Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4147-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Thomas Luke Smallman
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Mathew Williams
School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK
Related authors
No articles found.
Liang Feng, Paul I. Palmer, Luke Smallman, Jingfeng Xiao, Paolo Cristofanelli, Ove Hermansen, John Lee, Casper Labuschagne, Simonetta Montaguti, Steffen M. Noe, Stephen M. Platt, Xinrong Ren, Martin Steinbacher, and Irène Xueref-Remy
Atmos. Chem. Phys., 25, 13053–13076, https://doi.org/10.5194/acp-25-13053-2025, https://doi.org/10.5194/acp-25-13053-2025, 2025
Short summary
Short summary
The year 2023 saw unexpectedly large global atmospheric CO2 growth. Satellite data reveal a role for increased tropical emissions. Larger emissions over eastern Brazil can be explained by warmer temperatures, which has led to exceptional drought, while hydrological changes play more of a role in emission increases elsewhere in the tropics. Broadly, we find that this situation continues into 2024.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Mathew Williams, David T. Milodowski, T. Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
Biogeosciences, 22, 1597–1614, https://doi.org/10.5194/bg-22-1597-2025, https://doi.org/10.5194/bg-22-1597-2025, 2025
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production and vegetation–fire interactions, which determine the mortality of vegetation and spatial variations in vegetation function.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Marcos B. Sanches, Manoel Cardoso, Celso von Randow, Chris Jones, and Mathew Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-942, https://doi.org/10.5194/egusphere-2025-942, 2025
Preprint archived
Short summary
Short summary
This study examines South America's role in the global carbon cycle using flux and stock analyses from CMIP6 Earth System Models. We discuss the continent’s relevance, model-observation agreement, and the impacts of dry and wet years on major biomes. Additionally, we assess model results indicating that parts of South America could shift from carbon sinks to emitters, significantly affecting the global carbon balance.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
Atmos. Chem. Phys., 23, 9685–9723, https://doi.org/10.5194/acp-23-9685-2023, https://doi.org/10.5194/acp-23-9685-2023, 2023
Short summary
Short summary
The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences, 20, 3301–3327, https://doi.org/10.5194/bg-20-3301-2023, https://doi.org/10.5194/bg-20-3301-2023, 2023
Short summary
Short summary
Model–data fusion (MDF) allows us to combine ecosystem models with Earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to improve ecological fidelity of the calibrated models.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Cited articles
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones,
M. B., Rees, R. M., and Smith, P.: Critical review of the impacts of grazing
intensity on soil organic carbon storage and other soil quality indicators in
extensively managed grasslands, Agr. Ecosyst. Environ.,
253, 62–81, https://doi.org/10.1016/j.agee.2017.10.023, 2018. a, b, c
EDINA: AgCensus, http://agcensus.edina.ac.uk, last access:
1 March 2019. a
Ammann, C., Neftel, A., Jocher, M., Fuhrer, J., and Leifeld, J.: Effect of
management and weather variations on the greenhouse gas budget of two
grasslands during a 10-year experiment, Agr. Ecosyst.
