Articles | Volume 15, issue 22
https://doi.org/10.5194/bg-15-6909-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-6909-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leaf area index identified as a major source of variability in modeled CO2 fertilization
Qianyu Li
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084,
China
National Supercomputing Center in Wuxi, Wuxi 214000, China
College of Engineering, Mathematics and Physical Sciences, University
of Exeter, Exeter, EX4 4QF, UK
Xingjie Lu
Center for Ecosystem Science and Society (Ecoss), Northern Arizona
University, Flagstaff, AZ 86011, USA
Yingping Wang
CSIRO Oceans and Atmosphere, PMB #1, Aspendale, Victoria 3195,
Australia
Xin Huang
Center for Ecosystem Science and Society (Ecoss), Northern Arizona
University, Flagstaff, AZ 86011, USA
Peter M. Cox
College of Engineering, Mathematics and Physical Sciences, University
of Exeter, Exeter, EX4 4QF, UK
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084,
China
Center for Ecosystem Science and Society (Ecoss), Northern Arizona
University, Flagstaff, AZ 86011, USA
Related authors
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Joseph Clarke, Chris Huntingford, Paul David Longden Ritchie, Rebecca Varney, Mark Williamson, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2025-3703, https://doi.org/10.5194/egusphere-2025-3703, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
An increase in CO2 in the atmosphere warms the climate through the greenhouse effect, but also leads to uptake of CO2 by the land and ocean. However, the warming is also expected to suppress carbon uptake. If this suppression were strong enough, it could overwhelm the uptake of carbon, leading to a runaway feedback loop causing severe global warming. We find it is possible that this runaway could be relevant in complex climate models and even at the end of the last ice age.
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
Hydrol. Earth Syst. Sci., 29, 3119–3143, https://doi.org/10.5194/hess-29-3119-2025, https://doi.org/10.5194/hess-29-3119-2025, 2025
Short summary
Short summary
This study enhances irrigation modeling in the Common Land Model by capturing the full irrigation process, detailing water supplies from various sources, and enabling bidirectional coupling between water demand and supply. The proposed model accurately simulates irrigation water withdrawals, energy fluxes, river flow, and crop yields. It offers insights into irrigation-related climate impacts and water scarcity, contributing to sustainable water management and improved Earth system modeling.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Zhongwang Wei, Qingchen Xu, Fan Bai, Xionghui Xu, Zixin Wei, Wenzong Dong, Hongbin Liang, Nan Wei, Xingjie Lu, Lu Li, Shupeng Zhang, Hua Yuan, Laibo Liu, and Yongjiu Dai
EGUsphere, https://doi.org/10.5194/egusphere-2025-1380, https://doi.org/10.5194/egusphere-2025-1380, 2025
Short summary
Short summary
Land surface models are used for simulating earth's surface interacts with the atmosphere. As models grow more complex and detailed, researchers need better tools to evaluate their performance. OpenBench, a new software system that makes evaluation process more comprehensive and efficient. It stands out by incorporating various factors and working with data at any scale which enabling scientists to incorporate new types of models and measurements as our understanding of Earth’s systems evolves.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025, https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Short summary
Flux tower data are widely recognized as benchmarking data for land surface models, but insufficient emphasis on and deficiency in site attribute data limits their true value. We collect site-observed vegetation, soil, and topography data from various sources. The final dataset encompasses 90 sites globally, with relatively complete site attribute data and high-quality flux validation data. This work has provided more reliable site attribute data, benefiting land surface model development.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Paul David Longden Ritchie, Chris Huntingford, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2024-3023, https://doi.org/10.5194/egusphere-2024-3023, 2024
Short summary
Short summary
Climate Tipping Points are not instantaneous upon crossing critical thresholds in global warming, as is often assumed. Instead, it is possible to temporarily overshoot a threshold without causing tipping, provided the duration of the overshoot is short. In this Idea, we demonstrate that restricting the time over 1.5 °C would considerably reduce tipping point risks.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Mark S. Williamson, Peter M. Cox, Chris Huntingford, and Femke J. M. M. Nijsse
