Articles | Volume 10, issue 7
https://doi.org/10.5194/bg-10-4937-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-4937-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland
J. H. Shim
Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS-J495, Los Alamos, NM 87545, USA
H. H. Powers
Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS-J495, Los Alamos, NM 87545, USA
C. W. Meyer
Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS-J495, Los Alamos, NM 87545, USA
Chair of Bioclimatology, Georg-August University of Göttingen, Göttingen, Germany
T. E. Dawson
Department of Integrative Biology, University of California, Berkeley, CA, USA
W. J. Riley
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
W. T. Pockman
Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
N. McDowell
Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS-J495, Los Alamos, NM 87545, USA
Related authors
No articles found.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
Jinyun Tang and William J. Riley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2282, https://doi.org/10.5194/egusphere-2024-2282, 2024
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. The new theory combines mass conservation law and chemical kinetics theory, and is computationally faster than the standard formulation of dynamic energy budget model. In simulating the growth of Thalassiosira weissfloggi in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-50, https://doi.org/10.5194/bg-2023-50, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon climate feedbacks. We used machine learning to develop and compare predictive relationships in observations and ESMs. We found different relationships between environmental factors and SOC stocks in observations and ESMs. SOC predictions in ESMs may be improved by representing the functional relationships of environmental controllers consistent with observations.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Jelka Braden-Behrens, Lukas Siebicke, and Alexander Knohl
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-398, https://doi.org/10.5194/bg-2020-398, 2020
Preprint withdrawn
Short summary
Short summary
We use directly measured isotopic compositions and isoforcing values in combination with meteorological data and PBL height information to gain a better understanding of the variability of the isotopic composition of H2Ov. We directly compare the measured changes in isotopic composition with isoforcing-related changes (driven by local evapotranspiration ET). We conclude that it is important to account for PBL height when interpreting isoforcing data.
Christian Markwitz, Alexander Knohl, and Lukas Siebicke
Biogeosciences, 17, 5183–5208, https://doi.org/10.5194/bg-17-5183-2020, https://doi.org/10.5194/bg-17-5183-2020, 2020
Short summary
Short summary
Agroforestry has been shown to alter the microclimate and to lead to higher carbon sequestration above ground and in the soil. In this study, we investigated the impact of agroforestry systems on system-scale evapotranspiration (ET) due to concerns about increased water losses to the atmosphere. Results showed small differences in annual sums of ET over agroforestry relative to monoculture systems, indicating that agroforestry in Germany can be a land use alternative to monoculture agriculture.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246, https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review
Christian Stiegler, Ana Meijide, Yuanchao Fan, Ashehad Ashween Ali, Tania June, and Alexander Knohl
Biogeosciences, 16, 2873–2890, https://doi.org/10.5194/bg-16-2873-2019, https://doi.org/10.5194/bg-16-2873-2019, 2019
Short summary
Short summary
We show the response of a commercial oil palm plantation in Indonesia to the extreme El Niño–Southern Oscillation (ENSO) event in 2015. Our measurements and model suggest that without human-induced forest fires and related smoke emissions, the observed negative impact on oil palm carbon dioxide greenhouse gas fluxes, carbon accumulation and yield due to ENSO-related drought would have been less pronounced. With respect to climate change we highlight the importance of fire prevention in the area.
Fushan Wang, Guangheng Ni, William J. Riley, Jinyun Tang, Dejun Zhu, and Ting Sun
Geosci. Model Dev., 12, 2119–2138, https://doi.org/10.5194/gmd-12-2119-2019, https://doi.org/10.5194/gmd-12-2119-2019, 2019
Short summary
Short summary
The current lake model in the Weather Research and Forecasting system was reported to be insufficient in simulating deep lakes and reservoirs. We thus revised the lake model by improving its spatial discretization scheme, surface property parameterization, diffusivity parameterization, and convection scheme. The revised model was evaluated at a deep reservoir in southwestern China and the results were in good agreement with measurements.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019, https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Short summary
Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition under changing climate. We estimated effects of climate forcing biases on carbon cycling at a thawing permafrost peatland in subarctic Sweden. Our results indicate that many climate reanalysis products are cold and wet biased in our study region, leading to erroneous active layer depth and carbon budget estimates. Future studies should recognize the effects of climate forcing uncertainty on carbon cycling.
Gautam Bisht, William J. Riley, Glenn E. Hammond, and David M. Lorenzetti
Geosci. Model Dev., 11, 4085–4102, https://doi.org/10.5194/gmd-11-4085-2018, https://doi.org/10.5194/gmd-11-4085-2018, 2018
Short summary
Short summary
Most existing global land surface models used to study impacts of climate change on water resources routinely use different models for near-surface unsaturated soil and the deeper groundwater table. We developed a model that uses a unified treatment of soil hydrologic processes throughout the entire soil column. Using a calibrated drainage parameter, the new model is able to correctly predict deep water table depth as reported in an observationally constrained global dataset.
Ashehad A. Ali, Yuanchao Fan, Marife D. Corre, Martyna M. Kotowska, Evelyn Hassler, Fernando E. Moyano, Christian Stiegler, Alexander Röll, Ana Meijide, Andre Ringeler, Christoph Leuschner, Tania June, Suria Tarigan, Holger Kreft, Dirk Hölscher, Chonggang Xu, Charles D. Koven, Rosie Fisher, Edzo Veldkamp, and Alexander Knohl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-236, https://doi.org/10.5194/gmd-2018-236, 2018
Revised manuscript not accepted
Short summary
Short summary
We used carbon-use and water-use related datasets of small-holder rubber plantations from Jambi province, Indonesia to develop and calibrate a rubber plant functional type for the Community Land Model (CLM-rubber). Increased sensitivity of stomata to soil water stress and enhanced respiration costs enabled the model to capture the magnitude of transpiration and leaf area index. Including temporal variations in leaf life span enabled the model to better capture the seasonality of leaf litterfall.
