Articles | Volume 17, issue 19
Biogeosciences, 17, 4831–4852, 2020
https://doi.org/10.5194/bg-17-4831-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Ecological and biogeochemical functioning of the coastal upwelling...
Research article 12 Oct 2020
Research article | 12 Oct 2020
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru
Lennart Thomas Bach et al.
Related authors
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-6, https://doi.org/10.5194/bg-2021-6, 2021
Preprint under review for BG
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make Eastern Boundary upwelling systems hotspots of marine productivity. This leads to sub-surface oxygen-depletion and transformation of bio-available nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep-water upwelling. Denitrification was the dominant process and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Lennart Thomas Bach and Jan Taucher
Ocean Sci., 15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019, https://doi.org/10.5194/os-15-1159-2019, 2019
Short summary
Short summary
Diatoms are a group of phytoplankton species responsible for ~ 25 % of primary production on Earth. Ocean acidification (OA) could influence diatoms but the key question is if they become more or less important within marine food webs. We synthesize OA experiments with natural communities and found that diatoms are more likely to be positively than negatively affected by high CO2 and larger species may profit in particular. This has important implications for ecosystem services diatoms provide.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
Tim Boxhammer, Lennart T. Bach, Jan Czerny, and Ulf Riebesell
Biogeosciences, 13, 2849–2858, https://doi.org/10.5194/bg-13-2849-2016, https://doi.org/10.5194/bg-13-2849-2016, 2016
Anna-Karin Almén, Anu Vehmaa, Andreas Brutemark, Lennart Bach, Silke Lischka, Annegret Stuhr, Sara Furuhagen, Allanah Paul, J. Rafael Bermúdez, Ulf Riebesell, and Jonna Engström-Öst
Biogeosciences, 13, 1037–1048, https://doi.org/10.5194/bg-13-1037-2016, https://doi.org/10.5194/bg-13-1037-2016, 2016
Short summary
Short summary
We studied the effects of ocean acidification (OA) on the aquatic crustacean Eurytemora affinis and measured offspring production in relation to pH, chlorophyll, algae, fatty acids, and oxidative stress. No effects on offspring production or pH effects via food were found. E. affinis seems robust against OA on a physiological level and did probably not face acute pH stress in the treatments, as the species naturally face large pH fluctuations.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
L. T. Bach
Biogeosciences, 12, 4939–4951, https://doi.org/10.5194/bg-12-4939-2015, https://doi.org/10.5194/bg-12-4939-2015, 2015
Short summary
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Carolin R. Löscher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-494, https://doi.org/10.5194/bg-2020-494, 2021
Preprint under review for BG
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to even decrease further. Here, the importance of such a trend is used to explore what could happen to the BoB's low oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration, thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low oxygen areas.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-6, https://doi.org/10.5194/bg-2021-6, 2021
Preprint under review for BG
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make Eastern Boundary upwelling systems hotspots of marine productivity. This leads to sub-surface oxygen-depletion and transformation of bio-available nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep-water upwelling. Denitrification was the dominant process and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Nadia Burgoa, Francisco Machín, Ángel Rodríguez-Santana, Ángeles Marrero-Díaz, Xosé Antón Álvarez-Salgado, María Dolores Gelado-Caballero, and Javier Arístegui
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-98, https://doi.org/10.5194/os-2020-98, 2020
Preprint under review for OS
Short summary
Short summary
The circulation patterns in the confluence of the North Atlantic Subtropical and Tropical gyres delimited by the Cape Verde Frontal Zone (CVFZ) in summer 2017 were examined in this paper. Hydrology, O2 and inorganic nutrients data collected in a closed box embracing the CVFZ allowed estimating transports of water masses, O2 and inorganic nutrients for the first time. In summary, it is concluded that higher transports occurred at central waters were moderately affected by CVFZ.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-377, https://doi.org/10.5194/bg-2020-377, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The South Atlantic near 40 °S is one of the high productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-335, https://doi.org/10.5194/bg-2020-335, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C-cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification (OA). The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C-cycling and long-term C-storage.
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020, https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-65, https://doi.org/10.5194/os-2020-65, 2020
Revised manuscript accepted for OS
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and SW Atlantic Oceans. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plaussibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash less clear.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Nadia Burgoa, Francisco Machín, Ángeles Marrero-Díaz, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Javier Arístegui, and Carlos Manuel Duarte
Ocean Sci., 16, 483–511, https://doi.org/10.5194/os-16-483-2020, https://doi.org/10.5194/os-16-483-2020, 2020
Short summary
Short summary
The main objective of the study is to analyze the export of carbon to the open ocean from the rich waters of the upwelling system of North Africa. South of the Canary Islands, permanent upwelling interacts with other physical processes impacting the main biogeochemical processes. Taking advantage of data from two cruises combined with the outputs of models, important conclusions from the differences observed between seasons are obtained, largely related to changes in the CVFZ in this area.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-42, https://doi.org/10.5194/bg-2020-42, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper ocean trace metal cycling.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Lennart Thomas Bach and Jan Taucher
Ocean Sci., 15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019, https://doi.org/10.5194/os-15-1159-2019, 2019
Short summary
Short summary
Diatoms are a group of phytoplankton species responsible for ~ 25 % of primary production on Earth. Ocean acidification (OA) could influence diatoms but the key question is if they become more or less important within marine food webs. We synthesize OA experiments with natural communities and found that diatoms are more likely to be positively than negatively affected by high CO2 and larger species may profit in particular. This has important implications for ecosystem services diatoms provide.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Markus Franz, Christian Lieberum, Gesche Bock, and Rolf Karez
Earth Syst. Sci. Data, 11, 947–957, https://doi.org/10.5194/essd-11-947-2019, https://doi.org/10.5194/essd-11-947-2019, 2019
Short summary
Short summary
The water parameters in coastal zones are highly variable, making predictions about its dynamics difficult. However, in situ measurements performed in these habitats are still scarce. Therefore we designed a monitoring study to record the environmental conditions in shallow waters by using data loggers and the collection of water samples. The data reveal great variabilities of water parameters and could be used to support experimental and modeling approaches.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Qixing Ji, Mark A. Altabet, Hermann W. Bange, Michelle I. Graco, Xiao Ma, Damian L. Arévalo-Martínez, and Damian S. Grundle
Biogeosciences, 16, 2079–2093, https://doi.org/10.5194/bg-16-2079-2019, https://doi.org/10.5194/bg-16-2079-2019, 2019
Short summary
Short summary
A strong El Niño event occurred in the Peruvian coastal region in 2015–2016, during which higher sea surface temperatures co-occurred with significantly lower sea-to-air fluxes of nitrous oxide, an important greenhouse gas and ozone depletion agent. Stratified water column during El Niño retained a larger amount of nitrous oxide that was produced via multiple microbial pathways; and intense nitrous oxide effluxes could occur when normal upwelling is resumed after El Niño.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Christian Schlosser, Katrin Schmidt, Alfred Aquilina, William B. Homoky, Maxi Castrillejo, Rachel A. Mills, Matthew D. Patey, Sophie Fielding, Angus Atkinson, and Eric P. Achterberg
Biogeosciences, 15, 4973–4993, https://doi.org/10.5194/bg-15-4973-2018, https://doi.org/10.5194/bg-15-4973-2018, 2018
Short summary
Short summary
Iron (Fe) emanating from the South Georgia shelf system fuels large phytoplankton blooms downstream of the island. However, the actual supply mechanisms of Fe are unclear. We found that shelf-sediment-derived iron and iron released from Antarctic krill control the Fe distribution in the shelf waters around South Georgia. The majority of the Fe appears to be derived from recycling of Fe-enriched particles that are transported with the water masses into the bloom region.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Natasha A. Gafar and Kai G. Schulz
Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, https://doi.org/10.5194/bg-15-3541-2018, 2018
Short summary
Short summary
Emiliania huxleyi and Gephyrocapsa oceanica are the most prolific calcifying phytoplankton in today's oceans. We compare their sensitivity to combined anthropogenic stressors of temperature, light and CO2. For the future, we project a niche contraction for G. oceanica. Furthermore, there was good correlation of our new metric, the CaCO3 production potential, with satellite-derived concentrations in the modern ocean, indicating means of assessing overall coccolithophorid success in the future.