Environ., 292, 106814, https://doi.org/10.1016/j.agee.2019.106814, 2020. a
Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler,
M., Williams, M., Ammann, C., Berninger, F., Flechard, C., Jones, S.,
Balzarolo, M., Kumar, S., Newesely, C., Priwitzer, T., Raschi, A., Siegwolf,
R., Susiluoto, S., Tenhunen, J., Wohlfahrt, G., and Cernusca, A.: Soil
Respiration in European Grasslands in Relation to Climate and Assimilate
Supply, Ecosystems, 11, 1352–1367, https://doi.org/10.1007/s10021-008-9198-0, 2008. a
Bell, M. J., Cloy, J. M., Topp, C. F., Ball, B. C., Bagnall, A., Rees, R. M.,
and Chadwick, D. R.: Quantifying N2O emissions from intensive grassland
production: The role of synthetic fertilizer type, application rate, timing
and nitrification inhibitors, J. Agr. Sci., 154,
812–827, https://doi.org/10.1017/S0021859615000945, 2016. a
Blanke, J., Boke-Olén, N., Olin, S., Chang, J., Sahlin, U., Lindeskog,
M., and Lehsten, V.: Implications of accounting for management intensity on
carbon and nitrogen balances of European grasslands, Plos One, 13,
e0201058, https://doi.org/10.1371/journal.pone.0201058, 2018. a, b
Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological “common sense” in a model–data fusion framework, Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, 2015. a
Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., and Williams, M.:
The decadal state of the terrestrial carbon cycle: Global retrievals of
terrestrial carbon allocation, pools, and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290,
https://doi.org/10.1073/pnas.1515160113, 2016. a
Chang, J., Ciais, P., Viovy, N., Vuichard, N., Sultan, B., and Soussana, J. F.:
The greenhouse gas balance of European grasslands, Glob. Change Biol.,
21, 3748–3761, https://doi.org/10.1111/gcb.12998, 2015a. a
Chang, J., Viovy, N., Vuichard, N., Ciais, P., Campioli, M., Klumpp, K.,
Martin, R., Leip, A., and Soussana, J.-F.: Modeled Changes in Potential
Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe
over 1961–2010, PLOS ONE, 10, e0127554,
https://doi.org/10.1371/journal.pone.0127554, 2015b. a
Chang, J., Ciais, P., Viovy, N., Soussana, J. F., Klumpp, K., and Sultan, B.:
Future productivity and phenology changes in European grasslands for
different warming levels: Implications for grassland management and carbon
balance, Carbon Balance and Management, 12, 11, https://doi.org/10.1186/s13021-017-0079-8,
2017. a
Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P.,
Obersteiner, M., Guenet, B., Goll, D. S., Li, W., Naipal, V., Peng, S., Qiu,
C., Tian, H., Viovy, N., Yue, C., and Zhu, D.: Climate warming from managed
grasslands cancels the cooling effect of carbon sinks in sparsely grazed and
natural grasslands, Nat. Commun., 12, 118,
https://doi.org/10.1038/s41467-020-20406-7, 2021. a, b
Chang, J. F., Viovy, N., Vuichard, N., Ciais, P., Wang, T., Cozic, A., Lardy, R., Graux, A.-I., Klumpp, K., Martin, R., and Soussana, J.-F.: Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe, Geosci. Model Dev., 6, 2165–2181, https://doi.org/10.5194/gmd-6-2165-2013, 2013. a
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F.,
Noblet, N. D., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch,
B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci,
G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S.,
Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and
Valentini, R.: Europe-wide reduction in primary productivity caused by the
heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972,
2005. a
Committee on Climate Change: Net Zero: The UK's contribution to stopping
global warming, Tech. Rep. May,
https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ (last access: 1 October 2021),
2019. a
Conant, R. T., Cerri, C. E., Osborne, B. B., and Paustian, K.: Grassland
management impacts on soil carbon stocks: A new synthesis, Ecol. Appl., 27, 662–668, https://doi.org/10.1002/eap.1473, 2017. a
Dangal, S. R. S., Tian, H., Pan, S., Zhang, L., and Xu, R.: Greenhouse gas
balance in global pasturelands and rangelands, Environ. Res.
Lett., 15, 104006, https://doi.org/10.1088/1748-9326/abaa79, 2020. a
Dietze, M. C.: Ecological Forecasting, Princeton University Press,
JSTOR, https://doi.org/10.2307/j.ctvc7796h.3, 2017. a
Dusseux, P., Gong, X., Hubert-Moy, L., and Corpetti, T.: Identification of
grassland management practices from leaf area index time series, J.