Earth Syst. Dynam., 15, 829–852, https://doi.org/10.5194/esd-15-829-2024, https://doi.org/10.5194/esd-15-829-2024, 2024
Short summary
Short summary
Emergent constraints on equilibrium climate sensitivity (ECS) have generally got statistically weaker in the latest set of state-of-the-art climate models (CMIP6) compared to past sets (CMIP5). We look at why this weakening happened for one particular study (Cox et al, 2018) and attribute it to an assumption made in the theory that when corrected for restores there is a stronger relationship between predictor and ECS.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024, https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Short summary
Soil carbon is the largest store of carbon on the land surface of Earth and is known to be particularly sensitive to climate change. Understanding this future response is vital to successfully meeting Paris Agreement targets, which rely heavily on carbon uptake by the land surface. In this study, the individual responses of soil carbon are quantified and compared amongst CMIP6 Earth system models used within the most recent IPCC report, and the role of soils in the land response is highlighted.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023, https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Short summary
Climate models are used to predict the impact of climate change. However, poorly constrained parameters used in the physics of the models mean that we simulate a large spread of possible future outcomes. We can use real-world observations to reduce the uncertainty of parameter values, but we do not have observations to reduce the spread of possible future outcomes directly. We present a method for translating the reduction in parameter uncertainty into a reduction in possible model projections.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022, https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Isobel M. Parry, Paul D. L. Ritchie, and Peter M. Cox
Earth Syst. Dynam., 13, 1667–1675, https://doi.org/10.5194/esd-13-1667-2022, https://doi.org/10.5194/esd-13-1667-2022, 2022
Short summary
Short summary
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback events are observed in the latest state-of-the-art global climate models under anthropogenic climate change. The detected dieback events would still cause severe consequences for local communities and ecosystems. This study suggests that 7 ± 5 % of the northern South America region would experience abrupt downward shifts in vegetation carbon for every degree of global warming past 1.5 °C.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Bettina K. Gier, Michael Buchwitz, Maximilian Reuter, Peter M. Cox, Pierre Friedlingstein, and Veronika Eyring
Biogeosciences, 17, 6115–6144, https://doi.org/10.5194/bg-17-6115-2020, https://doi.org/10.5194/bg-17-6115-2020, 2020
Short summary
Short summary
Models from Coupled Model Intercomparison Project (CMIP) phases 5 and 6 are compared to a satellite data product of column-averaged CO2 mole fractions (XCO2). The previously believed discrepancy of the negative trend in seasonal cycle amplitude in the satellite product, which is not seen in in situ data nor in the models, is attributed to a sampling characteristic. Furthermore, CMIP6 models are shown to have made progress in reproducing the observed XCO2 time series compared to CMIP5.
Arthur P. K. Argles, Jonathan R. Moore, Chris Huntingford, Andrew J. Wiltshire, Anna B. Harper, Chris D. Jones, and Peter M. Cox
Geosci. Model Dev., 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, https://doi.org/10.5194/gmd-13-4067-2020, 2020
Short summary
Short summary
The Robust Ecosystem Demography (RED) model simulates cohorts of vegetation through mass classes. RED establishes a framework for representing demographic changes through competition, growth, and mortality across the size distribution of a forest. The steady state of the model can be solved analytically, enabling initialization. When driven by mean growth rates from a land-surface model, RED is able to fit the observed global vegetation map, giving a map of implicit mortality rates.
Cited articles
Aerts, R. and Chapin, F. S.: The mineral nutrition of wild plants revisited:
A re-evaluation of processes and patterns, Adv. Ecol. Res., 30, 1–67, 2000.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A metaanalytic review of the responses
of photosynthesis, canopy properties and plant production to rising
CO2: Tansley review, New Phytol., 165, 351–372, 2004.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P. M.,
Jones, C. D., Jung, M., Myneni, R. B., and Zhu, Z.: Evaluating the land and
ocean components of the global carbon cycle in the CMIP5 earth system models,
J. Clim., 26, 6801–6843, 2013.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–Concentration
and Carbon–Climate Feedbacks in CMIP5 Earth System Models, J. Clim., 26,
5289–5314, 2013.