Xiyan Xu, William J. Riley, Charles D. Koven, and Gensuo Jia
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-257, https://doi.org/10.5194/bg-2018-257, 2018
Preprint withdrawn
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
Gautam Bisht, Maoyi Huang, Tian Zhou, Xingyuan Chen, Heng Dai, Glenn E. Hammond, William J. Riley, Janelle L. Downs, Ying Liu, and John M. Zachara
Geosci. Model Dev., 10, 4539–4562, https://doi.org/10.5194/gmd-10-4539-2017, https://doi.org/10.5194/gmd-10-4539-2017, 2017
Short summary
Short summary
A fully coupled three-dimensional surface and subsurface land model, CP v1.0, was developed to simulate three-way interactions among river water, groundwater, and land surface processes. The coupled model can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.
Jelka Braden-Behrens, Yuan Yan, and Alexander Knohl
Atmos. Meas. Tech., 10, 4537–4560, https://doi.org/10.5194/amt-10-4537-2017, https://doi.org/10.5194/amt-10-4537-2017, 2017
Short summary
Short summary
Here we present the instrument characteristics and field applicability of
the newly developed Delta Ray analyzer for stable isotope measurements
in CO2. We used this analyzer to measure the concentration and the
isotopic composition of CO2 exchange in a managed beech forest for 3
months in autumn 2015. During this period an early frost event occurred
and our measurements suggest that this short event strongly influenced
the measured isotopic composition of CO2 exchange.
Clifton R. Sabajo, Guerric le Maire, Tania June, Ana Meijide, Olivier Roupsard, and Alexander Knohl
Biogeosciences, 14, 4619–4635, https://doi.org/10.5194/bg-14-4619-2017, https://doi.org/10.5194/bg-14-4619-2017, 2017
Short summary
Short summary
From the analysis of MODIS and Landsat satellite data of the Jambi province in Indonesia, this first study on the effects of oil palm expansion on the surface temperature in Indonesia shows shows a local and regional warming effect caused by the expansion of oil palm plantations and other cash or tree crops between 2000 and 2015. The observed warming effects may affect ecosystem services, reduce water availabilty in the dry period and increase the vulnerability to fires in the province.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Jin-Yun Tang and William J. Riley
Geosci. Model Dev., 10, 3277–3295, https://doi.org/10.5194/gmd-10-3277-2017, https://doi.org/10.5194/gmd-10-3277-2017, 2017
Short summary
Short summary
We proposed the SUPECA kinetics to scale from single biogeochemical reactions to a network of mixed substrates and consumers. The framework for the first time represents single-substrate reactions, two-substrate reactions, and mineral surface sorption reactions in a scaling consistent manner. This new theory is theoretically solid and outperforms existing theories, particularly for substrate-limiting systems. The test with aerobic soil respiration showed its strengths for pragmatic application.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
Xiaofeng Xu, Fengming Yuan, Paul J. Hanson, Stan D. Wullschleger, Peter E. Thornton, William J. Riley, Xia Song, David E. Graham, Changchun Song, and Hanqin Tian
Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, https://doi.org/10.5194/bg-13-3735-2016, 2016
Short summary
Short summary
Accurately projecting future climate change requires a good methane modeling. However, how good the current models are and what are the key improvements needed remain unclear. This paper reviews the 40 published methane models to characterize the strengths and weakness of current methane models and further lay out the roadmap for future model improvements.
Jinyun Tang and William J. Riley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-233, https://doi.org/10.5194/bg-2016-233, 2016
Preprint retracted
A. Collalti, S. Marconi, A. Ibrom, C. Trotta, A. Anav, E. D'Andrea, G. Matteucci, L. Montagnani, B. Gielen, I. Mammarella, T. Grünwald, A. Knohl, F. Berninger, Y. Zhao, R. Valentini, and M. Santini
Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, https://doi.org/10.5194/gmd-9-479-2016, 2016
Short summary
Short summary
This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites, with the exception of the two Mediterranean sites. Inclusion of forest structure within simulation ameliorate in some cases the model output.
J. Y. Tang and W. J. Riley
Biogeosciences, 13, 723–735, https://doi.org/10.5194/bg-13-723-2016, https://doi.org/10.5194/bg-13-723-2016, 2016
Short summary
Short summary
We present a generic flux-limiting approach to simultaneously handle the availability limitation from many substrates, a problem common in all biogeochemical models. Our approach does not have the ordering problem like a few existing ad hoc approaches, and is straightforward to implement. Our results imply that significant uncertainties could have occurred in many biogeochemical models because of the improper handling of the substrate co-limitation problem.
Q. Zhu, W. J. Riley, J. Tang, and C. D. Koven
Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016, https://doi.org/10.5194/bg-13-341-2016, 2016
Short summary
Short summary
Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers based on enzyme kinetics theory. Our model provides an ecologically consistent representation of nutrient competition appropriate for land biogeochemical models integrated in Earth system models.
Y. Fan, O. Roupsard, M. Bernoux, G. Le Maire, O. Panferov, M. M. Kotowska, and A. Knohl
Geosci. Model Dev., 8, 3785–3800, https://doi.org/10.5194/gmd-8-3785-2015, https://doi.org/10.5194/gmd-8-3785-2015, 2015
Short summary
Short summary
A perennial crop model CLM-Palm is developed, including multilayer structure, phenology, and carbon and nitrogen allocation functions, for modeling an important oil palm agricultural system in the tropical regions. Simulated LAI, yield and NPP were calibrated and validated with multiple sites in Sumatra, Indonesia. The new model allows exploring the effects of tropical land use change, from natural ecosystems to monoculture plantations on carbon, water and energy cycles and regional climate.