Appl. Remote Sens., 8, 083559, https://doi.org/10.1117/1.jrs.8.083559,
2014. a
Felber, R., Bretscher, D., Münger, A., Neftel, A., and Ammann, C.: Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties, Biogeosciences, 13, 2959–2969, https://doi.org/10.5194/bg-13-2959-2016, 2016. a
Fetzel, T., Havlik, P., Herrero, M., Kaplan, J. O., Kastner, T., Kroisleitner,
C., Rolinski, S., Searchinger, T., Van BODEGOM, P. M., Wirsenius, S., and
Erb, K. H.: Quantification of uncertainties in global grazing systems
assessment, Global Biogeochem. Cy., 31, 1089–1102,
https://doi.org/10.1002/2016GB005601, 2017. a, b, c
Gastal, F. and Lemaire, G.: Defoliation, Shoot Plasticity, Sward Structure and
Herbage Utilization in Pasture: Review of the Underlying Ecophysiological
Processes, Agriculture, 5, 1146–1171, https://doi.org/10.3390/agriculture5041146,
2015. a
Gilmanov, T. G., Soussana, J. F., Aires, L., Allard, V., Ammann, C., Balzarolo,
M., Barcza, Z., Bernhofer, C., Campbell, C. L., Cernusca, A., Cescatti, A.,
Clifton-Brown, J., Dirks, B. O., Dore, S., Eugster, W., Fuhrer, J., Gimeno,
C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A. F., Jones,
M. B., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z.,
Pilegaard, K., Pinter, K., Pio, C., Raschi, A., Rogiers, N., Sanz, M. J.,
Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M. L., and
Wohlfahrt, G.: Partitioning European grassland net ecosystem CO2 exchange
into gross primary productivity and ecosystem respiration using light
response function analysis, Agr. Ecosyst. Environ., 121,
93–120, https://doi.org/10.1016/j.agee.2006.12.008, 2007. a, b, c
Giménez, M. G., de Jong, R., Peruta, R. D., Keller, A., and Schaepman,
M. E.: Determination of grassland use intensity based on multi-temporal
remote sensing data and ecological indicators, Remote Sens.
Environ., 198, 126–139, https://doi.org/10.1016/j.rse.2017.06.003, 2017. a
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a, b
Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T.,
Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M.,
Butterbach-Bahl, K., Valin, H., Garnett, T., and Stehfest, E.: Greenhouse
gas mitigation potentials in the livestock sector, Nat. Clim. Change, 6,
452–461, https://doi.org/10.1038/nclimate2925, 2016. a
Hersbach, H., Bell, B., Berrisford, P.,
Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on
single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate
Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Jansen‐Willems, A. B., Lanigan, G. J., Grünhage, L., and Müller, C.:
Carbon cycling in temperate grassland under elevated temperature, Ecol. Evol., 6, 7856–7868, https://doi.org/10.1002/ece3.2210, 2016. a
Kan, G., Liang, K., Li, J., Ding, L., He, X., Hu, Y., and Amo-Boateng, M.:
Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU
and Many-Core GPU, Adv. Meteorol., 2016, 8483728,
https://doi.org/10.1155/2016/8483728, 2016. a
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., and Legg, T.: State of
the UK climate 2017, Int. J. Climatol., 38, 1–35,
https://doi.org/10.1002/joc.5798, 2018. a
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., and Legg, T.: State of
the UK climate 2018, Int. J. Climatol., 39, 1–55,
https://doi.org/10.1002/joc.6213, 2019. a
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models,
J. R. Stat. Soc. B,
63, 425–464, https://doi.org/10.1111/1467-9868.00294, 2001. a
Klumpp, K., Tallec, T., Guix, N., and Soussana, J.: Long‐term impacts of
agricultural practices and climatic variability on carbon storage in a
permanent pasture, Glob. Change Biol., 17, 3534–3545,
https://doi.org/10.1111/j.1365-2486.2011.02490.x, 2011. a
Koncz, P., Pintér, K., Balogh, J., Papp, M., Hidy, D., Csintalan, Z., Molnár,
E., Szaniszló, A., Kampfl, G., Horváth, L., and Nagy, Z.: Extensive
