Mathew Williams, Robert M. Rees, and Cairistiona F. E. Topp
Biogeosciences, 16, 1641–1655, https://doi.org/10.5194/bg-16-1641-2019, https://doi.org/10.5194/bg-16-1641-2019, 2019
Short summary
Short summary
This study focuses on a northwestern European cropland region and shows that the type of crop growing on a soil has notable effects on the emission of nitrous oxide (N2O – a greenhouse gas) from that soil. It was found that N2O emissions from soils under oilseed cultivation are significantly higher than soils under cereal cultivation. This variation is mostly explained by the fact that oilseeds require more nitrogen (fertiliser) than cereals, especially at early crop growth stages.
Anne Sofie Lansø, Thomas Luke Smallman, Jesper Heile Christensen, Mathew Williams, Kim Pilegaard, Lise-Lotte Sørensen, and Camilla Geels
Biogeosciences, 16, 1505–1524, https://doi.org/10.5194/bg-16-1505-2019, https://doi.org/10.5194/bg-16-1505-2019, 2019
Short summary
Short summary
Although coastal regions only amount to 7 % of the global oceans, their contribution to the global oceanic surface exchange of CO2 is much greater. In this study, we gain detailed insight into how these coastal marine fluxes compare to CO2 exchange from coastal land regions. Annually, the coastal marine exchanges are smaller than the total uptake of CO2 from the land surfaces within the study area but comparable in size to terrestrial fluxes from individual land cover classes of the region.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Efrén López-Blanco, Magnus Lund, Mathew Williams, Mikkel P. Tamstorf, Andreas Westergaard-Nielsen, Jean-François Exbrayat, Birger U. Hansen, and Torben R. Christensen
Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, https://doi.org/10.5194/bg-14-4467-2017, 2017
Short summary
Short summary
An improvement in our process-based understanding of CO2 exchanges in the Arctic and their climate sensitivity is critical. With continued warming temperatures and longer growing seasons, tundra systems will likely increase rates of C cycling, although shifts in sink strength could take place, challenging the forecast of upcoming C states. In this context, we investigated the functional responses of C exchange to environmental characteristics across 8 consecutive years in West Greenland.
Darren Slevin, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams
Geosci. Model Dev., 10, 2651–2670, https://doi.org/10.5194/gmd-10-2651-2017, https://doi.org/10.5194/gmd-10-2651-2017, 2017
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
L. Rowland, A. Harper, B. O. Christoffersen, D. R. Galbraith, H. M. A. Imbuzeiro, T. L. Powell, C. Doughty, N. M. Levine, Y. Malhi, S. R. Saleska, P. R. Moorcroft, P. Meir, and M. Williams
Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, https://doi.org/10.5194/gmd-8-1097-2015, 2015
Short summary
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
A. A. Bloom and M. Williams
Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, https://doi.org/10.5194/bg-12-1299-2015, 2015
D. Slevin, S. F. B. Tett, and M. Williams
Geosci. Model Dev., 8, 295–316, https://doi.org/10.5194/gmd-8-295-2015, https://doi.org/10.5194/gmd-8-295-2015, 2015
G. B. Bonan, M. Williams, R. A. Fisher, and K. W. Oleson
Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, https://doi.org/10.5194/gmd-7-2193-2014, 2014
R. Q. Thomas and M. Williams
Geosci. Model Dev., 7, 2015–2037, https://doi.org/10.5194/gmd-7-2015-2014, https://doi.org/10.5194/gmd-7-2015-2014, 2014
G. Xenakis and M. Williams
Geosci. Model Dev., 7, 1519–1533, https://doi.org/10.5194/gmd-7-1519-2014, https://doi.org/10.5194/gmd-7-1519-2014, 2014
T. L. Smallman, M. Williams, and J. B. Moncrieff
Biogeosciences, 11, 735–747, https://doi.org/10.5194/bg-11-735-2014, https://doi.org/10.5194/bg-11-735-2014, 2014
T. L. Smallman, J. B. Moncrieff, and M. Williams
Geosci. Model Dev., 6, 1079–1093, https://doi.org/10.5194/gmd-6-1079-2013, https://doi.org/10.5194/gmd-6-1079-2013, 2013
Related subject area
Biogeochemistry: Modelling, Terrestrial
Effect of land-use legacy on the future carbon sink for the conterminous US
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model
Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2
Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget
Historical CO2 emissions from land use and land cover change and their uncertainty
A Bayesian approach to evaluation of soil biogeochemical models
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions
Modeling biological nitrogen fixation in global natural terrestrial ecosystems
The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023, https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land-use legacy in the conterminous US from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
EGUsphere, https://doi.org/10.5194/egusphere-2022-641, https://doi.org/10.5194/egusphere-2022-641, 2022
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how the nature works. Of course, the nature doesn't care about our understanding. Since our understanding is not perfect, evaluating models is challenging and there are uncertainties. This manuscript illustrates this uncertainty for land models and argues that evaluating models in the light of uncertainty in various components provides useful information.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Thomas Gasser, Léa Crepin, Yann Quilcaille, Richard A. Houghton, Philippe Ciais, and Michael Obersteiner
Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020, https://doi.org/10.5194/bg-17-4075-2020, 2020
Short summary
Short summary
We combine several lines of evidence to provide a robust estimate of historical CO2 emissions from land use change. Our novel approach leads to reduced uncertainty and identifies key remaining sources of uncertainty and discrepancy.