Averill, C. and Waring, B.: Nitrogen limitation of decomposition and decay:
How can it occur?, Glob. Change Biol., 24, 1417–1427, 2018.
Bacastow, R. and Keeling, C. D.: Atmospheric carbon dioxide and radiocarbon
in the natural carbon cycle: II. Changes from A. D. 1700 to 2070 as deduced
from a geochemical model, in: Carbon and the Biosphere, edited by: Woodwell,
G. M. and Pecan, E. V., CONF-720510, 10 National Technical Information
Service, Springfield, Va, 86–135, 1973.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,
Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N.,
Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C.
S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES),
model description Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bonan, G. B. and Levis, S.: Quantifying carbon-nitrogen feedbacks In the
Community Land Model (CLM4), Geophys. Res. Lett., 37, L07401,
https://doi.org/10.1029/2010GL042430, 2010.
Canadell, J. G., Pataki, D., Gifford, R., Houghton, R. A., Lou, Y., Raupach,
M. R., Smith, P., and Steffen, W.: Saturation of the terrestrial carbon sink,
in: Ecosystems in a Changing World, edited by: Canadell, J. G., Pataki, D.,
and Pitelka, L., The IGBP Series, Springer-Verlag, Berlin Heidelberg, 59–78,
2007a.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M.
J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O.,
Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land
Environment Simulator (JULES), model description – Part 2: Carbon fluxes and
vegetation dynamics, Geosci. Model Dev., 4, 701–722,
https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr. Forest
Meteorol., 54, 107–136, 1991.
Collatz, G., Ribas-Carbo, M., and Berry, J.: Coupled Photosynthesis-Stomatal
Conductance Model for Leaves of C4 Plants, Aust. J. Plant Physiol., 19,
519–538, 1992.
Coskun, D., Britto, D. T., and Kronzucker, H. J.: Nutrient constraints on
terrestrial carbon fixation: The role of nitrogen, J. Plant Physiol., 203,
95–109, 2016.
Cox, P. M.: Description of the TRIFFID Dynamic Global Vegetation Model
Hadley Centre, Met Office, Technical Note 24, 2001.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model, Nature, 408, 184–187, 2000.
Dai, Y., Dickinson, R. E., and Wang, Y. P.: A two-big-leaf model for canopy
temperature, photosynthesis, and stomatal conductance, J. Clim., 17,
2281–2299, 2004.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Wang, Y. P., Luo, Y. Q., Jain, A. K., El-Masri, B., Hickler, T., Warlind, D.,
Weng, E. S., Parton, W. J., Thornton, P. E., Wang, S. S., Prentice, I. C.,
Asao, S., Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren,
J. M., Oren, R., and Norby, R. J.: Where does the carbon go? A model–data
intercomparison of vegetation carbon allocation and turnover processes at two
temperate forest free-air CO2 enrichment sites, New Phytol., 203,
883–899, 2014.
De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C., and Terrer,
C.: Satellite based estimates underestimate the effect of CO2
fertilization on net primary productivity, Nat. Clim. Change, 6, 892–893,
2016.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet,
B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K.,
Parton, W. J., Shu, S., Wang, Y., Werner, C., Xia, J., Pendall, E., Morgan,
J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J., and
Norby, R. J.: Challenging terrestrial biosphere models with data from the
long-term multifactor Prairie Heating and CO2 Enrichment
experiment, Glob. Change Biol., 23, 3623–3645, 2017.
DeLucia, E. H., Moore, D. J., and Norby, R. J.: Contrasting responses of
forest ecosystems to rising atmospheric CO2: implications for the
global C cycle, Global Biogeochem. Cy., 19, 1–9, 2005.