grazing in contrast to mowing is climate-friendly based on the farm-scale
greenhouse gas balance, Agr. Ecosyst. Environ., 240,
121–134, https://doi.org/10.1016/j.agee.2017.02.022, 2017. a, b
Lee, M. A., Todd, A., Sutton, M. A., Chagunda, M. G., Roberts, D. J., and Rees,
R. M.: A time-series of methane and carbon dioxide production from dairy
cows during a period of dietary transition, Cogent Environmental Science, 3,
1385693, https://doi.org/10.1080/23311843.2017.1385693, 2017. a
Ma, S., Lardy, R., Graux, A. I., Ben Touhami, H., Klumpp, K., Martin, R., and
Bellocchi, G.: Regional-scale analysis of carbon and water cycles on managed
grassland systems, Environ. Modell. Softw., 72, 356–371,
https://doi.org/10.1016/j.envsoft.2015.03.007, 2015. a
Maselli, F., Argenti, G., Chiesi, M., Angeli, L., and Papale, D.: Simulation
of grassland productivity by the combination of ground and satellite data, Agr. Ecosyst. Environ., 165, 163–172,
https://doi.org/10.1016/j.agee.2012.11.006, 2013. a
Massmann, A., Gentine, P., and Lin, C.: When Does Vapor Pressure Deficit Drive
or Reduce Evapotranspiration?, J. Adv. Model. Earth
Sy., 11, 3305–3320, https://doi.org/10.1029/2019ms001790, 2019. a
McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland soil
carbon: A global review, Glob. Change Biol., 19, 1347–1357,
https://doi.org/10.1111/gcb.12144, 2013. a
Munier, S., Carrer, D., Planque, C., Camacho, F., Albergel, C., and Calvet,
J.-C.: Satellite Leaf Area Index: Global Scale Analysis of the Tendencies
Per Vegetation Type Over the Last 17 Years, Remote Sens., 10, 424,
https://doi.org/10.3390/rs10030424, 2018. a
Myrgiotis, V. and Williams, M.: The carbon budget of the managed grasslands of Great Britain – informed by earth observations, 2017–2018, University of Edinburgh, School of GeoSciences, Global Change Ecology Lab, Datashare Edinburgh [data set], https://doi.org/10.7488/ds/3510, 2022. a
Myrgiotis, V., Blei, E., Clement, R., Jones, S. K., Keane, B., Lee, M. A.,
Levy, P. E., Rees, R. M., Skiba, U. M., Smallman, T. L., Toet, S., and
Williams, M.: A model-data fusion approach to analyse carbon dynamics in
managed grasslands, Agr. Syst., 184, 102907,
https://doi.org/10.1016/j.agsy.2020.102907, 2020. a, b, c, d, e
Myrgiotis, V., Harris, P., Revill, A., Sint, H., and Williams, M.: Inferring
management and predicting sub-field scale C dynamics in UK grasslands using
biogeochemical modelling and satellite-derived leaf area data, Agr. Forest Meteorol., 307, 108466,
https://doi.org/10.1016/j.agrformet.2021.108466, 2021. a, b, c, d, e, f
Oijen, M. v., Cameron, D., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson,
P.-E., Kiese, R., Rahn, K.-H., Werner, C., and Yeluripati, J.: A Bayesian
framework for model calibration, comparison and analysis: Application to four
models for the biogeochemistry of a Norway spruce forest, Agr. Forest Meteorol., 151, 1609–1621, https://doi.org/10.1016/j.agrformet.2011.06.017,
2011. a
Ostle, N. J., Smith, P., Fisher, R., Woodward, F. I., Fisher, J. B., Smith,
J. U., Galbraith, D., Levy, P., Meir, P., McNamara, N. P., and Bardgett,
R. D.: Integrating plant–soil interactions into global carbon cycle
models, J. Ecol., 97, 851–863,
https://doi.org/10.1111/j.1365-2745.2009.01547.x, 2009. a
Parsons, A. J., Rowarth, J. S., and Newton, P. C. D.: Managing pasture for
animals and soil carbon, Pr. N. Z. Grassl. Assoc., 71, 77–84, https://doi.org/10.33584/jnzg.2009.71.2775, 2009. a
Patenaude, G., Milne, R., Oijen, M. V., Rowland, C. S., and Hill, R. A.:
Integrating remote sensing datasets into ecological modelling: a Bayesian
approach, Int. J. Remote Sens., 29, 1295–1315,
https://doi.org/10.1080/01431160701736414, 2008. a
Pawlok, D., Benjamin, Z. H., Yingping, W., and David, W.: Grasslands may be
more reliable carbon sinks than forests in California, Environ.