We also quantify the carbon removal by natural ecosystems that would have occurred if these ecosystems had not been destroyed (mostly via deforestation). Over the last decade, this foregone carbon sink amounted to about 50 % of the actual emissions.
Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison
Biogeosciences, 17, 4043–4057, https://doi.org/10.5194/bg-17-4043-2020, https://doi.org/10.5194/bg-17-4043-2020, 2020
Short summary
Short summary
Soil biogeochemical models (SBMs) are needed to predict future soil CO2 emissions levels, but we presently lack statistically rigorous frameworks for assessing the predictive utility of SBMs. In this study, we demonstrate one possible approach to evaluating SBMs by comparing the fits of two models to soil CO2 respiration data with recently developed Bayesian statistical goodness-of-fit metrics. Our results demonstrate that our approach is a viable one for continued development and refinement.
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Short summary
Carbon dioxide is produced by soil microbes through respiration, which is particularly fast when soils are moistened by rain. Will respiration increase with future more intense rains and longer dry spells? With a mathematical model, we show that wetter conditions increase respiration. In contrast, if rainfall totals stay the same, but rain comes all at once after long dry spells, the average respiration will not change, but the contribution of the respiration bursts after rain will increase.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Tong Yu and Qianlai Zhuang
Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020, https://doi.org/10.5194/bg-17-3643-2020, 2020
Short summary
Short summary
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle. However, the fixation rate has usually been measured or estimated at a particular observational site. This study develops a BNF model considering the symbiotic relationship between legume plants and bacteria. The model is extensively calibrated with site-level observational data and then extrapolated to the global terrestrial ecosystems to quantify the fixation rate in the 1990s.
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Andy Wiltshire, Karina Williams, Nicholas C. Parazoo, Junjie Liu, Antonio C. L. da Costa, Patrick Meir, Maurizio Mencuccini, and Anna B. Harper
Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, https://doi.org/10.5194/bg-17-3589-2020, 2020
Short summary
Short summary
Non-structural carbohydrates (NSCs) are an important set of molecules that help plants to grow and respire when photosynthesis is restricted by extreme climate events. In this paper we present a simple model of NSC storage and assess the effect that it has on simulations of vegetation at the ecosystem scale. Our model has the potential to significantly change predictions of plant behaviour in global vegetation models, which would have large implications for predictions of the future climate.
Cited articles
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones,
M. B., Rees, R. M., and Smith, P.: Critical review of the impacts of grazing
intensity on soil organic carbon storage and other soil quality indicators in
extensively managed grasslands, Agr. Ecosyst. Environ.,
253, 62–81, https://doi.org/10.1016/j.agee.2017.10.023, 2018. a, b, c
EDINA: AgCensus, http://agcensus.edina.ac.uk, last access:
1 March 2019. a
Ammann, C., Neftel, A., Jocher, M., Fuhrer, J., and Leifeld, J.: Effect of
management and weather variations on the greenhouse gas budget of two
grasslands during a 10-year experiment, Agr. Ecosyst.