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018, https://doi.org/10.5194/bg-15-2393-2018, 2018
Short summary
Short summary
Absorption of carbon dioxide (CO2) realized by humans is decreasing the ocean pH (ocean acidification). Single-celled organisms (microbes) support the Antarctic ecosystem, yet little is known about their sensitivity to ocean acidification. This study shows a shift in a natural Antarctic microbial community, with CO2 levels exceeding 634 μatm changing the community composition and favouring small cells. This would have significant flow effects for Antarctic food webs and elemental cycles.
Stacy Deppeler, Katherina Petrou, Kai G. Schulz, Karen Westwood, Imojen Pearce, John McKinlay, and Andrew Davidson
Biogeosciences, 15, 209–231, https://doi.org/10.5194/bg-15-209-2018, https://doi.org/10.5194/bg-15-209-2018, 2018
Short summary
Short summary
We combined productivity and photophysiology measurements to investigate the effects of ocean acidification on a natural Antarctic marine microbial community. Our study identifies a threshold for CO2 tolerance in the phytoplankton community between 953 and 1140 μatm of CO2, above which productivity declines. Bacteria were tolerant to CO2 up to 1641 μatm. We identify physiological changes in the phytoplankton at high CO2 that allowed them to acclimate to the high CO2 treatment.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, https://doi.org/10.5194/bg-14-5377-2017, 2017
Short summary
Short summary
This study examined the combined effect of seawater warming and organic matter enrichment on coral reef sediment metabolism. Sediments under control conditions were net autotrophic and net calcifying. Warming shifted the sediment to net heterotrophy and net dissolution, while organic matter enrichment increased net production and net calcification. When combined, the effects of each treatment were counterbalanced and sediment metabolism did not significantly differ from control treatments.
Michelle I. Graco, Sara Purca, Boris Dewitte, Carmen G. Castro, Octavio Morón, Jesús Ledesma, Georgina Flores, and Dimitri Gutiérrez
Biogeosciences, 14, 4601–4617, https://doi.org/10.5194/bg-14-4601-2017, https://doi.org/10.5194/bg-14-4601-2017, 2017
Short summary
Short summary
The Peruvian coastal upwelling ecosystem is a natural laboratory to study climatic variability and climate change. We examined the variability in the OMZ in the last decades in connection with the equatorial Pacific strong 1997–1998 El Niño event and the influence of central Pacific El Niño events and enhanced equatorial Kelvin wave activity since 2000. The data reveal two contrasting regimes and a long-term trend corresponding to a deepening of the oxygen-deficient waters and warming.
Katharine J. Crawfurd, Santiago Alvarez-Fernandez, Kristina D. A. Mojica, Ulf Riebesell, and Corina P. D. Brussaard
Biogeosciences, 14, 3831–3849, https://doi.org/10.5194/bg-14-3831-2017, https://doi.org/10.5194/bg-14-3831-2017, 2017
Short summary
Short summary
Carbon dioxide (CO2) is increasing in the atmosphere and oceans. To simulate future conditions we manipulated CO2 concentrations of natural Baltic seawater in 55 m3 bags in situ. We saw increased growth rates and abundances of the smallest-sized eukaryotic phytoplankton and reduced abundances of other phytoplankton with increased CO2. Viral and bacterial abundances were also affected. This would lead to more carbon recycling in the surface water and affect marine food webs and the carbon cycle.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Hanieh T. Farid, Kai G. Schulz, and Andrew L. Rose
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-129, https://doi.org/10.5194/bg-2017-129, 2017
Manuscript not accepted for further review
Short summary
Short summary
This study provides new insights into: (a) how organic exudates from a marine cyanobacterium may influence iron speciation and bioavailability in the extracellular milieu; and (b) approaches for evaluating rate constants for Fe(II) oxidation in the presence of unknown organic ligands. Given that microorganisms play critical roles in biochemical cycling of trace metals in water systems, the findings are expected to improve nutrient uptake models and be of interest to broad range of readers.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Mitchell Call, Kai G. Schulz, Matheus C. Carvalho, Isaac R. Santos, and Damien T. Maher
Biogeosciences, 14, 1305–1313, https://doi.org/10.5194/bg-14-1305-2017, https://doi.org/10.5194/bg-14-1305-2017, 2017
Short summary
Short summary
The conventional method for determining dissolved inorganic carbon (DIC) and it carbon stable isotope ratio (δ13C–DIC) can be a laborious process which can limit sampling frequency. This paper presents a new approach to autonomously determine DIC & δ13C–DIC at high temporal resolution. The simple method requires no customised design. Instead it uses two commercially available instruments and achieved a sampling resolution of 16 mins with precision and accuracy comparable to conventional methods.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Enis Hrustić, Risto Lignell, Ulf Riebesell, and Tron Frede Thingstad
Biogeosciences, 14, 379–387, https://doi.org/10.5194/bg-14-379-2017, https://doi.org/10.5194/bg-14-379-2017, 2017
Short summary
Short summary
Phytoplankton in the ocean's stratified layer are limited by mineral nutrients, normally nitrogen, phosphorus, or iron. It is important to know not only which element is limiting, but also the surplus of the secondary limiting element. We explore here, in temperate mesotrophic waters, a bioassay based on alkaline phosphatase that provides information on both of these.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Rafael Bermúdez, Monika Winder, Annegret Stuhr, Anna-Karin Almén, Jonna Engström-Öst, and Ulf Riebesell
Biogeosciences, 13, 6625–6635, https://doi.org/10.5194/bg-13-6625-2016, https://doi.org/10.5194/bg-13-6625-2016, 2016
Short summary
Short summary
Increasing CO2 is changing seawater chemistry towards a lower pH, which affects marine organisms. We investigate the response of a brackish plankton community to a CO2 gradient in terms of structure and fatty acid composition. The structure was resilient to CO2 and did not diverge between treatments. FA was influenced by community structure, which was driven by silicate and phosphate. This suggests that CO2 effects are dampened in communities already experiencing high natural pCO2 fluctuation.
Anu Vehmaa, Anna-Karin Almén, Andreas Brutemark, Allanah Paul, Ulf Riebesell, Sara Furuhagen, and Jonna Engström-Öst
Biogeosciences, 13, 6171–6182, https://doi.org/10.5194/bg-13-6171-2016, https://doi.org/10.5194/bg-13-6171-2016, 2016
Short summary
Short summary
Ocean acidification is challenging phenotypic plasticity of individuals and populations. We studied phenotypic plasticity of the calanoid copepod Acartia bifilosa in the course of a pelagic, large-volume mesocosm study in the Baltic Sea. We found significant negative effects of ocean acidification on adult female copepod size and egg hatching success. Overall, these results indicate that A. bifilosa could be affected by projected near-future CO2 levels.
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Francesca Gallo, Kai G. Schulz, Eduardo B. Azevedo, João Madruga, and Joana Barcelos e Ramos
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-352, https://doi.org/10.5194/bg-2016-352, 2016
Revised manuscript not accepted
Short summary
Short summary
Global change driven by humans activities may affect phytoplankton, which are important primary producers. Assessing the combined effect of turbulence and ocean acidification on the species Asterionellopsis glacialis, we found that turbulence magnifies the acidification stress, with negative effects on their growth. In the natural environment, this might have consequences to phytoplankton community composition and production with feedbacks to climate.
Kristian Spilling, Allanah J. Paul, Niklas Virkkala, Tom Hastings, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Tim Boxhammer, Kai G. Schulz, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 13, 4707–4719, https://doi.org/10.5194/bg-13-4707-2016, https://doi.org/10.5194/bg-13-4707-2016, 2016
Short summary
Short summary
Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. We determined the plankton community composition and measured primary production, respiration rates and carbon export during an ocean acidification experiment. Our results suggest that increased CO2 reduced respiration and increased net carbon fixation at high CO2. This did not, however, translate into higher carbon export, and consequently did not work as a negative feedback mechanism for decreasing pH.