Res. Lett., 13, 74027, https://doi.org/10.1088/1748-9326/aacb39, 2018. a
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical,
geographical and ecological perspective on the 2018 European summer drought,
Philos. T. R. Soc. B, 375, 20190505,
https://doi.org/10.1098/rstb.2019.0505, 2020. a
Pique, G., Fieuzal, R., Bitar, A. A., Veloso, A., Tallec, T., Brut, A.,
Ferlicoq, M., Zawilski, B., Dejoux, J.-F., Gibrin, H., and Ceschia, E.:
Estimation of daily CO2 fluxes and of the components of the carbon budget
for winter wheat by the assimilation of Sentinel 2-like remote sensing data
into a crop model, Geoderma, 376, 114428,
https://doi.org/10.1016/j.geoderma.2020.114428, 2020a. a
Pique, G., Fieuzal, R., Debaeke, P., Bitar, A. A., Tallec, T., and Ceschia, E.:
Combining High-Resolution Remote Sensing Products with a Crop Model to
Estimate Carbon and Water Budget Components: Application to Sunflower, Remote Sens., 12, 2967, https://doi.org/10.3390/rs12182967, 2020b. a
Pope, A.: GB SRTM Digital Elevation Model (DEM) 90m,
EDINA [data set], https://doi.org/10.7488/ds/1928, 2017. a
Puche, N., Senapati, N., Flechard, C. R., Klumpp, K., Kirschbaum, M. U., and
Chabbi, A.: Modeling carbon and water fluxes of managed grasslands:
Comparing flux variability and net carbon budgets between grazed and mowed
systems, Agronomy, 9, 10–12, https://doi.org/10.3390/agronomy9040183, 2019. a
Qi, A., Holland, R. A., Taylor, G., and Richter, G. M.: Grassland futures in
Great Britain – Productivity assessment and scenarios for land use change
opportunities, Sci. Total Environ., 634, 1108–1118,
https://doi.org/10.1016/j.scitotenv.2018.03.395, 2018. a, b
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding
for data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019. a
Reinermann, S., Asam, S., and Kuenzer, C.: Remote Sensing of Grassland Production and
Management – A Review, Remote Sens., 12, 1949, https://doi.org/10.3390/rs12121949, 2020. a
Revill, A., Myrgiotis, V., Florence, A., Hoad, S., Rees, R., MacArthur, A., and
Williams, M.: Combining Process Modelling and LAI Observations to Diagnose
Winter Wheat Nitrogen Status and Forecast Yield, Agronomy, 11, 314,
https://doi.org/10.3390/agronomy11020314, 2021. a
Riederer, M., Serafimovich, A., and Foken, T.: Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions, Atmos. Meas. Tech., 7, 1057–1064, https://doi.org/10.5194/amt-7-1057-2014, 2014. a
Riederer, M., Pausch, J., Kuzyakov, Y., and Foken, T.: Partitioning NEE for
absolute C input into various ecosystem pools by combining results from
eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling,
Plant Soil, 390, 61–76, https://doi.org/10.1007/s11104-014-2371-7, 2015. a
Rodríguez-Pérez, R. and Bajorath, J.: Interpretation of machine
learning models using shapley values: application to compound potency and
multi-target activity predictions, J. Comput. Aid Mol. Des., 34, 1013–1026, https://doi.org/10.1007/s10822-020-00314-0, 2020. a
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018. a
Sándor, R., Ehrhardt, F., Brilli, L., Carozzi, M., Recous, S., Smith, P.,
Snow, V., Soussana, J. F., Dorich, C. D., Fuchs, K., Fitton, N., Gongadze,
K., Klumpp, K., Liebig, M., Martin, R., Merbold, L., Newton, P. C., Rees,
R. M., Rolinski, S., and Bellocchi, G.: The use of biogeochemical models to
evaluate mitigation of greenhouse gas emissions from managed grasslands,
Sci. Total Environ., 642, 292–306,
https://doi.org/10.1016/j.scitotenv.2018.06.020, 2018. a
Senapati, N., Chabbi, A., Gastal, F., Smith, P., Mascher, N., Loubet, B.,