Environ., 292, 106814, https://doi.org/10.1016/j.agee.2019.106814, 2020. a
Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler,
M., Williams, M., Ammann, C., Berninger, F., Flechard, C., Jones, S.,
Balzarolo, M., Kumar, S., Newesely, C., Priwitzer, T., Raschi, A., Siegwolf,
R., Susiluoto, S., Tenhunen, J., Wohlfahrt, G., and Cernusca, A.: Soil
Respiration in European Grasslands in Relation to Climate and Assimilate
Supply, Ecosystems, 11, 1352–1367, https://doi.org/10.1007/s10021-008-9198-0, 2008. a
Bell, M. J., Cloy, J. M., Topp, C. F., Ball, B. C., Bagnall, A., Rees, R. M.,
and Chadwick, D. R.: Quantifying N2O emissions from intensive grassland
production: The role of synthetic fertilizer type, application rate, timing
and nitrification inhibitors, J. Agr. Sci., 154,
812–827, https://doi.org/10.1017/S0021859615000945, 2016. a
Blanke, J., Boke-Olén, N., Olin, S., Chang, J., Sahlin, U., Lindeskog,
M., and Lehsten, V.: Implications of accounting for management intensity on
carbon and nitrogen balances of European grasslands, Plos One, 13,
e0201058, https://doi.org/10.1371/journal.pone.0201058, 2018. a, b
Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological “common sense” in a model–data fusion framework, Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, 2015. a
Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., and Williams, M.:
The decadal state of the terrestrial carbon cycle: Global retrievals of
terrestrial carbon allocation, pools, and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290,
https://doi.org/10.1073/pnas.1515160113, 2016. a
Chang, J., Ciais, P., Viovy, N., Vuichard, N., Sultan, B., and Soussana, J. F.:
The greenhouse gas balance of European grasslands, Glob. Change Biol.,
21, 3748–3761, https://doi.org/10.1111/gcb.12998, 2015a. a
Chang, J., Viovy, N., Vuichard, N., Ciais, P., Campioli, M., Klumpp, K.,
Martin, R., Leip, A., and Soussana, J.-F.: Modeled Changes in Potential
Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe
over 1961–2010, PLOS ONE, 10, e0127554,
https://doi.org/10.1371/journal.pone.0127554, 2015b. a
Chang, J., Ciais, P., Viovy, N., Soussana, J. F., Klumpp, K., and Sultan, B.:
Future productivity and phenology changes in European grasslands for
different warming levels: Implications for grassland management and carbon
balance, Carbon Balance and Management, 12, 11, https://doi.org/10.1186/s13021-017-0079-8,
2017. a
Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P.,
Obersteiner, M., Guenet, B., Goll, D. S., Li, W., Naipal, V., Peng, S., Qiu,
C., Tian, H., Viovy, N., Yue, C., and Zhu, D.: Climate warming from managed
grasslands cancels the cooling effect of carbon sinks in sparsely grazed and
natural grasslands, Nat. Commun., 12, 118,
https://doi.org/10.1038/s41467-020-20406-7, 2021. a, b
Chang, J. F., Viovy, N., Vuichard, N., Ciais, P., Wang, T., Cozic, A., Lardy, R., Graux, A.-I., Klumpp, K., Martin, R., and Soussana, J.-F.: Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe, Geosci. Model Dev., 6, 2165–2181, https://doi.org/10.5194/gmd-6-2165-2013, 2013. a
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F.,
Noblet, N. D., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch,
B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci,
G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S.,
Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and
Valentini, R.: Europe-wide reduction in primary productivity caused by the
heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972,
2005. a
Committee on Climate Change: Net Zero: The UK's contribution to stopping
global warming, Tech. Rep. May,
https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ (last access: 1 October 2021),
2019. a
Conant, R. T., Cerri, C. E., Osborne, B. B., and Paustian, K.: Grassland
management impacts on soil carbon stocks: A new synthesis, Ecol. Appl., 27, 662–668, https://doi.org/10.1002/eap.1473, 2017. a
Dangal, S. R. S., Tian, H., Pan, S., Zhang, L., and Xu, R.: Greenhouse gas
balance in global pasturelands and rangelands, Environ. Res.