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Jessica Gier, Stefan Sommer, Carolin R. Löscher, Andrew W. Dale, Ruth A. Schmitz, and Tina Treude
Biogeosciences, 13, 4065–4080, https://doi.org/10.5194/bg-13-4065-2016, https://doi.org/10.5194/bg-13-4065-2016, 2016
Short summary
Short summary
Benthic nitrogen fixation and sulfate reduction were investigated in the Peruvian oxygen minimum zone. The data suggest a coupling of both activities to a large extent, but that also sulfide and organic matter availability are controlling the benthic diazotrophy in this area. The molecular analysis confirms the presence of heterotrophic diazotrophs. This work improves our understanding of N cycling in OMZ sediments and the understanding of N sources in the marine environment.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Anna Jansson, Silke Lischka, Tim Boxhammer, Kai G. Schulz, and Joanna Norkko
Biogeosciences, 13, 3377–3385, https://doi.org/10.5194/bg-13-3377-2016, https://doi.org/10.5194/bg-13-3377-2016, 2016
Short summary
Short summary
We studied the responses of larvae of Macoma balthica to a range of future CO2 scenarios using large mesocosms encompassing the entire pelagic community. We focused on the growth and settlement process of M. balthica when exposed to future CO2 levels, and found the size and time to settlement to increase along the CO2 gradient, suggesting a developmental delay. The strong impact of increasing CO2 on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Tim Boxhammer, Lennart T. Bach, Jan Czerny, and Ulf Riebesell
Biogeosciences, 13, 2849–2858, https://doi.org/10.5194/bg-13-2849-2016, https://doi.org/10.5194/bg-13-2849-2016, 2016
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
Anna-Karin Almén, Anu Vehmaa, Andreas Brutemark, Lennart Bach, Silke Lischka, Annegret Stuhr, Sara Furuhagen, Allanah Paul, J. Rafael Bermúdez, Ulf Riebesell, and Jonna Engström-Öst
Biogeosciences, 13, 1037–1048, https://doi.org/10.5194/bg-13-1037-2016, https://doi.org/10.5194/bg-13-1037-2016, 2016
Short summary
Short summary
We studied the effects of ocean acidification (OA) on the aquatic crustacean Eurytemora affinis and measured offspring production in relation to pH, chlorophyll, algae, fatty acids, and oxidative stress. No effects on offspring production or pH effects via food were found. E. affinis seems robust against OA on a physiological level and did probably not face acute pH stress in the treatments, as the species naturally face large pH fluctuations.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
A. N. Loginova, C. Borchard, J. Meyer, H. Hauss, R. Kiko, and A. Engel
Biogeosciences, 12, 6897–6914, https://doi.org/10.5194/bg-12-6897-2015, https://doi.org/10.5194/bg-12-6897-2015, 2015
M. N. Müller, J. Barcelos e Ramos, K. G. Schulz, U. Riebesell, J. Kaźmierczak, F. Gallo, L. Mackinder, Y. Li, P. N. Nesterenko, T. W. Trull, and G. M. Hallegraeff
Biogeosciences, 12, 6493–6501, https://doi.org/10.5194/bg-12-6493-2015, https://doi.org/10.5194/bg-12-6493-2015, 2015
Short summary
Short summary
The White Cliffs of Dover date back to the Cretaceous and are made up of microscopic chalky shells which were produced mainly by marine phytoplankton (coccolithophores). This is iconic proof for their success at times of relatively high seawater calcium concentrations and, as shown here, to be linked to their ability to precipitate calcium as chalk. The invention of calcification can thus be considered an evolutionary milestone allowing coccolithophores to thrive at times when others struggled.
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Short summary
Stoichiometry of macronutrients in the subtropical ocean is important to understand how biogeochemical cycles are coupled. We observed that elemental stoichiometry was much higher in the dissolved organic-matter pools than in the particulate organic matter pools. In addition ratios vary with depth due to changes in growth rates of specific phytoplankton groups, namely cyanobacteria. These data will improve biogeochemical models by placing observational constraints on these ratios.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
A. Engel, C. Borchard, A. Loginova, J. Meyer, H. Hauss, and R. Kiko
Biogeosciences, 12, 5647–5665, https://doi.org/10.5194/bg-12-5647-2015, https://doi.org/10.5194/bg-12-5647-2015, 2015
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
L. T. Bach
Biogeosciences, 12, 4939–4951, https://doi.org/10.5194/bg-12-4939-2015, https://doi.org/10.5194/bg-12-4939-2015, 2015
Short summary
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
M. P. Humphreys, E. P. Achterberg, A. M. Griffiths, A. McDonald, and A. J. Boyce
Earth Syst. Sci. Data, 7, 127–135, https://doi.org/10.5194/essd-7-127-2015, https://doi.org/10.5194/essd-7-127-2015, 2015
Short summary
Short summary
We present measurements of the stable carbon isotope composition of seawater dissolved inorganic carbon. The samples were collected during two research cruises in boreal summer 2012 in the northeastern Atlantic and Nordic Seas. The results can be used to investigate the marine carbon cycle, providing information about biological productivity and oceanic uptake of anthropogenic carbon dioxide.
J. Meyer and U. Riebesell
Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, https://doi.org/10.5194/bg-12-1671-2015, 2015
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. N. Müller, M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll
Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, https://doi.org/10.5194/bg-11-1065-2014, 2014
A. Silyakova, R. G. J. Bellerby, K. G. Schulz, J. Czerny, T. Tanaka, G. Nondal, U. Riebesell, A. Engel, T. De Lange, and A. Ludvig
Biogeosciences, 10, 4847–4859, https://doi.org/10.5194/bg-10-4847-2013, https://doi.org/10.5194/bg-10-4847-2013, 2013
J. Czerny, K. G. Schulz, T. Boxhammer, R. G. J. Bellerby, J. Büdenbender, A. Engel, S. A. Krug, A. Ludwig, K. Nachtigall, G. Nondal, B. Niehoff, A. Silyakova, and U. Riebesell
Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, https://doi.org/10.5194/bg-10-3109-2013, 2013
J. Czerny, K. G. Schulz, S. A. Krug, A. Ludwig, and U. Riebesell
Biogeosciences, 10, 1937–1941, https://doi.org/10.5194/bg-10-1937-2013, https://doi.org/10.5194/bg-10-1937-2013, 2013
U. Riebesell, J. Czerny, K. von Bröckel, T. Boxhammer, J. Büdenbender, M. Deckelnick, M. Fischer, D. Hoffmann, S. A. Krug, U. Lentz, A. Ludwig, R. Muche, and K. G. Schulz
Biogeosciences, 10, 1835–1847, https://doi.org/10.5194/bg-10-1835-2013, https://doi.org/10.5194/bg-10-1835-2013, 2013
N. Aberle, K. G. Schulz, A. Stuhr, A. M. Malzahn, A. Ludwig, and U. Riebesell
Biogeosciences, 10, 1471–1481, https://doi.org/10.5194/bg-10-1471-2013, https://doi.org/10.5194/bg-10-1471-2013, 2013
V. J. Bertics, C. R. Löscher, I. Salonen, A. W. Dale, J. Gier, R. A. Schmitz, and T. Treude
Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, https://doi.org/10.5194/bg-10-1243-2013, 2013
A. Engel, C. Borchard, J. Piontek, K. G. Schulz, U. Riebesell, and R. Bellerby
Biogeosciences, 10, 1291–1308, https://doi.org/10.5194/bg-10-1291-2013, https://doi.org/10.5194/bg-10-1291-2013, 2013
B. Niehoff, T. Schmithüsen, N. Knüppel, M. Daase, J. Czerny, and T. Boxhammer
Biogeosciences, 10, 1391–1406, https://doi.org/10.5194/bg-10-1391-2013, https://doi.org/10.5194/bg-10-1391-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
C. P. D. Brussaard, A. A. M. Noordeloos, H. Witte, M. C. J. Collenteur, K. Schulz, A. Ludwig, and U. Riebesell
Biogeosciences, 10, 719–731, https://doi.org/10.5194/bg-10-719-2013, https://doi.org/10.5194/bg-10-719-2013, 2013
A.-S. Roy, S. M. Gibbons, H. Schunck, S. Owens, J. G. Caporaso, M. Sperling, J. I. Nissimov, S. Romac, L. Bittner, M. Mühling, U. Riebesell, J. LaRoche, and J. A. Gilbert
Biogeosciences, 10, 555–566, https://doi.org/10.5194/bg-10-555-2013, https://doi.org/10.5194/bg-10-555-2013, 2013
T. Tanaka, S. Alliouane, R. G. B. Bellerby, J. Czerny, A. de Kluijver, U. Riebesell, K. G. Schulz, A. Silyakova, and J.-P. Gattuso
Biogeosciences, 10, 315–325, https://doi.org/10.5194/bg-10-315-2013, https://doi.org/10.5194/bg-10-315-2013, 2013
J. Piontek, C. Borchard, M. Sperling, K. G. Schulz, U. Riebesell, and A. Engel
Biogeosciences, 10, 297–314, https://doi.org/10.5194/bg-10-297-2013, https://doi.org/10.5194/bg-10-297-2013, 2013
K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, and U. Riebesell
Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, https://doi.org/10.5194/bg-10-161-2013, 2013
M. Sperling, J. Piontek, G. Gerdts, A. Wichels, H. Schunck, A.-S. Roy, J. La Roche, J. Gilbert, J. I. Nissimov, L. Bittner, S. Romac, U. Riebesell, and A. Engel
