Articles | Volume 10, issue 4
https://doi.org/10.5194/bg-10-2393-2013
https://doi.org/10.5194/bg-10-2393-2013
Research article
 | 
10 Apr 2013
Research article |  | 10 Apr 2013

Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools

O. Hararuk, D. Obrist, and Y. Luo

Related authors

Structural analysis of three global land models on carbon cycle simulations using a traceability framework
R. Rafique, J. Xia, O. Hararuk, and Y. Luo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-9979-2014,https://doi.org/10.5194/bgd-11-9979-2014, 2014
Revised manuscript not accepted

Related subject area

Biogeochemistry: Modelling, Terrestrial
Evaluation of long-term carbon dynamics in a drained forested peatland using the ForSAFE-Peat model
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, Patrik Vestin, and Salim Belyazid
Biogeosciences, 22, 2023–2047, https://doi.org/10.5194/bg-22-2023-2025,https://doi.org/10.5194/bg-22-2023-2025, 2025
Short summary
Technical note: A modified formulation of dynamic energy budget theory for faster computation of biological growth
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025,https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary

Cited articles

Aastrup, M., Johnson, J., Bringmark, E., Bringmark, I., and Iverfeldt, A.: Occurence and transport of mercury within a small catchment area, Water Air Soil Pollut., 56, 155–167, https://doi.org/10.1007/BF00342269, 1991.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., and Kahl, J. A.: The Effect of Fire on Mercury Cycling in the Soils of Forested Watersheds: Acadia National Park, Maine, U.S.A, Water Air Soil Pollut., 152, 315–331, https://doi.org/10.1023/B:WATE.0000015369.02804.15, 2004.
Andersson, A.: Mercury in soils, Elsevier, Amsterdam, 79–112, 1979.
Artaxo, P., Calixto de Campos, R., Fernandes, E. T., Martins, J. V., Xiao, Z., Lindqvist, O., Fernández-Jiménez, M. T., and Maenhaut, W.: Large scale mercury and trace element measurements in the Amazon basin, Atmos. Environ., 34, 4085–4096, https://doi.org/10.1016/S1352-2310(00)00106-0, 2000.
Download
Share
Altmetrics
Final-revised paper
Preprint