Lett., 15, 104006, https://doi.org/10.1088/1748-9326/abaa79, 2020. a
Dietze, M. C.: Ecological Forecasting, Princeton University Press,
JSTOR, https://doi.org/10.2307/j.ctvc7796h.3, 2017. a
Dusseux, P., Gong, X., Hubert-Moy, L., and Corpetti, T.: Identification of
grassland management practices from leaf area index time series, J.
Appl. Remote Sens., 8, 083559, https://doi.org/10.1117/1.jrs.8.083559,
2014. a
Felber, R., Bretscher, D., Münger, A., Neftel, A., and Ammann, C.: Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties, Biogeosciences, 13, 2959–2969, https://doi.org/10.5194/bg-13-2959-2016, 2016. a
Fetzel, T., Havlik, P., Herrero, M., Kaplan, J. O., Kastner, T., Kroisleitner,
C., Rolinski, S., Searchinger, T., Van BODEGOM, P. M., Wirsenius, S., and
Erb, K. H.: Quantification of uncertainties in global grazing systems
assessment, Global Biogeochem. Cy., 31, 1089–1102,
https://doi.org/10.1002/2016GB005601, 2017. a, b, c
Gastal, F. and Lemaire, G.: Defoliation, Shoot Plasticity, Sward Structure and
Herbage Utilization in Pasture: Review of the Underlying Ecophysiological
Processes, Agriculture, 5, 1146–1171, https://doi.org/10.3390/agriculture5041146,
2015. a
Gilmanov, T. G., Soussana, J. F., Aires, L., Allard, V., Ammann, C., Balzarolo,
M., Barcza, Z., Bernhofer, C., Campbell, C. L., Cernusca, A., Cescatti, A.,
Clifton-Brown, J., Dirks, B. O., Dore, S., Eugster, W., Fuhrer, J., Gimeno,
C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A. F., Jones,
M. B., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z.,
Pilegaard, K., Pinter, K., Pio, C., Raschi, A., Rogiers, N., Sanz, M. J.,
Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M. L., and
Wohlfahrt, G.: Partitioning European grassland net ecosystem CO2 exchange
into gross primary productivity and ecosystem respiration using light
response function analysis, Agr. Ecosyst. Environ., 121,
93–120, https://doi.org/10.1016/j.agee.2006.12.008, 2007. a, b, c
Giménez, M. G., de Jong, R., Peruta, R. D., Keller, A., and Schaepman,
M. E.: Determination of grassland use intensity based on multi-temporal
remote sensing data and ecological indicators, Remote Sens.
Environ., 198, 126–139, https://doi.org/10.1016/j.rse.2017.06.003, 2017. a
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a, b
Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T.,
Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M.,
Butterbach-Bahl, K., Valin, H., Garnett, T., and Stehfest, E.: Greenhouse
gas mitigation potentials in the livestock sector, Nat. Clim. Change, 6,
452–461, https://doi.org/10.1038/nclimate2925, 2016. a
Hersbach, H., Bell, B., Berrisford, P.,
Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on
single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate
Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Jansen‐Willems, A. B., Lanigan, G. J., Grünhage, L., and Müller, C.:
Carbon cycling in temperate grassland under elevated temperature, Ecol. Evol., 6, 7856–7868, https://doi.org/10.1002/ece3.2210, 2016. a
Kan, G., Liang, K., Li, J., Ding, L., He, X., Hu, Y., and Amo-Boateng, M.:
Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU
and Many-Core GPU, Adv. Meteorol., 2016, 8483728,
https://doi.org/10.1155/2016/8483728, 2016. a
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., and Legg, T.: State of
the UK climate 2017, Int. J. Climatol., 38, 1–35,
https://doi.org/10.1002/joc.5798, 2018. a
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., and Legg, T.: State of
the UK climate 2018, Int. J. Climatol., 39, 1–55,
https://doi.org/10.1002/joc.6213, 2019. a
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models,
J. R. Stat. Soc. B,
63, 425–464, https://doi.org/10.1111/1467-9868.00294, 2001. a
Klumpp, K., Tallec, T., Guix, N., and Soussana, J.: Long‐term impacts of
agricultural practices and climatic variability on carbon storage in a
permanent pasture, Glob. Change Biol., 17, 3534–3545,
https://doi.org/10.1111/j.1365-2486.2011.02490.x, 2011. a