Biogeosciences, 10, 181–191, https://doi.org/10.5194/bg-10-181-2013, https://doi.org/10.5194/bg-10-181-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
The seasonal phases of an Arctic lagoon reveal the discontinuities of pH variability and CO2 flux at the air–sea interface
The northern European shelf as an increasing net sink for CO2
Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
Hypersaline tidal flats as important
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Organic carbon in surface sediments of the North Sea and Skagerrak
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record
Technical note: Measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument
The impact of intertidal areas on the carbonate system of the southern North Sea
Characterizing the origin of excess dissolved organic carbon in coastal seawater using stable carbon isotope and light absorption characteristics
Chemical characterization of Punta de Fuencaliente CO2 seeps system (La Palma Island, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification
A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska
Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay
An observation-based evaluation and ranking of historical Earth System Model simulations for regional downscaling in the northwest North Atlantic Ocean
Decoupling of ΔO2∕Ar and particulate organic carbon dynamics in nearshore surface ocean waters
Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary
Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea
Quantifying the contributions of riverine vs. oceanic nitrogen to hypoxia in the East China Sea
Macroalgal metabolism and lateral carbon flows can create significant carbon sinks
Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru
Acrylic acid and related dimethylated sulfur compounds in the Bohai and Yellow seas during summer and winter
Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria
Distribution and behaviour of dissolved selenium in tropical peatland-draining rivers and estuaries of Malaysia
Anomalies in the carbonate system of Red Sea coastal habitats
Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes
Major role of ammonia-oxidizing bacteria in N2O production in the Pearl River estuary
Long-term trends in pH in Japanese coastal seawater
Nitric oxide (NO) in the Bohai Sea and the Yellow Sea
Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows
Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave
Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone
Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off
Spring net community production and its coupling with the CO2 dynamics in the surface water of the northern Gulf of Mexico
Distribution, seasonality, and fluxes of dissolved organic matter in the Pearl River (Zhujiang) estuary, China
Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing
Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica
ENSO-driven fluctuations in oxygen supply and vertical extent of oxygen-poor waters in the oxygen minimum zone of the Eastern Tropical South Pacific
Patterns and drivers of dimethylsulfide concentration in the northeast subarctic Pacific across multiple spatial and temporal scales
Patterns of suspended particulate matter across the continental margin in the Canadian Beaufort Sea during summer
Reduced phosphorus loads from the Loire and Vilaine rivers were accompanied by increasing eutrophication in the Vilaine Bay (south Brittany, France)
Carbon cycling in the North American coastal ocean: a synthesis
Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment
Interannual variability in the summer dissolved organic matter inventory of the North Sea: implications for the continental shelf pump
Remineralization rate of terrestrial DOC as inferred from CO2 supersaturated coastal waters
Cale A. Miller, Christina Bonsell, Nathan D. McTigue, and Amanda L. Kelley
Biogeosciences, 18, 1203–1221, https://doi.org/10.5194/bg-18-1203-2021, https://doi.org/10.5194/bg-18-1203-2021, 2021
Short summary
Short summary
We report here the first year-long high-frequency pH data set for an Arctic lagoon that captures ice-free and ice-covered seasons. pH and salinity correlation varies by year as we observed positive correlation and independence. Photosynthesis is found to drive high pH values, and small changes in underwater solar radiation can result in rapid decreases in pH. We estimate that arctic lagoons may act as sources of CO2 to the atmosphere, potentially offsetting the Arctic Ocean's CO2 sink capacity.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Zhengchao Wu, Qian P. Li, Zaiming Ge, Bangqin Huang, and Chunming Dong
Biogeosciences, 18, 1049–1065, https://doi.org/10.5194/bg-18-1049-2021, https://doi.org/10.5194/bg-18-1049-2021, 2021
Short summary
Short summary
Seasonal hypoxia in the nearshore bottom waters frequently occurs in the Pearl River estuary. Aerobic respiration is the ultimate cause of local hypoxia. We found an elevated level of polyunsaturated aldehydes in the bottom water outside the estuary, which promoted the growth and metabolism of special groups of particle-attached bacteria and thus contributed to oxygen depletion in hypoxic waters. Our results may be important for understanding coastal hypoxia and its linkages to eutrophication.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Blue Carbonsystems: A case study from three ecosystems
Dylan R. Brown, Humberto Marrota, Roberta B. Peixoto, Alex Enrich-Prast, Glenda C. Barroso, Mario L. G. Soares, Wilson Machado, Alexander Pérez, Joseph M. Smoak, Luciana M. Sanders, Stephen Conrad, James Z. Sippo, Isaac R. Santos, Damien T. Maher, and Christian J. Sanders
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-426, https://doi.org/10.5194/bg-2020-426, 2020
Revised manuscript accepted for BG
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-352, https://doi.org/10.5194/bg-2020-352, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231 million tonnes of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-335, https://doi.org/10.5194/bg-2020-335, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C-cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification (OA). The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C-cycling and long-term C-storage.
James Z. Sippo, Isaac R. Santos, Christian J. Sanders, Patricia Gadd, Quan Hua, Catherine E. Lovelock, Nadia S. Santini, Scott G. Johnston, Yota Harada, Gloria Reithmeir, and Damien T. Maher
Biogeosciences, 17, 4707–4726, https://doi.org/10.5194/bg-17-4707-2020, https://doi.org/10.5194/bg-17-4707-2020, 2020
Short summary
Short summary
In 2015–2016, a massive mangrove dieback event occurred along ~1000 km of coastline in Australia. Multiple lines of evidence from climate data, wood and sediment samples suggest low water availability within the dead mangrove forest. Wood and sediments also reveal a large increase in iron concentrations in mangrove sediments during the dieback. This study supports the hypothesis that the forest dieback was associated with low water availability driven by a climate-change-related ENSO event.
Markus Huettel, Peter Berg, and Alireza Merikhi
Biogeosciences, 17, 4459–4476, https://doi.org/10.5194/bg-17-4459-2020, https://doi.org/10.5194/bg-17-4459-2020, 2020
Short summary
Short summary
Oxygen fluxes are a valued proxy for organic carbon production and mineralization at the seafloor. These fluxes can be measured non-invasively with the aquatic eddy covariance instrument, but the fast, fragile oxygen sensor it uses often causes questionable flux data. We developed a dual-O2-optode instrument and data evaluation method that allow improved flux measurements. Deployments over carbonate sands in the shallow shelf demonstrate that the instrument can produce reliable oxygen flux data.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-272, https://doi.org/10.5194/bg-2020-272, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is semi-enclosed by a dyke, was determined using combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties of colored dissolved organic matter (CDOM) in two different seasons (March 2017 and September 2018).
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-232, https://doi.org/10.5194/bg-2020-232, 2020
Revised manuscript accepted for BG
Short summary
Short summary
In this paper we describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma island. We explored over a year, finding points with lower levels of pH and alkalinity, high levels of carbon, and poorer levels of aragonite and calcite, both essential for calcifying species. Its seeps are a key feature for robust experimental designs, aimed to comprehend how life has persisted through past Eras or to predict the consequences of Ocean Acidification in marine realm.