DeLucia, E. H., Drake, J. E., Thomas, R. B., and Gonzalez-Meler, M.: Forest
carbon use efficiency: is respiration a constant fraction of gross primary
production?, Glob. Change Biol., 13, 1157–1167, 2007.
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: More efficient
plants: a consequence of rising atmospheric CO2?, Annu. Rev. Plant.
Biol., 48, 609–639, 1997.
Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G.,
and Ellsworth, D. S.: Canopy leaf area of a mature evergreen Eucalyptus
woodland does not respond to elevated atmospheric [CO2] but tracks
water availability, Glob. Change Biol., 22, 1666–1676, 2016.
Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E.,
Gher-lenda, A. N., and Tjoelker, M. G.: Elevated CO2 does not
increase eucalypt forest productivity on a low-phosphorus soil, Nat. Clim.
Change, 7, 279–282, 2017.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola,
J. M., and Morgan, V. I.: Natural and anthropogenic changes in atmospheric
CO2 over the last 1000 years from air in Antarctic ice and firn, J.
Geophys. Res.-Atmos., 101, 4115–4128, 1996.
Evans, J. R. and Farquhar, G. D.: Modeling canopy photosynthesis from the
biochemistry of the C3 chloroplast, in: Modeling Crop
Photosynthesis-from Biochemistry to Canopy, edited by: Boote, K. J. and
Loomis, R. S., Madison, WI, Crop Science Soc. Am., 19, 1–15, 1991.
Ewert, F.: Modelling plant responses to elevated CO2: how important
is leaf area index?, Ann. Bot., 93, 619–627, 2004.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species,
Planta, 149, 78–90, 1980.
Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Donnellan
Barraclough, A., and Hovenden, M. J.: Partitioning direct and indirect
effects reveals the response of water-limited ecosystems to elevated
CO2, P. Natl. Acad. Sci. USA, 113, 12757–12762, 2016.
Forzieri, G., Alkama, R., Miralles, D. G., and Cescatti, A.: Satellites
reveal contrasting responses of regional climate to the widespread greening
of Earth, Science, 356, 1180–1184, 2017.
Forzieri, G., Duveiller, G., Georgievski, G., Li, W., Robertson, E., Kautz,
M., Lawrence, P., Garcia San Martin, L., Anthoni, P., Ciais, P., Pongratz,
J., Sitch, S., Wiltshire, A., Arneth, A., and Cescatti, A.: Evaluating the
interplay between biophysical processes and leaf area changes in Land Surface
Models, J. Adv. Model. Earth Syst., 10, 1102–1126, 2018.
Friedlingstein, P.: Carbon cycle feedbacks and future climate change, Philos.
T. R. Soc. A, 373, 20140421, https://doi.org/10.1098/rsta.2014.0421, 2015.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W. Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate-carbon cycle feedback analysis: Results from the C4MIP model
intercomparison, J. Clim., 19, 3337–3353, 2006.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule,
P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana,
R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin,
P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., and Woodward,
F. I.: Carbon residence time dominates uncertainty in terrestrial vegetation
responses to future climate and atmospheric CO2, P. Natl. Acad.
Sci. USA, 111, 3280–3285, 2014.
Fung, I. Y., Doney, S. C., Lindsay, K., and John, J.: Evolution of carbon
sinks in a changing climate, P. Natl. Acad. Sci. USA, 102, 11201–11206,
2005.
Gielen, B., Calfapietra, C., Lukac, M., Wittig, V. E., De Angelis, P.,
Janssens, I. A., Moscatelli, M. C., Grego, S., Cotrufo, M. F., Godbold, D.
L., Hoosbeek, M. R., Long, S. P., Miglietta, F., Polle, A., Bernacchi, C.
J., Davey, P. A., Ceulemans, R., and Scarascia-Mugnozza, G. E.: Net carbon
storage in a poplar plantation (POPFACE) after three years of free-air
CO2 enrichment, Tree Physiol., 25, 1399–1408, 2005.
Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P.: Quantifying
carbon cycle feedbacks, J. Clim., 22, 5232–5250, 2009.