Cellier, P., and Naisse, C.: Net carbon storage measured in a mowed and
grazed temperate sown grassland shows potential for carbon sequestration
under grazed system, Carbon Manag., 5, 131–144,
https://doi.org/10.1080/17583004.2014.912863, 2014. a
Sibley, A. M.: Wildfire outbreaks across the United Kingdom during summer
2018, Weather, 74, 397–402, https://doi.org/10.1002/wea.3614, 2019. a
Skinner, R. H.: High Biomass Removal Limits Carbon Sequestration Potential of
Mature Temperate Pastures, J. Environ. Qual., 37, 1319–1326,
https://doi.org/10.2134/jeq2007.0263, 2008. a, b, c
Skinner, R. H. and Goslee, S. C.: Defoliation Effects on Pasture
Photosynthesis and Respiration, Crop Sci., 56, 2045–2053,
https://doi.org/10.2135/cropsci2015.12.0733, 2016. a
Smallman, T. L. and Williams, M.: Description and validation of an intermediate complexity model for ecosystem photosynthesis and evapotranspiration: ACM-GPP-ETv1, Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, 2019. a
Smallman, T. L., Exbrayat, J., Mencuccini, M., Bloom, A. A., and Williams, M.:
Assimilation of repeated woody biomass observations constrains decadal
ecosystem carbon cycle uncertainty in aggrading forests, J.
Geophys. Res.-Biogeo., 122, 528–545,
https://doi.org/10.1002/2016jg003520, 2017. a
Smets, B., Jacobs, T., and Verger, A.: Gio Global Land Component – Lot I
“Operation of the Global Land Component”, Tech. rep.,
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60.pdf (last access: 1 October 2021),
2018. a
Smith, K. A. and Williams, A. G.: Production and management of cattle manure
in the UK and implications for land application practice, Soil Use
Manage., 32, 73–82, https://doi.org/10.1111/sum.12247, 2016. a
Snow, V. O., Rotz, C. A., Moore, A. D., Martin-Clouaire, R., Johnson, I. R.,
Hutchings, N. J., and Eckard, R. J.: The challenges – and some solutions –
to process-based modelling of grazed agricultural systems, Environ.
Modell. Softw., 62, 420–436, https://doi.org/10.1016/j.envsoft.2014.03.009,
2014. a
Sollenberger, L. E., Kohmann, M. M., Dubeux, J. C., and Silveira, M. L.:
Grassland management affects delivery of regulating and supporting ecosystem
services, Crop Sci., 59, 441–459, https://doi.org/10.2135/cropsci2018.09.0594,
2019. a
Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C.,
Ceschia, E., Clifton-Brown, J., Czobel, S., Domingues, R., Flechard, C.,
Fuhrer, J., Hensen, A., Horvath, L., Jones, M., Kasper, G., Martin, C., Nagy,
Z., Neftel, A., Raschi, A., Baronti, S., Rees, R. M., Skiba, U., Stefani, P.,
Manca, G., Sutton, M., Tuba, Z., and Valentini, R.: Full accounting of the
greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites, Agr. Ecosyst. Environ., 121, 121–134,
https://doi.org/10.1016/j.agee.2006.12.022, 2007. a, b, c
Soussana, J. F., Tallec, T., and Blanfort, V.: Mitigating the greenhouse gas
balance of ruminant production systems through carbon sequestration in
grasslands, Animal, 4, 334–350, https://doi.org/10.1017/S1751731109990784, 2010. a
Thompson, R. L., Broquet, G., Gerbig, C., Koch, T., Lang, M., Monteil, G.,
Munassar, S., Nickless, A., Scholze, M., Ramonet, M., Karstens, U., Schaik,
E. v., Wu, Z., and Rödenbeck, C.: Changes in net ecosystem exchange over
Europe during the 2018 drought based on atmospheric observations,
Philos. T. R. Soc. B, 375, 20190512,
https://doi.org/10.1098/rstb.2019.0512, 2020. a
Ustin, S. L. and Middleton, E. M.: Current and near-term advances in Earth
observation for ecological applications, Ecol. Process., 10, 1,