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Short summary
Ocean acidification is the process by which the oceans are changing due to carbon dioxide emissions from human activities. Studying this process in the Arctic Ocean is essential as this ocean and its ecosystems are more vulnerable to the effects of acidification. Water chemistry measurements made in recent years show that waters in and around the Canadian Arctic Archipelago are considerably affected by this process and show dynamic conditions that might have an impact on local marine organisms.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Pierre St-Laurent, Marjorie A. M. Friedrichs, Raymond G. Najjar, Elizabeth H. Shadwick, Hanqin Tian, and Yuanzhi Yao
Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020, https://doi.org/10.5194/bg-17-3779-2020, 2020
Short summary
Short summary
Over the past century, estuaries have experienced global (atmospheric CO2 concentrations and temperature) and regional changes (river inputs, land use), but their relative impact remains poorly known. In the Chesapeake Bay, we find that global and regional changes have worked together to enhance how much atmospheric CO2 is taken up by the estuary. The increased uptake is roughly equally due to the global and regional changes, providing crucial perspective for managers of the bay's watershed.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-265, https://doi.org/10.5194/bg-2020-265, 2020
Revised manuscript accepted for BG
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the Northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Sarah Z. Rosengard, Robert W. Izett, William J. Burt, Nina Schuback, and Philippe D. Tortell
Biogeosciences, 17, 3277–3298, https://doi.org/10.5194/bg-17-3277-2020, https://doi.org/10.5194/bg-17-3277-2020, 2020
Short summary
Short summary
Net community production sets the maximum quantity of phytoplankton carbon available for the marine food web and longer-term storage in the deep ocean. We compared two approaches to estimate this critical variable from autonomous measurements of mixed-layer dissolved oxygen and particulate organic carbon, observing a significant discrepancy between estimates in an upwelling zone near the Oregon coast. We use this discrepancy to assess the fate of organic carbon produced in the mixed layer.
Taavi Liblik, Yijing Wu, Daidu Fan, and Dinghui Shang
Biogeosciences, 17, 2875–2895, https://doi.org/10.5194/bg-17-2875-2020, https://doi.org/10.5194/bg-17-2875-2020, 2020
Short summary
Short summary
Multiple factors have been accused of triggering coastal hypoxia off the Changjiang Estuary. In situ observations, remote sensing and numerical simulation data were used to study dissolved oxygen depletion in the area. Oxygen distributions can be explained by wind forcing and river discharge, as well as concurrent features in surface and deep layer circulation. If summer monsoon prevails, hypoxia more likely occurs in the north while hypoxia in the south appears if the summer monsoon is weaker.
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
Fabian Große, Katja Fennel, Haiyan Zhang, and Arnaud Laurent
Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, https://doi.org/10.5194/bg-17-2701-2020, 2020
Short summary
Short summary
In the East China Sea, hypoxia occurs frequently from spring to fall due to high primary production and subsequent decomposition of organic matter. Nitrogen inputs from the Changjiang and the open ocean have been suggested to contribute to hypoxia formation. We used a numerical modelling approach to quantify the relative contributions of these nitrogen sources. We found that the Changjiang dominates, which suggests that nitrogen management in the watershed would improve oxygen conditions.
Kenta Watanabe, Goro Yoshida, Masakazu Hori, Yu Umezawa, Hirotada Moki, and Tomohiro Kuwae
Biogeosciences, 17, 2425–2440, https://doi.org/10.5194/bg-17-2425-2020, https://doi.org/10.5194/bg-17-2425-2020, 2020
Short summary
Short summary
Macroalgal beds are among the vegetated coastal ecosystems that take up atmospheric CO2. We investigated the relationships between macroalgal metabolism and inorganic and organic carbon fluxes in a temperate macroalgal bed during the productive time of year. The macroalgal metabolism formed water with low CO2 and high dissolved organic carbon concentrations that was then exported offshore. This export process potentially enhances CO2 uptake in and around macroalgal beds.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Xi Wu, Pei-Feng Li, Hong-Hai Zhang, Mao-Xu Zhu, Chun-Ying Liu, and Gui-Peng Yang
Biogeosciences, 17, 1991–2008, https://doi.org/10.5194/bg-17-1991-2020, https://doi.org/10.5194/bg-17-1991-2020, 2020
Short summary
Short summary
Acrylic acid (AA) exhibited obvious spatial and temporal variations in the Bohai and Yellow seas. Strong biological production and abundant terrestrial inputs led to high AA in summer. Extremely high AA in sediments might result from the cleavage of intracellular DMSP and reduce bacterial metabolism. Degradation experiments of AA and DMSP proved other sources of AA and microbial consumption to be the key removal source. This study provided insightful information on the sulfur cycle these seas.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Yan Chang, Moritz Müller, Ying Wu, Shan Jiang, Wan Wan Cao, Jian Guo Qu, Jing Ling Ren, Xiao Na Wang, En Ming Rao, Xiao Lu Wang, Aazani Mujahid, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1133–1145, https://doi.org/10.5194/bg-17-1133-2020, https://doi.org/10.5194/bg-17-1133-2020, 2020
Short summary
Short summary
Selenium (Se) is an essential micronutrient for many organisms. Our knowledge of dissolved Se biogeochemical cycling in tropical estuaries is limited. We have found that dissolved organic Se (DOSe) was the major speciation in the peat-draining rivers and estuaries. The DOSe fractions may be associated with high molecular weight peatland-derived carbon compounds and may photodegrade to more bioavailable forms once transported to oligotrophic coastal water, where they may promote productivity.
Kimberlee Baldry, Vincent Saderne, Daniel C. McCorkle, James H. Churchill, Susana Agusti, and Carlos M. Duarte
Biogeosciences, 17, 423–439, https://doi.org/10.5194/bg-17-423-2020, https://doi.org/10.5194/bg-17-423-2020, 2020
Short summary
Short summary
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative to the open ocean. In this study we measure the carbonate system in the three habitats, to measure ecosystem-driven changes compared to offshore waters. We find (1) 70 % of seagrass meadows and mangrove forests show large ecosystem-driven changes, and (2) mangrove forests show strong and consistent trends over large scales, while seagrass meadows display more variability.
Shin-Ah Lee, Tae-Hoon Kim, and Guebuem Kim
Biogeosciences, 17, 135–144, https://doi.org/10.5194/bg-17-135-2020, https://doi.org/10.5194/bg-17-135-2020, 2020
Short summary
Short summary
We differentiate between sources of dissolved organic matter (DOM) (terrestrial, marine autochthonous production, and artificial island and seawater interaction) in coastal bay waters surrounded by large cities using multiple DOM tracers, including dissolved organic carbon (DOC) and nitrogen (DON), stable carbon isotopes, fluorescent DOM, and the DOC/DON ratio.
Li Ma, Hua Lin, Xiabing Xie, Minhan Dai, and Yao Zhang
Biogeosciences, 16, 4765–4781, https://doi.org/10.5194/bg-16-4765-2019, https://doi.org/10.5194/bg-16-4765-2019, 2019
Short summary
Short summary
The major microbial process producing N2O in estuarine ecosystems remains controversial. Combining the concentrations and isotopic compositions of N2O, distributions and transcript levels of ammonia-oxidizing bacterial and archaeal amoA and denitrifier nirS genes, and in situ incubation estimates of nitrification rates and N2O production rates, we clarified that ammonia-oxidizing bacteria contributed the major part in N2O production in the upper Pearl River estuary despite their low abundance.
Miho Ishizu, Yasumasa Miyazawa, Tomohiko Tsunoda, and Tsuneo Ono
Biogeosciences, 16, 4747–4763, https://doi.org/10.5194/bg-16-4747-2019, https://doi.org/10.5194/bg-16-4747-2019, 2019
Short summary
Short summary
Using water quality data collected at 289 monitoring sites as part of the Water Pollution Control Program, we evaluated the long-term trends of pH in Japanese coastal seawater at ambient temperature from 1978 to 2009. We found that the annual maximum pH, which generally represents the pH of surface waters in winter, had decreased at 75 % of the sites, but had increased at the remaining sites. The annual maximum pH decreased at an average rate of −0.0024 yr−1, with relatively large deviations.
Ye Tian, Chao Xue, Chun-Ying Liu, Gui-Peng Yang, Pei-Feng Li, Wei-Hua Feng, and Hermann W. Bange
Biogeosciences, 16, 4485–4496, https://doi.org/10.5194/bg-16-4485-2019, https://doi.org/10.5194/bg-16-4485-2019, 2019
Short summary
Short summary
Nitric oxide (NO) seems to be widespread, with different functions in the marine ecosystem, but we know little about it. Concentrations of NO were in a range from below the limit of detection to 616 pmol L−1 at the surface and 482 pmol L−1 at the bottom of the Bohai and Yellow seas. The study region was a source of atmospheric NO. Net NO sea-to-air fluxes were much lower than NO photoproduction rates, implying that the NO produced in the mixed layer was rapidly consumed before entering the air.