Koncz, P., Pintér, K., Balogh, J., Papp, M., Hidy, D., Csintalan, Z., Molnár,
E., Szaniszló, A., Kampfl, G., Horváth, L., and Nagy, Z.: Extensive
grazing in contrast to mowing is climate-friendly based on the farm-scale
greenhouse gas balance, Agr. Ecosyst. Environ., 240,
121–134, https://doi.org/10.1016/j.agee.2017.02.022, 2017. a, b
Lee, M. A., Todd, A., Sutton, M. A., Chagunda, M. G., Roberts, D. J., and Rees,
R. M.: A time-series of methane and carbon dioxide production from dairy
cows during a period of dietary transition, Cogent Environmental Science, 3,
1385693, https://doi.org/10.1080/23311843.2017.1385693, 2017. a
Ma, S., Lardy, R., Graux, A. I., Ben Touhami, H., Klumpp, K., Martin, R., and
Bellocchi, G.: Regional-scale analysis of carbon and water cycles on managed
grassland systems, Environ. Modell. Softw., 72, 356–371,
https://doi.org/10.1016/j.envsoft.2015.03.007, 2015. a
Maselli, F., Argenti, G., Chiesi, M., Angeli, L., and Papale, D.: Simulation
of grassland productivity by the combination of ground and satellite data, Agr. Ecosyst. Environ., 165, 163–172,
https://doi.org/10.1016/j.agee.2012.11.006, 2013. a
Massmann, A., Gentine, P., and Lin, C.: When Does Vapor Pressure Deficit Drive
or Reduce Evapotranspiration?, J. Adv. Model. Earth
Sy., 11, 3305–3320, https://doi.org/10.1029/2019ms001790, 2019. a
McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland soil
carbon: A global review, Glob. Change Biol., 19, 1347–1357,
https://doi.org/10.1111/gcb.12144, 2013. a
Munier, S., Carrer, D., Planque, C., Camacho, F., Albergel, C., and Calvet,
J.-C.: Satellite Leaf Area Index: Global Scale Analysis of the Tendencies
Per Vegetation Type Over the Last 17 Years, Remote Sens., 10, 424,
https://doi.org/10.3390/rs10030424, 2018. a
Myrgiotis, V. and Williams, M.: The carbon budget of the managed grasslands of Great Britain – informed by earth observations, 2017–2018, University of Edinburgh, School of GeoSciences, Global Change Ecology Lab, Datashare Edinburgh [data set], https://doi.org/10.7488/ds/3510, 2022. a
Myrgiotis, V., Blei, E., Clement, R., Jones, S. K., Keane, B., Lee, M. A.,
Levy, P. E., Rees, R. M., Skiba, U. M., Smallman, T. L., Toet, S., and
Williams, M.: A model-data fusion approach to analyse carbon dynamics in
managed grasslands, Agr. Syst., 184, 102907,
https://doi.org/10.1016/j.agsy.2020.102907, 2020. a, b, c, d, e
Myrgiotis, V., Harris, P., Revill, A., Sint, H., and Williams, M.: Inferring
management and predicting sub-field scale C dynamics in UK grasslands using
biogeochemical modelling and satellite-derived leaf area data, Agr. Forest Meteorol., 307, 108466,
https://doi.org/10.1016/j.agrformet.2021.108466, 2021. a, b, c, d, e, f
Oijen, M. v., Cameron, D., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson,
P.-E., Kiese, R., Rahn, K.-H., Werner, C., and Yeluripati, J.: A Bayesian
framework for model calibration, comparison and analysis: Application to four
models for the biogeochemistry of a Norway spruce forest, Agr. Forest Meteorol., 151, 1609–1621, https://doi.org/10.1016/j.agrformet.2011.06.017,
2011. a
Ostle, N. J., Smith, P., Fisher, R., Woodward, F. I., Fisher, J. B., Smith,
J. U., Galbraith, D., Levy, P., Meir, P., McNamara, N. P., and Bardgett,
R. D.: Integrating plant–soil interactions into global carbon cycle
models, J. Ecol., 97, 851–863,
https://doi.org/10.1111/j.1365-2745.2009.01547.x, 2009. a
Parsons, A. J., Rowarth, J. S., and Newton, P. C. D.: Managing pasture for
animals and soil carbon, Pr. N. Z. Grassl. Assoc., 71, 77–84, https://doi.org/10.33584/jnzg.2009.71.2775, 2009. a
Patenaude, G., Milne, R., Oijen, M. V., Rowland, C. S., and Hill, R. A.:
Integrating remote sensing datasets into ecological modelling: a Bayesian
approach, Int. J. Remote Sens., 29, 1295–1315,
https://doi.org/10.1080/01431160701736414, 2008. a
Pawlok, D., Benjamin, Z. H., Yingping, W., and David, W.: Grasslands may be
more reliable carbon sinks than forests in California, Environ.