https://doi.org/10.1186/s13717-020-00255-4, 2021. a
Vertès, F., Delaby, L., Klumpp, K., and Bloor, J.: C–N–P Uncoupling
in Grazed Grasslands and Environmental Implications of Management
Intensification, in: Agroecosystem Diversity, edited by: Lemaire, G., De Faccio Carvalho, P. C., Kronberg, S., and
Recous, S., Academic Press, 15–34,
https://doi.org/10.1016/b978-0-12-811050-8.00002-9, 2018. a, b
Vuichard, N., Ciais, P., Viovy, N., Calanca, P., and Soussana, J.-F.:
Estimating the greenhouse gas fluxes of European grasslands with a
process-based model: 2. Simulations at the continental level, Global
Biogeochem. Cy., 21, GB1005, https://doi.org/10.1029/2005GB002612, 2007. a
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R.,
Shiel, R. S., Wilby, A., and Bardgett, R. D.: Legacy effects of grassland
management on soil carbon to depth, Glob. Change Biol., 22, 2929–2938,
https://doi.org/10.1111/gcb.13246, 2016. a
Weiss, M. and Baret, F.: S2ToolBox Level products: LAI, FAPAR, FCOVER Version
1.1., Tech. rep., https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (last access: 10 August 2021), 2016. a
Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Shaver,
G. R., and Johnson, L. C.: Predicing Gross Primary Productivity in
Terrestrial Ecosystems, Ecol. Appl., 7, 882–894, 1997. a
Worrall, F. and Clay, G. D.: The impact of sheep grazing on the carbon balance
of a peatland, Sci. Total Environ., 438, 426–434,
https://doi.org/10.1016/j.scitotenv.2012.08.084, 2012. a
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., Arain, A.,
Blanken, P. D., Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen,
S., Dong, J., Flanagan, L. B., Frankenberg, C., Georgiadis, T., Gough, C. M.,
Hui, D., Kiely, G., Li, J., Lund, M., Magliulo, V., Marcolla, B., Merbold,
L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, S., Raschi, A.,
Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A.,
Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., and Luo, Y.:
Joint control of terrestrial gross primary productivity by plant phenology
and physiology, P. Natl. Acad. Sci. USA, 112,
2788–2793, https://doi.org/10.1073/pnas.1413090112, 2015. a, b
Yu, R., Evans, A. J., and Malleson, N.: Quantifying grazing patterns using a
new growth function based on MODIS Leaf Area Index, Remote Sens.
Environ., 209, 181–194, https://doi.org/10.1016/j.rse.2018.02.034, 2018. a
Zeeman, M. J., Hiller, R., Gilgen, A. K., Michna, P., Plüss, P., Buchmann, N.,
and Eugster, W.: Management and climate impacts on net CO2 fluxes and carbon
budgets of three grasslands along an elevational gradient in Switzerland,
Agr. Forest Meteorol., 150, 519–530,
https://doi.org/10.1016/j.agrformet.2010.01.011, 2010. a, b
Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J.,
Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., and
Chen, M.: Optical vegetation indices for monitoring terrestrial ecosystems
globally, Nature Reviews Earth & Environment, 3, 477–493,
https://doi.org/10.1038/s43017-022-00298-5, 2022. a
Zhao, Y., Chen, X., Smallman, T. L., Flack-Prain, S., Milodowski, D. T., and
Williams, M.: Characterizing the Error and Bias of Remotely Sensed LAI
Products: An Example for Tropical and Subtropical Evergreen Forests in South
China, Remote Sens., 12, 3122, https://doi.org/10.3390/rs12193122, 2020. a, b
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
This study shows that livestock grazing and grass cutting can determine whether a grassland is...
Altmetrics
Final-revised paper
Preprint