Articles | Volume 10, issue 4
https://doi.org/10.5194/bg-10-2393-2013
https://doi.org/10.5194/bg-10-2393-2013
Research article
 | 
10 Apr 2013
Research article |  | 10 Apr 2013

Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools

O. Hararuk, D. Obrist, and Y. Luo

Related authors

Structural analysis of three global land models on carbon cycle simulations using a traceability framework
R. Rafique, J. Xia, O. Hararuk, and Y. Luo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-9979-2014,https://doi.org/10.5194/bgd-11-9979-2014, 2014
Revised manuscript not accepted

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Aastrup, M., Johnson, J., Bringmark, E., Bringmark, I., and Iverfeldt, A.: Occurence and transport of mercury within a small catchment area, Water Air Soil Pollut., 56, 155–167, https://doi.org/10.1007/BF00342269, 1991.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., and Kahl, J. A.: The Effect of Fire on Mercury Cycling in the Soils of Forested Watersheds: Acadia National Park, Maine, U.S.A, Water Air Soil Pollut., 152, 315–331, https://doi.org/10.1023/B:WATE.0000015369.02804.15, 2004.
Andersson, A.: Mercury in soils, Elsevier, Amsterdam, 79–112, 1979.
Artaxo, P., Calixto de Campos, R., Fernandes, E. T., Martins, J. V., Xiao, Z., Lindqvist, O., Fernández-Jiménez, M. T., and Maenhaut, W.: Large scale mercury and trace element measurements in the Amazon basin, Atmos. Environ., 34, 4085–4096, https://doi.org/10.1016/S1352-2310(00)00106-0, 2000.
Download
Altmetrics
Final-revised paper
Preprint