Hajima, T., Tachiiri, K., Ito, A., and Kawamiya, M.: Uncertainty of
Concentration–Terrestrial Carbon Feedback in Earth System Models*, J.
Clim., 27, 3425–3445, 2014.
Hamilton, J. G., DeLucia, E. H., George, K., Naidu, S. L., Finzi, A. C., and
Schlesinger, W. H.: Forest carbon balance under elevated
CO2, Oecologia, 131, 250–260, 2002.
Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C.
D., Sitch, S., Mercado, L. M., Groenendijk, M., Robertson, E., Kattge, J.,
Bönisch, G., Atkin, O. K., Bahn, M., Cornelissen, J., Niinemets, Ü.,
Onipchenko, V., Peñuelas, J., Poorter, L., Reich, P. B., Soudzilovskaia,
N. A., and Bodegom, P. V.: Improved representation of plant functional types
and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using
plant trait information, Geosci. Model Dev., 9, 2415–2440,
https://doi.org/10.5194/gmd-9-2415-2016, 2016.
Harrison, K., Broecker, W., and Bonani, G.: A strategy for estimating the
impact of CO2 fertilization on soil C storage, Global Biogeochem.
Cy., 7, 69–80, 1993.
Hasegawa, T., Li, T., Yin, X., Zhu, Y., Boote, K., Baker, J., Bregaglio, S.,
Buis, S., Confalonieri, R., and Fugice, J.: Causes of variation among rice
models in yield response to CO2 examined with Free-Air
CO2 Enrichment and growth chamber experiments, Sci. Rep.-UK, 7,
14858, https://doi.org/10.1038/s41598-017-13582-y, 2017.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, 2008.
Hu, S., Chapin III, F. S., Firestone, M. K., Field, C. B., and Chiariello, N.
R.: Nitrogen limitation of microbial decomposition in a grassland under
elevated CO2, Nature, 409, 188–191, 2001.
Hunt, H. W., Ingham, E. R., Coleman, D. C., Elliott, E. T., and Reid, C. P.
P.: Nitrogen limitation of production and decomposition in prairie, mountain
meadow, and pine forest, Ecology, 69, 1009–1016, 1988.
Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W.,
Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J. B., Hayes, D.,
Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J.,
Parazoo, N., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tian, H., Wang,
W., Zeng, N., and Zhao, F.: Uncertainty in the response of terrestrial carbon
sink to environmental drivers undermines carbon-climate feedback predictions,
Sci. Rep.-UK, 7, 4765, https://doi.org/10.1038/s41598-017-03818-2, 2017.
Hurrell, J. W., Holland, M., Gent, P., Ghan, S., Kay, J. E., Kushner, P.,
Lamarque, J.-F., Large, W., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long,
M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S.,
Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and
Marshall, S.: The community earth system model: a framework for collaborative
research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.
Iversen, C. M., Keller, J. K., Garten, C. T., and Norby, R. J.: Soil carbon
and nitrogen cycling and storage throughout the soil profile in a sweetgum
plantation after 11 years of CO2-enrichment, Glob. Change Biol.,
18, 1684–1697, 2012.
Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M., and Zhu, Z.:
Inconsistencies of interannual variability and trends in long-term satellite
leaf area index products, Glob. Change Biol., 23, 4133–4146, 2017.
Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K.,
Gerber, S., and Hasselmann, K.: Global warming feedbacks on terrestrial
carbon uptake under the IPCC emission scenarios, Global Biogeochem. Cy., 15,
891–907, 2001.
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic
capacity and its relationship to leaf nitrogen content for global-scale
terrestrial biosphere models, Glob. Change Biol., 15, 976–991, 2009.
Kowalczyk, E., Wang, Y., Law, R., Davies, H., McGregor, J., and Abramowitz,
G.: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in
climate models and as an offline model, CSIRO Marine and Atmospheric
Research Paper, 13, 1–37, 2006.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z.,
Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D.,
Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M.,
Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.:
Historical (1850–2000) gridded anthropogenic and biomass burning emissions
of reactive gases and aerosols: methodology and application, Atmos. Chem.
Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lamarque, J. F., Kyle, G. P., Meinshausen, M., Riahi, K., Smith, S. J., van
Vuuren, D. P., Conley, A. J., and Vitt, F.: Global and regional evolution of
short-lived radiatively-active gases and aerosols in the Representative
Concentration Pathways, Climate Change, 109, 191–212, 2011.
Leuning, R.: Modelling stomatal behaviour and photosynthesis of Eucalyptus
grandis, Funct. Plant Biol., 17, 159–175, 1990.
Leuzinger, S. and Körner, C.: Water savings in mature deciduous forest
trees under elevated CO2, Glob. Change Biol., 13, 2498–2508, 2007.
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Koerner, C.:
Do global change experiments overestimate impacts on terrestrial
ecosystems?, Trends Ecol. Evolut., 26, 236–241, 2011.
Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R.: Rising atmospheric
carbon dioxide: plants FACE the Future*, Annu. Rev. Plant Biol., 55,
591–628, 2004.
Long, S. P., Ainsworth, E. A., Leakey, A. D., Nösberger, J., and Ort, D.
R.: Food for thought: lower-than-expected crop yield stimulation with rising
CO2 concentrations, Science, 312, 1918–1921, 2006.
Luo, Y. and Mooney, H. A.: Stimulation of global photosynthetic carbon influx
by an increase in atmospheric carbon dioxide concentration, in: Carbon
Dioxide and Terrestrial Ecosystems, edited by: Koch, G. W. and Mooney, H. A.,
Academic Press, San Diego, 381–397, 1996.
Luo, Y., Field, C. B., and Mooney, H. A.: Predicting responses of
photosynthesis and root fraction to elevated [CO2] a: interactions
among carbon, nitrogen, and growth, Plant Cell Environ., 17, 1195–1204,
1994.
Luo, Y., Sims, D. A., Thomas, R. B., Tissue, D. T., and Ball, J. T.:
Sensitivity of leaf photosynthesis to CO2 concentration is an
invariant function for C3 plants: A test with experimental data and
global applications, Global Biogeochem. Cy., 10, 209–222, 1996.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U.,
Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw,
M. R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of
ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54,
731–739, 2004.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., ToddBrown, K. E. O., Torn, M., van Groenigen,
K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu,
X., and Zhou, T.: Toward more realistic projections of soil carbon dynamics
by Earth system models, Global Biogeochem. Cy., 30, 40–56, 2016.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2,
CH4 and N2O ice core records extended to 2000 years BP, Geophys.
Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL0, 2006.
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C.
R., Bergametti, G., Bond, T. C., Chen, Y., Cohen, D. D., Herut, B., Kubilay,
N., Losno, R., Luo, C., Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R.
L., and Tsukuda, S.: Global distribution of atmospheric phosphorus sources,
concentrations and deposition rates, and anthropogenic impacts, Global
Biogeochem. Cy., 22, GB4026, https://doi.org/10.1029/2008GB003240, 2008.
Mystakidis, S., Seneviratne, S. I., Gruber, N., and Davin, E. L.:
Hydrological and biogeochemical constraints on terrestrial carbon cycle
feedbacks, Environ. Res. Lett., 12, 014009,
https://doi.org/10.1088/1748-9326/12/1/014009, 2017.
Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., and
Bowman, W. D.: Variable effects of nitrogen additions on the stability and
turnover of soil carbon, Nature, 419, 915–917, 2002.
Norby, R. J., Sholtis, J. D., Gunderson, C. A., and Jawdy, S. S.: Leaf
dynamics of a deciduous forest canopy: no response to elevated CO2,
Oecologia, 136, 574–584, 2003.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P.,
King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De
Angelis, P., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M.,
Pregitzer, K. S., ScarasciaMugnozza, G. E., Schlesinger, W. H., and Oren, R.:
Forest response to elevated CO2 is conserved across a broad range
of productivity, P. Natl. Acad. Sci. USA, 102, 18052–18056, 2005.
Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C.
D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton,
P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.-F.,
Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M.,
Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of
version 4.5 of the Community Land Model (CLM), NCAR Technical Note
NCAR/TN-503+STR, Boulder, Colorado, 420 pp., 2013.
Pearcy, R. W. and Ehleringer, J.: Comparative ecophysiology of C3
and C4 plants, Plant Cell Environ., 7, 1–13, 1984.
Peng, J., Dan, L., and Huang, M.: Sensitivity of global and regional
terrestrial carbon storage to the direct CO2 effect and climate
change based on the CMIP5 model intercomparison, PloS one, 9, e95282,
https://doi.org/10.1371/journal.pone.0095282, 2014.
Polglase, P. J. and Wang, Y. P.: Potential CO2-enhanced carbon
storage by the terrestrial biosphere, Aust. J. Bot., 40, 641–656, 1992.
Qu, Y. and Zhuang, Q.: Modeling leaf area index in North America using a
process-based terrestrial ecosystem model, Ecosphere, 9,
https://doi.org/10.1002/ecs2.204, 2018.
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S.,
Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets,
Ü., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., and Zaehle,
S.: A roadmap for improving the representation of photosynthesis in earth
system models, New Phytol., 213, 22–42, 2016.
Schäfer, K. V. R., Oren, R., Ellsworth, D. S., Lai, C. T., Herrick, J.
D., Finzi, A. C., Richter, D. D., and Katul, G. G.: Exposure to an enriched
CO2 atmosphere alters carbon assimilation and allocation in a pine
forest ecosystem, Glob. Chang Biol., 9, 1378–1400, 2003.
Smith, W. K., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W.
R. L., Wieder, W. R., Liu, Y. Y., and Running, S. W.: Large divergence of
satellite and Earth system model estimates of global terrestrial
CO2 fertilization, Nat. Clim. Change, 6, 306–310, 2016.
Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser,
C. A., and Cronin, T. W.: Consequences of considering carbon–nitrogen
interactions on the feedbacks between climate and the terrestrial carbon
cycle, J. Clim., 21, 3776–3796, 2008.
Tachiiri, K., Ito, A., Hajima, T., Hargreaves, J. C., Annan, J. D., and
Kawamiya, M.: Nonlinearity of land carbon sensitivities in climate change
simulations, J. Meteor. Soc. Jpn., 90, 259–274, 2012.
Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., and Mahowald, N. M.:
Influence of carbon-nitrogen cycle coupling on land model response to
CO2 fertilization and climate variability, Global Biogeochem. Cy.,
21, GB4018, https://doi.org/10.1029/2006GB002868, 2007.
Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N.,
Randerson, J. T., Fung, I., Lamarque, J. F., Feddema, J. J., and Lee, Y. H.:
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results
from an atmosphere ocean general circulation model, Biogeosciences, 6,
2099–2120, https://doi.org/10.5194/bg-6-2099-2009, 2009.
Van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y., and Hungate, B. A.:
Faster decomposition under increased atmospheric CO2 limits soil C
storage, Science, 344, 508–509, 2014.
Van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra, F.
A., Heath, J., Nie, M., Pendall, E., Phillips, R. P., and Hungate, B. A.:
Faster turnover of new soil carbon inputs under increased atmospheric
CO2, Glob. Chang Biol., 23, 4420–4429, 2017.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.: Terrestrial
phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus
interactions, Ecol. Appl., 20, 5–15, 2010.
Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S.,
Asao, S., Dietze, M., Hickler, T., Huntingford, C., Iversen, C. M., Jain,
A., Lomas, M., Luo, Y., McCarthy, H., Parton, W. J., Prentice, I. C.,
Thornton, P. E., Wang, S., Wang, Y.-P., Warlind, D., Weng, E., Warren, J.