A. Olchev, A. Ibrom, O. Panferov, D. Gushchina, H. Kreilein, V. Popov, P. Propastin, T. June, A. Rauf, G. Gravenhorst, and A. Knohl
Biogeosciences, 12, 6655–6667, https://doi.org/10.5194/bg-12-6655-2015, https://doi.org/10.5194/bg-12-6655-2015, 2015
Short summary
Short summary
The time series analysis of the main meteorological parameters and components of CO2 and H2O fluxes showed a high evapotranspiration (ET) and gross primary production (GPP) sensitivity of the tropical rainforest to meteorological variations caused by El Niño-Southern Oscillation (ENSO) events. Incoming solar radiation is the main governing factor that is responsible for ET and GPP variability. Changes in precipitation due to moderate ENSO events did not have any notable effect on ET and GPP.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones
Biogeosciences, 12, 5211–5228, https://doi.org/10.5194/bg-12-5211-2015, https://doi.org/10.5194/bg-12-5211-2015, 2015
Short summary
Short summary
Terrestrial carbon feedbacks are a large uncertainty in climate change. We separate modeled feedback responses into those governed by changed carbon inputs (productivity) and changed outputs (turnover). The disaggregated responses show that both are important in controlling inter-model uncertainty. Interactions between productivity and turnover are also important, and research must focus on these interactions for more accurate projections of carbon cycle feedbacks.
U. Mishra and W. J. Riley
Biogeosciences, 12, 3993–4004, https://doi.org/10.5194/bg-12-3993-2015, https://doi.org/10.5194/bg-12-3993-2015, 2015
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
N. J. Bouskill, W. J. Riley, and J. Y. Tang
Biogeosciences, 11, 6969–6983, https://doi.org/10.5194/bg-11-6969-2014, https://doi.org/10.5194/bg-11-6969-2014, 2014
G. Bisht and W. J. Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12833-2014, https://doi.org/10.5194/hessd-11-12833-2014, 2014
Revised manuscript has not been submitted
G. S. H. Pau, G. Bisht, and W. J. Riley
Geosci. Model Dev., 7, 2091–2105, https://doi.org/10.5194/gmd-7-2091-2014, https://doi.org/10.5194/gmd-7-2091-2014, 2014
J. Y. Tang and W. J. Riley
Biogeosciences, 11, 3721–3728, https://doi.org/10.5194/bg-11-3721-2014, https://doi.org/10.5194/bg-11-3721-2014, 2014
W. J. Riley, F. Maggi, M. Kleber, M. S. Torn, J. Y. Tang, D. Dwivedi, and N. Guerry
Geosci. Model Dev., 7, 1335–1355, https://doi.org/10.5194/gmd-7-1335-2014, https://doi.org/10.5194/gmd-7-1335-2014, 2014
W. J. Riley and C. Shen
Hydrol. Earth Syst. Sci., 18, 2463–2483, https://doi.org/10.5194/hess-18-2463-2014, https://doi.org/10.5194/hess-18-2463-2014, 2014
J. Otto, D. Berveiller, F.-M. Bréon, N. Delpierre, G. Geppert, A. Granier, W. Jans, A. Knohl, A. Kuusk, B. Longdoz, E. Moors, M. Mund, B. Pinty, M.-J. Schelhaas, and S. Luyssaert
Biogeosciences, 11, 2411–2427, https://doi.org/10.5194/bg-11-2411-2014, https://doi.org/10.5194/bg-11-2411-2014, 2014
S. Burri, P. Sturm, U. E. Prechsl, A. Knohl, and N. Buchmann
Biogeosciences, 11, 961–975, https://doi.org/10.5194/bg-11-961-2014, https://doi.org/10.5194/bg-11-961-2014, 2014
I. N. Williams, W. J. Riley, M. S. Torn, S. C. Biraud, and M. L. Fischer
Atmos. Chem. Phys., 14, 1571–1585, https://doi.org/10.5194/acp-14-1571-2014, https://doi.org/10.5194/acp-14-1571-2014, 2014
Z. Shi, M. L. Thomey, W. Mowll, M. Litvak, N. A. Brunsell, S. L. Collins, W. T. Pockman, M. D. Smith, A. K. Knapp, and Y. Luo
Biogeosciences, 11, 621–633, https://doi.org/10.5194/bg-11-621-2014, https://doi.org/10.5194/bg-11-621-2014, 2014
J. Y. Tang and W. J. Riley
Biogeosciences, 10, 8329–8351, https://doi.org/10.5194/bg-10-8329-2013, https://doi.org/10.5194/bg-10-8329-2013, 2013
C. D. Koven, W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson
Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, https://doi.org/10.5194/bg-10-7109-2013, 2013
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-5475-2013, https://doi.org/10.5194/gmdd-6-5475-2013, 2013
Revised manuscript not accepted
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
S. C. Biraud, M. S. Torn, J. R. Smith, C. Sweeney, W. J. Riley, and P. P. Tans
Atmos. Meas. Tech., 6, 751–763, https://doi.org/10.5194/amt-6-751-2013, https://doi.org/10.5194/amt-6-751-2013, 2013
W. J. Riley
Geosci. Model Dev., 6, 345–352, https://doi.org/10.5194/gmd-6-345-2013, https://doi.org/10.5194/gmd-6-345-2013, 2013
J. Y. Tang and W. J. Riley
Hydrol. Earth Syst. Sci., 17, 873–893, https://doi.org/10.5194/hess-17-873-2013, https://doi.org/10.5194/hess-17-873-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin
Geosci. Model Dev., 6, 127–140, https://doi.org/10.5194/gmd-6-127-2013, https://doi.org/10.5194/gmd-6-127-2013, 2013
Related subject area
Biogeochemistry: Stable Isotopes & Other Tracers
Bias in calculating gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ17O) of stream nitrate
Position-specific kinetic isotope effects for nitrous oxide: a new expansion of the Rayleigh model
Technical note: A Bayesian mixing model to unravel isotopic data and quantify trace gas production and consumption pathways for time series data – Time-resolved FRactionation And Mixing Evaluation (TimeFRAME)
No increase is detected and modeled for the seasonal cycle amplitude of δ13C of atmospheric carbon dioxide
Separating above-canopy CO2 and O2 measurements into their atmospheric and biospheric signatures
How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon
Climatic controls on leaf wax hydrogen isotope ratios in terrestrial and marine sediments along a hyperarid-to-humid gradient
Fractionation of stable carbon isotopes during microbial propionate consumption in anoxic rice paddy soils
Sources and sinks of carbonyl sulfide inferred from tower and mobile atmospheric observations in the Netherlands
Downpour dynamics: outsized impacts of storm events on unprocessed atmospheric nitrate export in an urban watershed
The hidden role of dissolved organic carbon in the biogeochemical cycle of carbon in modern redox-stratified lakes
Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient
Partitioning of carbon export in the euphotic zone of the oligotrophic South China Sea
Determination of respiration and photosynthesis fractionation factors for atmospheric dioxygen inferred from a vegetation–soil–atmosphere analogue of the terrestrial biosphere in closed chambers
Permafrost degradation and nitrogen cycling in Arctic rivers: insights from stable nitrogen isotope studies
Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model
Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)
Mineralization of autochthonous particulate organic carbon is a fast channel of organic matter turnover in Germany's largest drinking water reservoir
Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
Tracing the source of nitrate in a forested stream showing elevated concentrations during storm events
Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates
Isotopic differences in soil–plant–atmosphere continuum composition and control factors of different vegetation zones on the northern slope of the Qilian Mountains
An analysis of the variability in δ13C in macroalgae from the Gulf of California: indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation
Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf
Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)
Hydrogen and carbon isotope fractionation factors of aerobic methane oxidation in deep-sea water
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
High-resolution 14C bomb peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab – a case study from Oman
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Seasonality of nitrogen sources, cycling, and loading in a New England river discerned from nitrate isotope ratios
Evaluating the response of δ13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ13C as an indicator of water use efficiency
Modern silicon dynamics of a small high-latitude subarctic lake
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Silicon uptake and isotope fractionation dynamics by crop species
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes
Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru
Do degree and rate of silicate weathering depend on plant productivity?
Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns
Ideas and perspectives: The same carbon behaves like different elements – an insight into position-specific isotope distributions
Seasonal dynamics of the COS and CO2 exchange of a managed temperate grassland
Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences, 21, 4717–4722, https://doi.org/10.5194/bg-21-4717-2024, https://doi.org/10.5194/bg-21-4717-2024, 2024
Short summary
Short summary
Past studies have used the Δ17O of stream nitrate to estimate the gross nitrification rates (GNRs) in each forested catchment by approximating the Δ17O value of soil nitrate to be equal to that of stream nitrate. Based on inference and calculation of measured data, we found that this approximation resulted in an overestimated GNR. Therefore, it is essential to clarify and verify the Δ17O NO3− values in forested soils and streams before applying the Δ17O values of stream NO3− to GNR estimation.
Elise D. Rivett, Wenjuan Ma, Nathaniel E. Ostrom, and Eric L. Hegg
Biogeosciences, 21, 4549–4567, https://doi.org/10.5194/bg-21-4549-2024, https://doi.org/10.5194/bg-21-4549-2024, 2024
Short summary
Short summary
Many different processes produce nitrous oxide (N2O), a potent greenhouse gas. Measuring the ratio of heavy and light nitrogen isotopes (15N/14N) for the non-exchangeable central and outer N atoms of N2O helps to distinguish sources of N2O. To accurately calculate the position-specific isotopic preference, we developed an expansion of the widely used Rayleigh model. Application of our new model to simulated and experimental data demonstrates its improved accuracy for analyzing N2O synthesis.
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024, https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Short summary
Greenhouse gases are produced and consumed via a number of pathways. Quantifying these pathways helps reduce the climate and environmental footprint of anthropogenic activities. The contribution of the pathways can be estimated from the isotopic composition, which acts as a fingerprint for these pathways. We have developed the Time-resolved FRactionation And Mixing Evaluation (TimeFRAME) model to simplify interpretation and estimate the contribution of different pathways and their uncertainty.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972, https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency to grow proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Ralf Conrad and Peter Claus
Biogeosciences, 20, 3625–3635, https://doi.org/10.5194/bg-20-3625-2023, https://doi.org/10.5194/bg-20-3625-2023, 2023
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Propionate is an important intermediate. In the presence of sulfate, it was degraded by Syntrophobacter species via acetate to CO2. In the absence of sulfate, it was mainly consumed by Smithella and methanogenic archaeal species via butyrate and acetate to CH4. However, stable carbon isotope fractionation during the degradation process was quite small.
Alessandro Zanchetta, Linda M. J. Kooijmans, Steven van Heuven, Andrea Scifo, Hubertus A. Scheeren, Ivan Mammarella, Ute Karstens, Jin Ma, Maarten Krol, and Huilin Chen
Biogeosciences, 20, 3539–3553, https://doi.org/10.5194/bg-20-3539-2023, https://doi.org/10.5194/bg-20-3539-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) has been suggested as a tool to estimate carbon dioxide (CO2) uptake by plants during photosynthesis. However, understanding its sources and sinks is critical to preventing biases in this estimate. Combining observations and models, this study proves that regional sources occasionally influence the measurements at the 60 m tall Lutjewad tower (1 m a.s.l.; 53°24′ N, 6°21′ E) in the Netherlands. Moreover, it estimates nighttime COS fluxes to be −3.0 ± 2.6 pmol m−2 s−1.
Joel T. Bostic, David M. Nelson, and Keith N. Eshleman
Biogeosciences, 20, 2485–2498, https://doi.org/10.5194/bg-20-2485-2023, https://doi.org/10.5194/bg-20-2485-2023, 2023
Short summary
Short summary
Land-use changes can affect water quality. We used tracers of pollution sources and water flow paths to show that an urban watershed exports variable sources during storm events relative to a less developed watershed. Our results imply that changing precipitation patterns combined with increasing urbanization may alter sources of pollution in the future.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences, 20, 1047–1062, https://doi.org/10.5194/bg-20-1047-2023, https://doi.org/10.5194/bg-20-1047-2023, 2023
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice cores, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analogue of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the microorganism scale, and a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi
Biogeosciences, 19, 3247–3261, https://doi.org/10.5194/bg-19-3247-2022, https://doi.org/10.5194/bg-19-3247-2022, 2022
Short summary
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Yuwei Liu, Guofeng Zhu, Zhuanxia Zhang, Zhigang Sun, Leilei Yong, Liyuan Sang, Lei Wang, and Kailiang Zhao
Biogeosciences, 19, 877–889, https://doi.org/10.5194/bg-19-877-2022, https://doi.org/10.5194/bg-19-877-2022, 2022
Short summary
Short summary
We took the water cycle process of soil–plant–atmospheric precipitation as the research objective. In the water cycle of soil–plant–atmospheric precipitation, precipitation plays the main controlling role. The main source of replenishment for alpine meadow plants is precipitation and alpine meltwater; the main source of replenishment for forest plants is soil water; and the plants in the arid foothills mainly use groundwater.