Res. Lett., 13, 74027, https://doi.org/10.1088/1748-9326/aacb39, 2018. a
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical,
geographical and ecological perspective on the 2018 European summer drought,
Philos. T. R. Soc. B, 375, 20190505,
https://doi.org/10.1098/rstb.2019.0505, 2020. a
Pique, G., Fieuzal, R., Bitar, A. A., Veloso, A., Tallec, T., Brut, A.,
Ferlicoq, M., Zawilski, B., Dejoux, J.-F., Gibrin, H., and Ceschia, E.:
Estimation of daily CO2 fluxes and of the components of the carbon budget
for winter wheat by the assimilation of Sentinel 2-like remote sensing data
into a crop model, Geoderma, 376, 114428,
https://doi.org/10.1016/j.geoderma.2020.114428, 2020a. a
Pique, G., Fieuzal, R., Debaeke, P., Bitar, A. A., Tallec, T., and Ceschia, E.:
Combining High-Resolution Remote Sensing Products with a Crop Model to
Estimate Carbon and Water Budget Components: Application to Sunflower, Remote Sens., 12, 2967, https://doi.org/10.3390/rs12182967, 2020b. a
Pope, A.: GB SRTM Digital Elevation Model (DEM) 90m,
EDINA [data set], https://doi.org/10.7488/ds/1928, 2017. a
Puche, N., Senapati, N., Flechard, C. R., Klumpp, K., Kirschbaum, M. U., and
Chabbi, A.: Modeling carbon and water fluxes of managed grasslands:
Comparing flux variability and net carbon budgets between grazed and mowed
systems, Agronomy, 9, 10–12, https://doi.org/10.3390/agronomy9040183, 2019. a
Qi, A., Holland, R. A., Taylor, G., and Richter, G. M.: Grassland futures in
Great Britain – Productivity assessment and scenarios for land use change
opportunities, Sci. Total Environ., 634, 1108–1118,
https://doi.org/10.1016/j.scitotenv.2018.03.395, 2018. a, b
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding
for data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019. a
Reinermann, S., Asam, S., and Kuenzer, C.: Remote Sensing of Grassland Production and
Management – A Review, Remote Sens., 12, 1949, https://doi.org/10.3390/rs12121949, 2020. a
Revill, A., Myrgiotis, V., Florence, A., Hoad, S., Rees, R., MacArthur, A., and
Williams, M.: Combining Process Modelling and LAI Observations to Diagnose
Winter Wheat Nitrogen Status and Forecast Yield, Agronomy, 11, 314,
https://doi.org/10.3390/agronomy11020314, 2021. a
Riederer, M., Serafimovich, A., and Foken, T.: Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions, Atmos. Meas. Tech., 7, 1057–1064, https://doi.org/10.5194/amt-7-1057-2014, 2014. a
Riederer, M., Pausch, J., Kuzyakov, Y., and Foken, T.: Partitioning NEE for
absolute C input into various ecosystem pools by combining results from
eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling,
Plant Soil, 390, 61–76, https://doi.org/10.1007/s11104-014-2371-7, 2015. a
Rodríguez-Pérez, R. and Bajorath, J.: Interpretation of machine
learning models using shapley values: application to compound potency and
multi-target activity predictions, J. Comput. Aid Mol. Des., 34, 1013–1026, https://doi.org/10.1007/s10822-020-00314-0, 2020. a
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018. a
Sándor, R., Ehrhardt, F., Brilli, L., Carozzi, M., Recous, S., Smith, P.,
Snow, V., Soussana, J. F., Dorich, C. D., Fuchs, K., Fitton, N., Gongadze,
K., Klumpp, K., Liebig, M., Martin, R., Merbold, L., Newton, P. C., Rees,
R. M., Rolinski, S., and Bellocchi, G.: The use of biogeochemical models to
evaluate mitigation of greenhouse gas emissions from managed grasslands,
Sci. Total Environ., 642, 292–306,
https://doi.org/10.1016/j.scitotenv.2018.06.020, 2018. a