Bryce R. Van Dam, Christian Lopes, Christopher L. Osburn, and James W. Fourqurean
Biogeosciences, 16, 4411–4428, https://doi.org/10.5194/bg-16-4411-2019, https://doi.org/10.5194/bg-16-4411-2019, 2019
Short summary
Short summary
We report on direct measurements of net ecosystem productivity (NEP) and net ecosystem calcification (NEC) in a Florida Bay seagrass ecosystem. We found notable differences between our carbon-based NEP and similar determinations made using oxygen. Over the study period, both NEP and NEC were negative, revealing that these sites are net heterotrophic and have dissolved CaCO3. Our findings point to sediments maintaining negative NEP and NEC despite high seagrass above-ground primary production.
Elisabeth Deschaseaux, James O'Brien, Nachshon Siboni, Katherina Petrou, and Justin R. Seymour
Biogeosciences, 16, 4377–4391, https://doi.org/10.5194/bg-16-4377-2019, https://doi.org/10.5194/bg-16-4377-2019, 2019
Short summary
Short summary
Here we report that abrupt increases in temperature–simulating marine heatwaves might have the potential to shape the physiological state and biogenic sulfur production in microalgae involved in harmful algal blooms. Changes in physiology and biochemistry seem to trigger a shift in the bacteria community associated with these microalgae. Since microalgae and associated bacteria play an important role in climate regulation, this could have serious consequences for our future ocean and climate.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Johnna M. Holding, Stiig Markager, Thomas Juul-Pedersen, Maria L. Paulsen, Eva F. Møller, Lorenz Meire, and Mikael K. Sejr
Biogeosciences, 16, 3777–3792, https://doi.org/10.5194/bg-16-3777-2019, https://doi.org/10.5194/bg-16-3777-2019, 2019
Short summary
Short summary
Phytoplankton sustain important fisheries along the coast of Greenland. However, climate change is causing severe melting of the Greenland Ice Sheet, and continued melting has the potential to alter fjord ecosystems. We investigate how freshwater from the ice sheet is impacting the environment of one fjord in northeast Greenland, causing a low production of phytoplankton. This fjord may be a model for how some fjord ecosystems will be altered following increased melting and glacial retreat.
Zong-Pei Jiang, Wei-Jun Cai, John Lehrter, Baoshan Chen, Zhangxian Ouyang, Chengfeng Le, Brian J. Roberts, Najid Hussain, Michael K. Scaboo, Junxiao Zhang, and Yuanyuan Xu
Biogeosciences, 16, 3507–3525, https://doi.org/10.5194/bg-16-3507-2019, https://doi.org/10.5194/bg-16-3507-2019, 2019
Short summary
Short summary
The biological production and air–sea CO2 exchange in the surface water of the northern Gulf of Mexico during springtime were mainly controlled by the changes in the availability of light and nutrients during the river–ocean mixing process, with strong CO2 uptake occurring in the river plume regions. The slow air–sea CO2 exchange rate and buffering effect of the CO2 system may result in decoupling between biological production and CO2 flux.
Yang Li, Guisheng Song, Philippe Massicotte, Fangming Yang, Ruihuan Li, and Huixiang Xie
Biogeosciences, 16, 2751–2770, https://doi.org/10.5194/bg-16-2751-2019, https://doi.org/10.5194/bg-16-2751-2019, 2019
Short summary
Short summary
We surveyed the spatial and seasonal variations and estimated the seaward export of DOM in the of Pearl River estuary (PRE), China. The concentration of DOM in this estuary decreases from land to sea but the change in its chemical character is marginal. The concentration and export of DOM are the lowest among the world's major rivers. Yet DOM delivered from the PRE is protein-rich and can be readily used by microbes, thereby exerting a potentially important impact on the local marine ecosystem.
Bennet Juhls, Pier Paul Overduin, Jens Hölemann, Martin Hieronymi, Atsushi Matsuoka, Birgit Heim, and Jürgen Fischer
Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, https://doi.org/10.5194/bg-16-2693-2019, 2019
Short summary
Short summary
In this article, we present the variability and characteristics of dissolved organic matter at the fluvial–marine transition in the Laptev Sea from a unique dataset collected during 11 Arctic expeditions. We develop a new relationship between dissolved organic carbon (DOC) and coloured dissolved organic matter absorption, which is used to estimate surface water DOC concentration from space. We believe that our findings help current efforts to monitor ongoing changes in the Arctic carbon cycle.
Minkyoung Kim, Eun Jin Yang, Hyung Jeek Kim, Dongseon Kim, Tae-Wan Kim, Hyoung Sul La, SangHoon Lee, and Jeomshik Hwang
Biogeosciences, 16, 2683–2691, https://doi.org/10.5194/bg-16-2683-2019, https://doi.org/10.5194/bg-16-2683-2019, 2019
Short summary
Short summary
Unexpectedly, in sediment traps deployed in the Antarctic Amundsen Sea to catch small sinking particles in the water, large benthic invertebrates such as long and slender worms, baby sea urchins, and small scallops were found. We suggest three hypotheses: lifting of these animals by anchor ice formation and subsequent transport by ice rafting, spending their juvenile period in a habitat underneath the sea ice and subsequent falling, or their active use of the current as a means of dispersal.
Yonss Saranga José, Lothar Stramma, Sunke Schmidtko, and Andreas Oschlies
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-155, https://doi.org/10.5194/bg-2019-155, 2019
Revised manuscript accepted for BG
Short summary
Short summary
In situ observations along the Peruvian and Chilean coasts have exhibited variability in the water column oxygen concentration. This variability, which is attributed to the El Niño Southern Oscillation (ENSO), might have implication on the vertical extension of the Eastern Tropical South Pacific (ETSP) oxygen minimum zone. Here using a coupled physical-biogeochemical model, we provide new insights into how ENSO variability affects the vertical extension of the oxygen-poor waters of the ETSP.
Alysia E. Herr, Ronald P. Kiene, John W. H. Dacey, and Philippe D. Tortell
Biogeosciences, 16, 1729–1754, https://doi.org/10.5194/bg-16-1729-2019, https://doi.org/10.5194/bg-16-1729-2019, 2019
Short summary
Short summary
Dimethylsulfide (DMS) is an essential component of the global sulfur cycle and a major source of climate-influencing aerosols. We examine the drivers of DMS concentration gradients along the British Columbia shelf by comparing DMS measurements to environmental variables and biological rates. We further combine new and existing data sets to provide a new summertime DMS climatology for the northeast subarctic Pacific. Our results highlight the importance of phytoplankton taxonomy to DMS cycling.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Widya Ratmaya, Dominique Soudant, Jordy Salmon-Monviola, Martin Plus, Nathalie Cochennec-Laureau, Evelyne Goubert, Françoise Andrieux-Loyer, Laurent Barillé, and Philippe Souchu
Biogeosciences, 16, 1361–1380, https://doi.org/10.5194/bg-16-1361-2019, https://doi.org/10.5194/bg-16-1361-2019, 2019
Short summary
Short summary
This work reports the consequences of nutrient management strategy, an example from southwestern Europe focused mainly on P reduction. Upstream rivers reveal indices of recoveries following the significant diminution of P, while eutrophication continues to increase downstream, especially when N is the limiting factor. This long-term ecosystem-scale analysis provides more arguments for a dual-nutrient (N and P) management strategy to mitigate eutrophication along the freshwater–marine continuum.
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Sonia Michaud, Michel Starr, Alfonso Mucci, Gustavo Ferreyra, Michel Gosselin, Jean-Éric Tremblay, Martine Lizotte, and Gui-Peng Yang
Biogeosciences, 16, 1167–1185, https://doi.org/10.5194/bg-16-1167-2019, https://doi.org/10.5194/bg-16-1167-2019, 2019
Short summary
Short summary
We present rare data on the combined effects of acidification and warming on dimethylsulfide (DMS) during a mesocosm experiment. Our results show a reduction of DMS under elevated pCO2, but warming the mesocosms by 5 °C translated into a positive offset in concentrations of DMS over the whole range of pCO2 tested. Our results suggest that warming could mitigate the expected reduction in DMS production due to OA, even increasing the net DMS production, with possible repercussions for the climate.