M., Woodward, F. I., Oren, R., and Norby, R. J.: Comprehensive ecosystem
model-data synthesis using multiple data sets at two temperate forest
free-air CO2 enrichment experiments: Model performance at ambient
CO2 concentration, J. Geophys. Res.-Biogeo., 119, 937–964, 2014.
Wang, Y. P. and Houlton, B. Z.: Nitrogen constraints on terrestrial carbon
uptake: Implications for the global carbon-climate feedback, Geophys. Res.
Lett., 36, L24403, https://doi.org/10.1029/2009GL041009, 2009.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and
phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7,
2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak,
B., van Gorsel, E., and Luhar, A.: Diagnosing errors in a land surface model
(CABLE) in the time and frequency domains, J. Geophys. Res.-Biogeo., 116,
G01034, https://doi.org/10.1029/2010JG001385, 2011.
Wang, Y. P., Lu, X. J., Wright, I. J., Dai, Y. J., Rayner, P. J., and Reich,
P. B.: Correlations among leaf traits provide a significant constraint on the
estimate of global gross primary production, Geophys. Res. Lett., 39,
https://doi.org/10.1029/2012GL05346, 2012.
Wong, S. C., Cowan, I. R., and Farquhar, G. D.: Stomatal conductance
correlates with photosynthetic capacity, Nature, 282, 424–426, 1979.
Wu, D., Ciais, P., Viovy, N., Knapp, A. K., Wilcox, K., Bahn, M., Smith, M.
D., Vicca, S., Fatichi, S., Zscheischler, J., He, Y., Li, X., Ito, A.,
Arneth, A., Harper, A., Ukkola, A., Paschalis, A., Poulter, B., Peng, C.,
Ricciuto, D., Reinthaler, D., Chen, G., Tian, H., Genet, H., Mao, J.,
Ingrisch, J., Nabel, J. E. S. M., Pongratz, J., Boysen, L. R., Kautz, M.,
Schmitt, M., Meir, P., Zhu, Q., Hasibeder, R., Sippel, S., Dangal, S. R. S.,
Sitch, S., Shi, X., Wang, Y., Luo, Y., Liu, Y., and Piao, S.: Asymmetric
responses of primary productivity to altered precipitation simulated by
ecosystem models across three long-term grassland sites, Biogeosciences, 15,
3421–3437, https://doi.org/10.5194/bg-15-3421-2018, 2018.
Zaehle, S., Friedlingstein, P., and Friend, A. D.: Terrestrial nitrogen
feedbacks may accelerate future climate change, Geophys. Res. Lett., 37,
L01401, https://doi.org/10.1029/2009GL041345, 2010.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A.,
Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek,
A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., and
Norby, R. J.: Evaluation of 11 terrestrial carbon-nitrogen cycle models
against observations from two temperate Free-Air CO2 Enrichment
studies, New Phytol., 202, 803–822, 2014.
Zeng, Z., Piao, S., Li, L. Z., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian,
X., Wood, E. F., and Friedlingstein, P.: Climate mitigation from vegetation
biophysical feedbacks during the past three decades, Nat. Clim. Change, 7,
432–436, 2017.
Zhang, Q., Wang, Y. P., Pitman, A. J., and Dai, Y. J.: Limitations of
nitrogen and phosphorous on the terrestrial carbon uptake in the 20th
century, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL049244, 2011.
Zhang, Q., Pitman, A. J., Wang, Y. P., Dai, Y. J., and Lawrence, P. J.: The
impact of nitrogen and phosphorous limitation on the estimated terrestrial
carbon balance and warming of land use change over the last 156 yr, Earth
Syst. Dynam., 4, 333–345, 2013.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, P., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, 2016.
Short summary
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to climate change. A better understanding of model mechanisms that govern terrestrial ecosystem responses to rising atmosphere [CO2] is needed. Our study for the first time shows that the expansion of leaf area under rising [CO2] is the most important response for the stimulation of land carbon accumulation by a land-surface model: CABLE. Processes related to leaf area should be better calibrated.
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to...
Altmetrics
Final-revised paper
Preprint