Senapati, N., Chabbi, A., Gastal, F., Smith, P., Mascher, N., Loubet, B.,
Cellier, P., and Naisse, C.: Net carbon storage measured in a mowed and
grazed temperate sown grassland shows potential for carbon sequestration
under grazed system, Carbon Manag., 5, 131–144,
https://doi.org/10.1080/17583004.2014.912863, 2014. a
Sibley, A. M.: Wildfire outbreaks across the United Kingdom during summer
2018, Weather, 74, 397–402, https://doi.org/10.1002/wea.3614, 2019. a
Skinner, R. H.: High Biomass Removal Limits Carbon Sequestration Potential of
Mature Temperate Pastures, J. Environ. Qual., 37, 1319–1326,
https://doi.org/10.2134/jeq2007.0263, 2008. a, b, c
Skinner, R. H. and Goslee, S. C.: Defoliation Effects on Pasture
Photosynthesis and Respiration, Crop Sci., 56, 2045–2053,
https://doi.org/10.2135/cropsci2015.12.0733, 2016. a
Smallman, T. L. and Williams, M.: Description and validation of an intermediate complexity model for ecosystem photosynthesis and evapotranspiration: ACM-GPP-ETv1, Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, 2019. a
Smallman, T. L., Exbrayat, J., Mencuccini, M., Bloom, A. A., and Williams, M.:
Assimilation of repeated woody biomass observations constrains decadal
ecosystem carbon cycle uncertainty in aggrading forests, J.
Geophys. Res.-Biogeo., 122, 528–545,
https://doi.org/10.1002/2016jg003520, 2017. a
Smets, B., Jacobs, T., and Verger, A.: Gio Global Land Component – Lot I
“Operation of the Global Land Component”, Tech. rep.,
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60.pdf (last access: 1 October 2021),
2018. a
Smith, K. A. and Williams, A. G.: Production and management of cattle manure
in the UK and implications for land application practice, Soil Use
Manage., 32, 73–82, https://doi.org/10.1111/sum.12247, 2016. a
Snow, V. O., Rotz, C. A., Moore, A. D., Martin-Clouaire, R., Johnson, I. R.,
Hutchings, N. J., and Eckard, R. J.: The challenges – and some solutions –
to process-based modelling of grazed agricultural systems, Environ.
Modell. Softw., 62, 420–436, https://doi.org/10.1016/j.envsoft.2014.03.009,
2014. a
Sollenberger, L. E., Kohmann, M. M., Dubeux, J. C., and Silveira, M. L.:
Grassland management affects delivery of regulating and supporting ecosystem
services, Crop Sci., 59, 441–459, https://doi.org/10.2135/cropsci2018.09.0594,
2019. a
Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C.,
Ceschia, E., Clifton-Brown, J., Czobel, S., Domingues, R., Flechard, C.,
Fuhrer, J., Hensen, A., Horvath, L., Jones, M., Kasper, G., Martin, C., Nagy,
Z., Neftel, A., Raschi, A., Baronti, S., Rees, R. M., Skiba, U., Stefani, P.,
Manca, G., Sutton, M., Tuba, Z., and Valentini, R.: Full accounting of the
greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites, Agr. Ecosyst. Environ., 121, 121–134,
https://doi.org/10.1016/j.agee.2006.12.022, 2007. a, b, c
Soussana, J. F., Tallec, T., and Blanfort, V.: Mitigating the greenhouse gas
balance of ruminant production systems through carbon sequestration in
grasslands, Animal, 4, 334–350, https://doi.org/10.1017/S1751731109990784, 2010. a
Thompson, R. L., Broquet, G., Gerbig, C., Koch, T., Lang, M., Monteil, G.,
Munassar, S., Nickless, A., Scholze, M., Ramonet, M., Karstens, U., Schaik,
E. v., Wu, Z., and Rödenbeck, C.: Changes in net ecosystem exchange over
Europe during the 2018 drought based on atmospheric observations,
Philos. T. R. Soc. B, 375, 20190512,
https://doi.org/10.1098/rstb.2019.0512, 2020. a
Ustin, S. L. and Middleton, E. M.: Current and near-term advances in Earth