Roberto Velázquez-Ochoa, María Julia Ochoa-Izaguirre, and Martín Federico Soto-Jiménez
Biogeosciences, 19, 1–27, https://doi.org/10.5194/bg-19-1-2022, https://doi.org/10.5194/bg-19-1-2022, 2022
Short summary
Short summary
Our research is the first approximation to understand the δ13C macroalgal variability in one of the most diverse marine ecosystems in the world, the Gulf of California. The life-form is the principal cause of δ13C macroalgal variability, mainly taxonomy. However, changes in habitat characteristics and environmental conditions also influence the δ13C macroalgal variability. The δ13C macroalgae is indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829, https://doi.org/10.5194/bg-18-805-2021, https://doi.org/10.5194/bg-18-805-2021, 2021
Short summary
Short summary
In this study, we demonstrated distinct nitrogen isotope effects for nitric oxide (NO) production from major microbial and chemical NO sources in an agricultural soil. These results highlight characteristic bond-forming and breaking mechanisms associated with microbial and chemical NO production and implicate that simultaneous isotopic analyses of NO and nitrous oxide (N2O) can lead to unprecedented insights into the sources and processes controlling NO and N2O emissions from agricultural soils.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653, https://doi.org/10.5194/bg-17-5639-2020, https://doi.org/10.5194/bg-17-5639-2020, 2020
Short summary
Short summary
Wetland forests in the southern USA are threatened by changing climate and human-induced pressures. We used tree ring widths and C isotopes as indicators of forest growth and physiological stress, respectively, and compared these to past climate data. We observed that vegetation growing in the drier patches is susceptible to stress, while vegetation growth and physiology in wetter patches is less sensitive to unfavorable environmental conditions, highlighting the importance of optimal wetness.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Florian Einsiedl, Anja Wunderlich, Mathieu Sebilo, Ömer K. Coskun, William D. Orsi, and Bernhard Mayer
Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, https://doi.org/10.5194/bg-17-5149-2020, 2020
Short summary
Short summary
Nitrate pollution of freshwaters and methane emissions into the atmosphere are crucial factors in deteriorating the quality of drinking water and in contributing to global climate change. Here, we report vertical concentration and stable isotope profiles of CH4, NO3-, NO2-, and NH4+ in the water column of Fohnsee (southern Bavaria, Germany) that may indicate linkages between nitrate-dependent anaerobic methane oxidation and the anaerobic oxidation of ammonium.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020, https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Short summary
Stable isotopes in tree-ring cellulose are tools for climatic reconstructions, but interpretation is challenging due to nonclimate trends. We analyzed the tree-age trends in tree-ring isotopes of deciduous larch and evergreen cembran pine. Samples covering the whole Holocene were collected at the tree line in the Alps. For cambial ages over 100 years, we prove the absence of age trends in δD, δ18O, and δ13C for both species. For lower cambial ages, trends differ for each isotope and species.
Yuyang He, Xiaobin Cao, and Huiming Bao
Biogeosciences, 17, 4785–4795, https://doi.org/10.5194/bg-17-4785-2020, https://doi.org/10.5194/bg-17-4785-2020, 2020
Short summary
Short summary
Different carbon sites in a large organic molecule have different isotope compositions. Different carbon sites may not have the chance to exchange isotopes at all. The lack of appreciation of this notion might be blamed for an unsettled debate on the thermodynamic state of an organism. Here we demonstrate using minerals, N2O, and acetic acid that the dearth of exchange among different carbon sites renders them as independent as if they were different elements in organic molecules.
Felix M. Spielmann, Albin Hammerle, Florian Kitz, Katharina Gerdel, and Georg Wohlfahrt
Biogeosciences, 17, 4281–4295, https://doi.org/10.5194/bg-17-4281-2020, https://doi.org/10.5194/bg-17-4281-2020, 2020
Short summary
Short summary
Carbonyl sulfide (COS) can be used as a proxy for plant photosynthesis on an ecosystem scale. However, the relationships between COS and CO2 fluxes and their dependence on daily to seasonal changes in environmental drivers are still poorly understood. We examined COS and CO2 ecosystem fluxes above an agriculturally used mountain grassland for 6 months. Harvesting of the grassland disturbed the otherwise stable COS-to-CO2 uptake ratio. We even found the canopy to release COS during those times.
Getachew Agmuas Adnew, Thijs L. Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, https://doi.org/10.5194/bg-17-3903-2020, 2020
Short summary
Short summary
We measured the effect of photosynthesis, the largest flux in the carbon cycle, on the triple oxygen isotope composition of atmospheric CO2 at the leaf level during gas exchange using three plant species. The main factors that limit the impact of land vegetation on the triple oxygen isotope composition of atmospheric CO2 are identified, characterized and discussed. The effect of photosynthesis on the isotopic composition of CO2 is commonly quantified as discrimination (ΔA).
Cited articles
Barbour, M. M., Cernusak, L. A., Whitehead, D., Griffin, K. L., Turnbull, M. H., Tissue, and D. T., and Farquhar, G. D.: Nocturnal stomatal conductance and implications for modeling δ18O of leaf-respired CO2 in temperate tree species, Funct. Plant Biol., 32, 1107–1121, 2005.
Bickford, C. P., McDowell, N. M., Erhardt, E. B., and Hanson, D. T.: High frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma, Plant Cell Environ., 32, 796–810, 2009.
Bickford, C. P., Hanson, D. T., and McDowell, N. G.: Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: results from a field study, J. Exp. Bot., 61, 3223–3233, 2010.
Birch, H. F.: Mineralization of plant nitrogen following alternative wet and dry conditions, Plant Soil, 20, 43–49,1964.
Bonan, G. B.: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, 150 pp., NCAR, Boulder, CO., 1996.