Saisiri Chaichana, Tim Jickells, and Martin Johnson
Biogeosciences, 16, 1073–1096, https://doi.org/10.5194/bg-16-1073-2019, https://doi.org/10.5194/bg-16-1073-2019, 2019
Short summary
Short summary
Organic molecules dissolved in the waters of coastal seas (DOM) are a potentially important vector for carbon transport and storage in the open ocean. DOM carbon and nitrogen concentrations from two consecutive summers in the North Sea show a strong pattern of concentrations decreasing away from land. We also observe significant differences between the years in both the DOM concentration and C : N ratios, suggesting that carbon export from shelf seas might be mediated by organic matter cycling.
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Cited articles
Albert, A., Echevin, V., Lévy, M., and Aumont, O.: Impact of nearshore
wind stress curl on coastal circulation and primary productivity in the Peru
upwelling system, J. Geophys. Res.-Oceans, 115, 1–13,
https://doi.org/10.1029/2010JC006569, 2010.
Arístegui, J. and Harrison, W. G.: Decoupling of primary production and community respiration in the ocean: implications for regional carbon studies, Aquat. Microb. Ecol., 29, 199–209, 2002.
Ayón, P., Criales-Hernandez, M. I., Schwamborn, R., and Hirche, H. J.:
Zooplankton research off Peru: A review, Prog. Oceanogr., 79,
238–255, https://doi.org/10.1016/j.pocean.2008.10.020, 2008.
Bach, L. T., Paul, A., Boxhammer, T., von der Esch, E., Graco, M., Schulz, K. G., Achterberg, E. P., Aguayo, P., Arístegui Ruiz, J., Ayón, P., Banos, I., Bernales, A., Boegeholz, A. S., Chavez, F. P., Chen, S.-M., Doering, K., Filella, A., Fischer, M. A., Grasse, P., Haunost, M., Hennke, J., Hernandez-Hernandez, N., Hopwood, M., Igarza, M., Kalter, V., Kittu, L., Kohnert, P., Ledesma, J., Lieberum, C., Lischka, S., Löscher, C. R., Ludwig, A., Mendoza, U., Meyer, J., Meyer, J., Minutolo, F., Ortiz Cortes, J., Piiparinen, J., Sforna, C., Spilling, K., Sanchez, S., Spisla, C., Sswat, M., Zavala Moreira, M., and Riebesell, U.: KOSMOS 2017 Peru mesocosm study: overview data, PANGAEA, https://doi.org/10.1594/PANGAEA.923395, 2020.
Bach, L. T., Taucher, J., Boxhammer, T., Ludwig, A., Achterberg, E. P.,
Algueró-Muñiz, M., Anderson, L. G., Bellworthy, J., Büdenbender,
J., Czerny, J., Ericson, Y., Esposito, M., Fischer, M., Haunost, M.,
Hellemann, D., Horn, H. G., Hornick, T., Meyer, J., Sswat, M., Zark, M., and
Riebesell, U.: Influence of Ocean Acidification on a Natural
Winter-to-Summer Plankton Succession: First Insights from a Long-Term
Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations,
PLoS One, 11, e0159068, https://doi.org/10.1371/journal.pone.0159068, 2016a.
Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., and
Riebesell, U.: Influence of plankton community structure on the sinking
velocity of marine aggregates, Global Biogeochem. Cy., 30, 1199–1214,
https://doi.org/10.1002/2016GB005372, 2016b.
Bakun, A. and Weeks, S. J.: The marine ecosystem off Peru: What are the
secrets of its fishery productivity and what might its future hold?, Prog.
Oceanogr., 79, 290–299, https://doi.org/10.1016/j.pocean.2008.10.027, 2008.
Barlow, R. G., Cummings, D. G., and Gibb, S. W.: Improved resolution of mono-
and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton
extracts using reverse phase C-8 HPLC, Mar. Ecol. Prog. Ser., 161, 303–307,
https://doi.org/10.3354/meps161303, 1997.
Beranles, A., Sanchez, S., Bach, L. T., Graco, M., Ledesma, J., Chang, F., Franco, A., Walz, K., and Riebesell, U.: Succession of phytoplankton in response to a simulated upwelling event in the Northern Humboldt Current System, in preparation, 2020.
Boxhammer, T., Bach, L. T., Czerny, J., and Riebesell, U.: Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis, Biogeosciences, 13, 2849–2858, https://doi.org/10.5194/bg-13-2849-2016, 2016.
Boxhammer, T., Bach, L. T., Sswat, M., and Riebesell, U.: Orni-eutrophication
by Inca terns (Larosterna inca) during the KOSMOS study 2017 in the coastal
upwelling system off Peru, OceanRep, GEOMAR, https://doi.org/10.3289/ORNI_EUTROPHICATION, 2019.
Boyd, P. W. and Newton, P. P.: Does planktonic community structure determine
downward particulate organic carbon flux in different oceanic provinces?,
Deep-Sea Res. Pt. I, 46, 63–91, 1999.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal
waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
Browning, T. J., Rapp, I., Schlosser, C., Gledhill, M., Achterberg, E. P.,
Bracher, A., and Le Moigne, F. A. C.: Influence of Iron, Cobalt, and Vitamin
B12 Supply on Phytoplankton Growth in the Tropical East Pacific During the
2015 El Niño, Geophys. Res. Lett., 45, 6150–6159,
https://doi.org/10.1029/2018GL077972, 2018.
Bruland, K. W., Rue, E. L., Smith, G. J., and DiTullio, G. R.: Iron,
macronutrients and diatom blooms in the Peru upwelling regime: Brown and
blue waters of Peru, Mar. Chem., 93, 81–103,
https://doi.org/10.1016/j.marchem.2004.06.011, 2005.
Brzezinski, M. A.: The Si : C : N ratio of marine Diatoms - interspecific
variability and the effect of some environmental variables, J. Phycol., 21,
347–357, 1985.
Carr, M. E.: Estimation of potential productivity in Eastern Boundary
Currents using remote sensing, Deep-Sea Res. Pt. II,
49, 59–80, https://doi.org/10.1016/S0967-0645(01)00094-7, 2002.
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary Upwelling
Ecosystems, Prog. Oceanogr., 83, 80–96,
https://doi.org/10.1016/j.pocean.2009.07.032, 2009.
Chavez, F. P., Pennington, J. T., Castro, C. G., Ryan, J. P., Michisaki, R.
P., Schlining, B., Walz, P., Buck, K. R., McFadyen, A., and Collins, C. A.:
Biological and chemical consequences of the 1997-1998 El Niño in central
California waters, Prog. Oceanogr., 54, 205–232,
https://doi.org/10.1016/S0079-6611(02)00050-2, 2002.
Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., and Csirke, J.:
The northern Humboldt Current System: Brief history, present status and a
view towards the future, Prog. Oceanogr., 79, 95–105,
https://doi.org/10.1016/j.pocean.2008.10.012, 2008.
Chever, F., Rouxel, O. J., Croot, P. L., Ponzevera, E., Wuttig, K., and Auro,
M.: Total dissolvable and dissolved iron isotopes in the water column of the
Peru upwelling regime, Geochim. Cosmochim. Ac., 162, 66–82,
https://doi.org/10.1016/j.gca.2015.04.031, 2015.
Coverly, S., Kérouel, R., and Aminot, A.: A re-examination of matrix
effects in the segmented-flow analysis of nutrients in sea and estuarine
water, Anal. Chim. Acta, 712, 94–100, https://doi.org/10.1016/j.aca.2011.11.008, 2012.
Czerny, J., Schulz, K. G., Krug, S. A., Ludwig, A., and Riebesell, U.: Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms “KOSMOS”, Biogeosciences, 10, 1937–1941, https://doi.org/10.5194/bg-10-1937-2013, 2013.
Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P., and
Ulloa, O.: Primary production and community respiration in the Humboldt
Current System off Chile and associated oceanic areas, Mar. Ecol. Prog.
Ser., 197, 41–49, https://doi.org/10.3354/meps197041, 2000.
DiTullio, G. R., Geesey, M. E., Mancher, J. M., Alm, M. B., Riseman, S. F., and Bruland, K. W.: Influence of iron on algal community composition and
physiological status in the Peru upwelling system, Limnol. Oceanogr., 50,
1887–1907, https://doi.org/10.4319/lo.2005.50.6.1887, 2005.
Franz, J. M. S., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., and Riebesell,
U.: Dynamics and stoichiometry of nutrients and phytoplankton in waters
influenced by the oxygen minimum zone in the eastern tropical Pacific, Deep-Sea Res. Pt. I, 62, 20–31, https://doi.org/10.1016/j.dsr.2011.12.004,
2012a.