observation for ecological applications, Ecol. Process., 10, 1,
https://doi.org/10.1186/s13717-020-00255-4, 2021. a
Vertès, F., Delaby, L., Klumpp, K., and Bloor, J.: C–N–P Uncoupling
in Grazed Grasslands and Environmental Implications of Management
Intensification, in: Agroecosystem Diversity, edited by: Lemaire, G., De Faccio Carvalho, P. C., Kronberg, S., and
Recous, S., Academic Press, 15–34,
https://doi.org/10.1016/b978-0-12-811050-8.00002-9, 2018. a, b
Vuichard, N., Ciais, P., Viovy, N., Calanca, P., and Soussana, J.-F.:
Estimating the greenhouse gas fluxes of European grasslands with a
process-based model: 2. Simulations at the continental level, Global
Biogeochem. Cy., 21, GB1005, https://doi.org/10.1029/2005GB002612, 2007. a
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R.,
Shiel, R. S., Wilby, A., and Bardgett, R. D.: Legacy effects of grassland
management on soil carbon to depth, Glob. Change Biol., 22, 2929–2938,
https://doi.org/10.1111/gcb.13246, 2016. a
Weiss, M. and Baret, F.: S2ToolBox Level products: LAI, FAPAR, FCOVER Version
1.1., Tech. rep., https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (last access: 10 August 2021), 2016. a
Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Shaver,
G. R., and Johnson, L. C.: Predicing Gross Primary Productivity in
Terrestrial Ecosystems, Ecol. Appl., 7, 882–894, 1997. a
Worrall, F. and Clay, G. D.: The impact of sheep grazing on the carbon balance
of a peatland, Sci. Total Environ., 438, 426–434,
https://doi.org/10.1016/j.scitotenv.2012.08.084, 2012. a
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A.,
Blanken, P. D., Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen,
S., Dong, J., Flanagan, L. B., Frankenberg, C., Georgiadis, T., Gough, C. M.,
Hui, D., Kiely, G., Li, J., Lund, M., Magliulo, V., Marcolla, B., Merbold,
L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, S., Raschi, A.,
Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A.,
Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.:
Joint control of terrestrial gross primary productivity by plant phenology
and physiology, P. Natl. Acad. Sci. USA, 112,
2788–2793, https://doi.org/10.1073/pnas.1413090112, 2015. a, b
Yu, R., Evans, A. J., and Malleson, N.: Quantifying grazing patterns using a
new growth function based on MODIS Leaf Area Index, Remote Sens.
Environ., 209, 181–194, https://doi.org/10.1016/j.rse.2018.02.034, 2018. a
Zeeman, M. J., Hiller, R., Gilgen, A. K., Michna, P., Plüss, P., Buchmann, N.,
and Eugster, W.: Management and climate impacts on net CO2 fluxes and carbon
budgets of three grasslands along an elevational gradient in Switzerland,
Agr. Forest Meteorol., 150, 519–530,
https://doi.org/10.1016/j.agrformet.2010.01.011, 2010. a, b
Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J.,
Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., and
Chen, M.: Optical vegetation indices for monitoring terrestrial ecosystems
globally, Nature Reviews Earth & Environment, 3, 477–493,
https://doi.org/10.1038/s43017-022-00298-5, 2022. a
Zhao, Y., Chen, X., Smallman, T. L., Flack-Prain, S., Milodowski, D. T., and
Williams, M.: Characterizing the Error and Bias of Remotely Sensed LAI
Products: An Example for Tropical and Subtropical Evergreen Forests in South
China, Remote Sens., 12, 3122, https://doi.org/10.3390/rs12193122, 2020. a, b
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
This study shows that livestock grazing and grass cutting can determine whether a grassland is...
Altmetrics
Final-revised paper
Preprint