Bowling, D. R., McDowell, N. G., Bond B. J., Law, B. E., and Ehleringer, J. R.: 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit, Oecologia, 131, 113–124, 2002.
Bowling, D. R., McDowell, N. G., Welker, J. M., Bond, B. J., Law, B. E., and Ehleringer, J. R.: Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 1. Observations in forests along a precipitation transect in Oregon, USA, Global Biogeochem. Cy., 17, 1120, https://doi.org/10.1029/2003GB002081, 2003a.
Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange, Agr. Forest Meteorol., 118, 1–19, 2003b.
Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes, New Phytol., 178, 24–40, 2008.
Brenninkmeijer, C. A. M., Kraft, P., and Mook, W. G.: Oxygen isotope fractionation between CO2 and H2O, Isotope Geosciences, 1, 181–190, 1983.
Breshears, D. D., Myers, O. B., Johnson, S. R., Meyer, C. W., and Martens, S. N.: Differential use of spatially heterogeneous soil moisture by two semiarid woody species: Pinus edulis and Juniperus monosperma, J. Ecol., 85, 289–299, 1997.
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., and Meyer, C. W.: Regional vegetation die-off in response to global-change-type drought, P. Natl. Acad. Sci. USA, 102, 15144–15148, 2005.
Buenning, N., Noone, D. C., Riley, W. J., Still, C. J., and White, J. W. C.: Influences of the hydrological cycle on observed interannual variations in atmospheric CO18O, J. Geophys. Res.-Biogeo., 116, G04001, https://doi.org/10.1029/2010JG001576, 2011.
Buenning, N., Noone, D. C., Randerson, J. T., Riley, W. J., and Still, C. J.: The response of the 18O content of atmospheric CO2 to changes in environmental conditions, J. Geophys. Res.-Biogeo., in press, 2012.
Cappa, C. D., Hendricks, M. B., DePaolo, D. J., and Cohen, R. C.: Isotopic fractionation of water during evaporation, J. Geophys. Res.-Atmos., 108, 4525, https://doi.org/10.1029/2003JD003597, 2003.
Cernusak, L. A., Pate, J. S., and Farquhar, G. D.: Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions, Plant Cell Environ., 25, 893–907, 2002.
Cernusak, L. A., Wong, S. C., and Farquhar, G. D.: Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis, Funct. Plant Biol., 30, 1059–1070, 2003.
Cernusak, L. A., Farquhar, G. D., Wong, S. C., and Stuart-Williams, H.: Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark, Plant Physiol., 136, 3350–3363, 2004.
Coplen, T. B.: New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data, Geochim. Cosmochim. Ac., 60, 3359–3360, 1996.
Cuntz, M., Ciais, P., Hoffmann, G., and Knorr, W.: A comprehensive global three- dimensional model of δ18O in atmospheric CO2 1.Evaluation of surface fluxes, J. Geophys. Res., 108, 4527, https://doi.org/10.1029/2002JD003153, 2003a.
Cuntz, M., Ciais, P., Hoffmann, G., Allison, C.E., Francey, R.J., Knorr, W., Tans, P. P., White, J. W. C., and Levin, I.: A comprehensive global three-dimensional model of delta O18 in atmospheric CO2: 2. Mapping the atmospheric signal, J. Geophys. Res., 108, 4528, https://doi.org/10.1029/2002JD003154, 2003b.
Cuntz, M., Ogée, J., Farquhar, G. D., Peylin, P., and Cernusak, L. A.: Modelling advection and diffusion of water isotopologues in leaves, Plant Cell Environ., 30, 892–909, 2007.
Dawson, T. E. and Ehleringer J. R.: Streamside trees that do not use stream water, Nature, 350, 335–337, 1991.
Dawson, T. E., Burgess, S. S. O., Tu, K. P., Oliveira, R. S., Santiago, L. S., Fisher, J. B., Simonin, K. A., and Ambrose, A. R.: Nighttime transpiration in woody plants from contrasting ecosystems, Tree Physiol., 27, 561–575, 2007.
Ellis, A. W., Goodrich, G. B., and Garfin, G. M.: A hydroclimatic index for examining patterns of drought in the Colorado River Basin, Int. J. Climatol., 30, 236–255, 2010.
Farquhar, G. D. and Cernusak, L.A .: On the isotopic composition of leaf water in the non-steady state, Funct. Plant Biol., 32, 293–303, 2005.
Farquhar, G. D. and Lloyd J.: Carbon and oxygen isotope effects in the exchange of carbon dioxide between plants and the atmosphere, in: Stable Isotopes and Plant Carbon – Water Relations, edited by: Ehleringer, J. R., Hall, A. E. and Farquhar, G. D., 47–70, Academic Press, New York, USA, 1993.
Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P, and Ehleringer, J. R.: Vegetation effects on the isotope composition of oxygen in atmospheric CO2, Nature, 363, 493–443, 1993.
Ferrio, J. P., Cuntz, M., Offermann, C., Siegwolf, R., Saurer, M., and Gessler, A.: Effect of water availability on leaf water isotopic enrichment in beech seedlings shows limitations of current fractionation models, Plant Cell Environ., 32, 1285–1296, 2009.
Flanagan, L. B., Brooks, J. R., Varney, G. T., Berry, S. C., and Ehleringer, J. R.: Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems, Global Biogeochem. Cy., 10, 629–640, 1996.
Flanagan, L. B., Brooks, J. R., Varney, G. T., and Ehleringer, J. R.: Discrimination against C18}O^{16O during photosynthesis and the oxygen isotope ratio of respired CO2 in boreal forest ecosystems, Global Biogeochem. Cy., 11, 83–98, 1997.
Francey, R. J. and Tans, P. P.: Latitudinal variation in oxygen-18 of atmospheric CO2, Nature, 327, 495–497, 1987.
Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T., Malmström, C. M., Vitousek, P. M., Collatz, G. J., Sellers, P. J., Randall, D. A., Denning, A. S., Badeck, F., and John, J. : Carbon 13 exchanges between the atmosphere and biosphere, Global Biogeochem. Cy., 11, 5070–533, 1997.
Gillon, J. S. and Yakir, D.: Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis, Plant Cell Environ., 23, 903–915, 2000.
Granier, A.: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements, Tree Physiol., 3, 309–319, 1987.
Griffis, T. J., Lee, X., Baker, J. M., Sargent, S. D., and King, J. Y.: Feasibility of quantifying ecosystem-atmosphere C18}O^{16O exchange using laser spectroscopy and the flux-gradient method, Agr. Forest Meteorol., 135, 44–60, 2005.
Hamon, W. R.: Estimating potential evapotranspiration, Proceedings of the American Society of Civil Engineering, 871, 107–120, 1961.
Helliker, B. R., Roden, J. R., Cook, C., and Ehleringer, J. R.: A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor, Rapid Commun. Mass Sp., 16, 929–932, 2002
Henderson-Sellers, A., Fischer, M., Aleinov, I., McGuffie, K., Riley, W. J., Schmidt, G. A., Sturm, K., Yoshimura, K., and Irannejad, P.: Stable water isotope simulation by current land-surface schemes: Results of iPILPS Phase 1, Global Planet. Change, 51, 34–58, 2006.
Huxman, T. E., Wilcox, B. P., Breshears, D. D., Scott, R. L., Snyder, K. A., Small, E. E., Hultine, K., Pockman, W. T., and Jackson, R.B .: Ecohydrological implications of woody plant encroachment, Ecology, 86, 308–319, 2005.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334, 1958.
Lai, C.-T., Ehleringer, J. R., Tans, P. P., Wofsy, S., Urbanski, S., and Hollinger, D.: Estimating photosynthetic 13C discrimination in terrestrial CO2 exchange from canopy to regional scales, Global Biogeochem. Cy., 18, GB1041, https://doi.org/10.1029/2003GB002148, 2004.
Lai, C.-T., Riley, W., Owensby, C., Ham, J., Schauer, A., and Ehleringer, J. R.: Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2 in a tallgrass prairie: Measurements and modeling results from 3 years with contrasting water availability, J. Geophys. Res.-Atmos., 111, D08S06, https://doi.org/10.1029/2005JD006436, 2006.
Lajtha, K. and Barnes, F. J.: Carbon gain and water-use in pinyon pine–juniper woodlands of northern New Mexico – field versus phytotron chamber measurements, Tree Physiol., 9, 59–67, 1991.
Lee, X.$, $Smith, R., and Williams J.: Water vapor 18O/16O isotope ratio in surface air in New England, USA, Tellus, 58B, 293–304, 2006.
Lynch, J. A., Grimm, J. W., and Bowersox, V. C.: Trends in precipitation chemistry in the United States: A national perspective, 1980–1992, Atmos. Environ., 29, 1231–1246, https://doi.org/10.1016/1352-2310(94)00371-Q, 1995.
Mathieu, R. and Bariac, T.: An isotopic study (2H and 18O) of water movements in clayey soils under a semi-arid climate, Water Resour. Res., 32, 779–789, 1996.
McDowell, N. G., White, S., and Pockman, W. T.: Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains, Ecohydrology, 1, 193–204, 2008a.
McDowell, N. G., Baldocchi, D., Barbour, M., Bickford, C., Cuntz, M., Hanson, D., Knohl, A., Powers, H., Rahn, T., Randerson, J., Riley, W. J., Still, C., Tu, K., and Walcroft, A.: Understanding the Stable Isotope Composition of Biosphere-Atmosphere CO2 Exchange, Eos, 89, 94–95, 2008b.
McDowell, N. G., Bowling, D. R., Schauer, A., Irvine, J., Bond, B. J., Law, B. E., and Ehleringer, J. R.: Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance, Glob. Change Biol., 10, 1767–1784, 2004.
Miller, J. B. and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements at various scales, Tellus B, 55, 207–214, 2003.
Miller, J. B., Yakir, D., White, J. W. C., and Tans, P. P.: Measurement of 18O/16O in the soil-atmosphere CO2 flux, Global Biogeochem. Cy., 13, 761–774, 1999.
Newman, B. D. and Robinson, B. A.: The hydrogeology of Los Alamos National Laboratory: site history and overview of vadose zone and groundwater issues, Vadose Zone J., 4, 614–619, 2005.
Ogée, J., Peylin, P., Cuntz, M., Bariac, T., Brunet, Y., Berbigier, P., Richard, P., and Ciais, P.: Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with (CO2)-C13 and (COO)-O18 data, Global Biogeochem. Cy., 18, GB2019, https://doi.org/10.1029/2003GB002166, 2004.
Phillips, N. and Oren, R.: Intra- and inter-annual variation in transpiration of a pine forest in relation to environmental variability and canopy development, Ecol. Appl., 11, 385–396, 2001.
Powers, H. H., Hunt, J. E., Hanson, D. T., and McDowell, N. G.: A dynamic soil chamber system coupled with a tunable diode laser for online measurements of δ13C and δ18O of soil respired CO2, Rapid Commun. Mass Sp., 24, 243–253, 2010.
Rauscher, S. A., Giorgi, F., Diffenbaugh, N. S., and Seth, A.: Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century, Clim. Dynam., 31, 551–571, 2008.
Reynolds, J. F., Kemp, P. R., and Tenhunen, J. D.: Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis, Plant Ecol., 150, 145–159, 2000.
Reynolds, J. F., Kemp, P. R., Ogle, K., and Fernandez, R. J.: Modifying the `pulse-reserve' paradigm for deserts of North America: precipitation pulses, soil water, and plant responses, Oecologia, 141, 194–210, 2004.
Rich, P. M., Breshears, D. D., and White, A. B.: Phenology of mixed woody-herbaceous ecosystems following extreme events: net and differential responses, Ecology, 89, 342–352, 2008.
Riley, W. J.: A modeling study of the impact of the δ18O value of near-surface soil water on the δ18O value of the soil-surface CO2 flux, Geochim. Cosmochim. Ac., 69, 1939–1946. 2005.
Riley, W. J. and Still, C. J.: Constraints on the use of 18O in CO2 as a tracer to partition gross carbon fluxes, paper presented at American Geophysical Union, 10–14 December, San Francisco, CA, 2003.
Riley, W. J., Still, C. J., Torn, M. S., and Berry, J. A.: A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses, Global Biogeochem. Cy., 16, 1095–1109, 2002.
Roden, J. S. and Ehleringer, J. R.: Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions, Plant Physiol., 120, 1165–1173, 1999.
Rozanski, K. C., Sonntag, C., and Munnich, K. O.: Factors controlling stable isotope composition of European precipitation, Tellus, 34, 142–150, 1982.
Schaeffer, S. M., Miller, J. B., Vaughn, B. H., White, J. W. C., and Bowling, D. R.: Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air, Atmos. Chem. Phys., 8, 5263–5277, https://doi.org/10.5194/acp-8-5263-2008, 2008.
Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J.M., Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fischer, M.L., Flanagan, L.B., Grant, R., Gu, L.H., Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B.E., Li, L.H., Li, Z.P., Liu, S. G., Lokupitiya, E., Luo, Y. Q., Ma, S. Y., Margolis, H., Matamala, R., McCaughey, H., Monson, R. K., Oechel, W.C., Peng, C. H., Poulter, B., Price, D.T., Riciutto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J. F., Tian, H. Q., Tonitto, C., Verbeeck, H., and Verma, S. B.: A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis, J. Geophys. Res.-Biogeo., 115, G00H05, https://doi.org/10.1029/2009JG001229, 2010.
Seager, R., Ting,M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., and Naik, N.: Model Projections of an Imminent Transition to a more Arid Climate in Southwestern North America, Science, 316, 1181–1184, 2007.
Seibt, U., Wingate, L., Lloyd, J., and Berry, J. A.: Diurnally variable δ18O signatures of soil CO2 fluxes indicate carbonic anhydrase activity in a forest soil, J. Geophys. Res., 111, G04005, https://doi.org/10.1029/2006JG000177, 2006.
Sharp, Z. D.: Principles of Stable Isotope Geochemistry, Prentice Hall, 344 pp., 2005.
Shim, J. H., Powers, H. H., Meyer, C. W., Pockman, W. T., and McDowell, N. G.: The role of inter-annual, seasonal, and synoptic climate on the carbon isotope ratio of ecosystem respiration at a semi-arid woodland, Glob. Change Biol., 17, 2584–2600, https://doi.org/10.1111/j.1365-2486.2011.02454.x, 2011.
Still, C. J., Riley, W. J., Helliker, B. A., and Berry, J. A.: Simulation of ecosystem oxygen-18 CO2 isotope fluxes in a tallgrass prairie: Biological and physical controls, in: Stable Isotopes and Biosphere-Atmosphere Interactions, edited by: Flanagan, L. B., Ehleringer, J. R., and Pataki, D. E., Elsevier-Academic Press, 2005.
Still, C. J., Riley, W. J., Biraud, S. C., Noone, D. C., Buenning, N. H., Randerson, J. T., Torn, M. S., Welker, J., White, J. W. C., Vachon, R., Farquhar, G. D., and Berry, J. A.: Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exchanges, J. Geophys. Res.-Biogeo., 114, G01018, https://doi.org/10.1029/2007JG000675, 2009.
Tang, J. Y. and Zhuang, Q. L: Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics, J. Geophys. Res.-Biogeo., 113, G04010, https://doi.org/10.1029/2008jg000757, 2008.
Tans, P. P.: Oxygen isotopic equilibrium between carbon dioxide and water in soils, Tellus B, 50, 163–178, 1998.
Tans, P. P. and White, J. W. C.: In balance, with a little help from the plants, Science, 281, 183–184, 1998.
Walker, G. R., Hughes, M. W., Allison, G. B., and Barnes, C. J.: The movement of isotopes of water during evaporation from a bare soil surface, J. Hydrol., 97, 181–197, 1988.
Wang, X.-F. and Yakir, D.: Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species, Plant Cell Environ., 18, 1377–1385, 1995
Welker, J. M.: Isotopic (delta O18) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies, Hydrol. Process., 14, 1449–1464, 2000.
Welp, L. R., Randerson, J. T., and Liu, H. P.: Seasonal exchang of CO2 and δ18O-CO2 vaires with postfire succesion in boreal forest ecosystems, J. Geophys. Res., 111, G03007, https://doi.org/10.1029/2005JG000126, 2006.
Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., Francey, R. J., Allison, C. E., and Wahlen, M.: Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino, Nature, 477, 579–582, 2011.
Weltzin, J. F. and Tissue, D. T.: Resource pulses in arid environments – patterns of rain, patterns of life, New Phytol., 157, 171–173, 2003.
White, J. W. C. and Gedzelman, S. D.: The isotope composition of atmospheric water vapor and the concurrent meteorological conditions, J. Geophys. Res., 89, 4937–4939, https://doi.org/10.1029/JD089iD03p04937, 1984.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.: A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance, Agr. Forest Meteorol., 106, 153–168, 2001.
Wingate, L., Ogée, J., Cuntz, M., Genty, B., Reiter, I., Seibt, U., Yakir, D., Peylin, P., Miller, J., Burlett, R., Maseyk, K., Mencuccini, M., Pendall, E., Shim, J. H., Barbour, M., Hunt, J., Mortazavi, B., and Grace, J.: The impact of soil microorganisms on the global budget of delta O18 in atmospheric CO2, P. Natl. Acad. Sci. USA, 106, 22411–22415, https://doi.org/10.1073/pnas.0905210106, 2009.
Wingate, L., Ogée, J., Burlett, R., and Bosc, A.: Strong seasonal 18O disequilibrium between leaf and soil CO2 fluxes, Glob. Change Biol., 16, 3048–3064, https://doi.org/10.1111/j.1365-2486.2010.02186.x, 2010.
Yakir, D. and Wang, X.-F.: Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements, Nature, 380, 515–517, 1996.
Zobitz, J. M., Keener, J. P., Schnyder, H., and Bowling, D. R.: Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research, Agr. Forest Meteorol., 136, 56–75, 2006.
Altmetrics
Final-revised paper
Preprint