Franz, J. M. S., Hauss, H., Sommer, U., Dittmar, T., and Riebesell, U.: Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean, Biogeosciences, 9, 4629–4643, https://doi.org/10.5194/bg-9-4629-2012, 2012b.
García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R.,
Black, B. A., Smit, A. J., and Bograd, S. J.: Under Pressure: Climate Change,
Upwelling, and Eastern Boundary Upwelling Ecosystems, Front. Mar. Sci.,
2, 1–10, https://doi.org/10.3389/fmars.2015.00109, 2015.
Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El
Niño, Int. J. Climatol., 38, e1296–e1302,
https://doi.org/10.1002/joc.5426, 2018.
González, H. E., Daneri, G., Iriarte, J. L., Yannicelli, B., Menschel,
E., Barría, C., Pantoja, S., and Lizárraga, L.: Carbon fluxes within
the epipelagic zone of the Humboldt Current System off Chile: The
significance of euphausiids and diatoms as key functional groups for the
biological pump, Prog. Oceanogr., 83, 217–227,
https://doi.org/10.1016/j.pocean.2009.07.036, 2009.
Graco, M. I., Purca, S., Dewitte, B., Castro, C. G., Morón, O., Ledesma, J., Flores, G., and Gutiérrez, D.: The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system, Biogeosciences, 14, 4601–4617, https://doi.org/10.5194/bg-14-4601-2017, 2017.
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry
under global change, Philos. T. Roy. Soc. A-Mat., 369, 1980–1996, https://doi.org/10.1098/rsta.2011.0003, 2011.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in Methods of
Seawater Analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH, Weinheim, Germany,
159–226, 1999.
Holm-Hansen, O., Amos, A. F., and Hewes, C. D.: Reliability of estimating
chlorophyll a concentrations in Antarctic waters by measurement of in situ
chlorophyll a fluorescence, Mar. Ecol. Prog. Ser., 196, 103–110,
https://doi.org/10.3354/meps196103, 2000.
Hutchins, D. A., Hare, C. E., Weaver, R. S., Zhang, Y., Firme, G. F.,
DiTullio, G. R., Alm, M. B., Riseman, S. F., Maucher, J. M., Geesey, M. E.,
Trick, C. G., Smith, G. J., Rue, E. L., Conn, J., and Bruland, K. W.:
Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling,
Limnol. Oceanogr., 47, 997–1011, https://doi.org/10.4319/lo.2002.47.4.0997, 2002.
Igarza, M., Sanchez, S., Bernales, A., Gutierrez, D., Meyer, J., Riebesell,
U., Graco, M. I., Bach, L. T., Dittmar, T., and Niggemann, J.: Dissolved
organic matter production during an artificially-induced red tide off
central Peru, in preparation, 2020.
Jackson, G. A.: A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res. Pt. A, 37, 1197–1211, 1990.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kérouel, R. and Aminot, A.: Fluorometric determination of ammonia in sea
and estuarine waters by direct segmented flow analysis, Mar. Chem.,
57, 265–275, https://doi.org/10.1016/S0304-4203(97)00040-6, 1997.
Klausmeier, C. A., Litchman, E., Daufrense, T., and Levin, S. A.: Optimal
nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429,
171–174, https://doi.org/10.1038/nature02454, 2004.
Kudela, R. M., Seeyave, S., and Cochlan, W. P.: The role of nutrients in
regulation and promotion of harmful algal blooms in upwelling systems, Prog.
Oceanogr., 85, 122–135, https://doi.org/10.1016/j.pocean.2010.02.008, 2010.
Laws, E. A. and Maiti, K.: The relationship between primary production and
export production in the ocean: Effects of time lags and temporal
variability, Deep-Sea Res. Pt. I, 148, 100–107,
https://doi.org/10.1016/j.dsr.2019.05.006, 2019.
Longhurst, A.: Seasonal cycles of pelagic production and consumption, Prog.
Oceanogr., 36, 77–167, https://doi.org/10.1016/0079-6611(95)00015-1, 1995.
Mackey, M. D., Mackey, D. J., Higgins, H. W., and Wright, S. W.: CHEMTAX – a
program for estimating class abundances from chemical markers: application
to HPLC measurements of phytoplankton, Mar. Ecol. Prog. Ser., 144, 265–283,
1996.
Messié, M. and Chavez, F. P.: Seasonal regulation of primary production
in eastern boundary upwelling systems, Prog. Oceanogr., 134, 1–18,
https://doi.org/10.1016/j.pocean.2014.10.011, 2015.
Meyer, J., Löscher, C. R., Lavik, G., and Riebesell, U.: Mechanisms of P*
Reduction in the Eastern Tropical South Pacific, Front. Mar. Sci.,
4, 1–12, https://doi.org/10.3389/fmars.2017.00001, 2017.
Morris, A. W. and Riley, J. P.: The determination of nitrate in sea water,
Anal. Chim. Acta, 29, 272–279, 1963.
Mullin, J. B. and Riley, J. P.: The colorimetric determination of silicate
with special reference to sea and natural waters, Anal. Chim. Acta, 12,
162–176, https://doi.org/10.1016/S0003-2670(00)87825-3, 1955.
Murphy, J. and Riley, J. P.: A modified single solution method for the
determination of phosphate in natural waters, Anal. Chim. Acta, 27, 31–36,
https://doi.org/10.1016/S0003-2670(00)88444-5, 1962.
Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T.
O., and Huerta-Diaz, M. A.: Seabird colonies as important global drivers in
the nitrogen and phosphorus cycles, Nat. Commun., 9, 246,
https://doi.org/10.1038/s41467-017-02446-8, 2018.
Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P., Hellemann, D., Trense, Y., Nausch, M., Sswat, M., and Riebesell, U.: Effect of elevated CO2 on organic matter pools and fluxes in a summer Baltic Sea plankton community, Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, 2015.
Quigg, A., Finkel, Z. Z. V, Irwin, A. J. A., Rosenthal, Y., Ho, T.-Y.,
Reinfelder, J. R., Schofield, O., Morel, F. M. M., and Falkowski, P. G.: The
evolutionary inheritance of elemental stoichiometry in marine
phytoplankton, Nature, 425, 291–294, https://doi.org/10.1038/nature01953, 2003.
Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P.:
Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater
with analysis using high-resolution sector field inductively-coupled plasma
mass spectrometry, Anal. Chim. Acta, 976, 1–13,
https://doi.org/10.1016/j.aca.2017.05.008, 2017.
Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R., and Schulz, K. G.: Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research, Biogeosciences, 10, 1835–1847, https://doi.org/10.5194/bg-10-1835-2013, 2013.
Schulz, K. G. and Riebesell, U.: Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide, Mar. Biol., 160, 1889–1899, 2013.
Schulz, K. G., Bach, L. T., Bellerby, R., Bermudez, R., Boxhammer, T.,
Czerny, J., Engel, A., Ludwig, A., Larsen, A., Paul, A., Sswat, M., and
Riebesell, U.: Phytoplankton blooms at increasing levels of atmospheric
carbon dioxide: experimental evidence for negative effects on
prymnesiophytes and positive on small picoeukaryotes, Front. Mar. Sci.,
4, 1–18, https://doi.org/10.3389/fmars.2017.00064, 2017.
Sharp, J. H.: Improved analysis for “particulate” organic carbon and
nitrogen from seawater, Limnol. Oceanogr., 19, 984–989, 1974.
Smayda, T. J. and Trainer, V. L.: Dinoflagellate blooms in upwelling
systems: Seeding, variability, and contrasts with diatom bloom behaviour,
Prog. Oceanogr., 85, 92–107, https://doi.org/10.1016/j.pocean.2010.02.006, 2010.
Spilling, K., Camarena-Gómez, M. T., Lipsewers, T., Martinez-Varela, A.,
Díaz-Rosas, F., Eronen-Rasimus, E., Silva, N., von Dassow, P., and
Montecino, V.: Impacts of reduced inorganic N : P ratio on three distinct
plankton communities in the Humboldt upwelling system, Mar. Biol., 166,
1–17, https://doi.org/10.1007/s00227-019-3561-x, 2019.
Stange, P., Bach, L. T., Le Moigne, F. A. C., Taucher, J., Boxhammer, T., and
Riebesell, U.: Quantifying the time lag between organic matter production
and export in the surface ocean: Implications for estimates of export
efficiency, Geophys. Res. Lett., 44, 268–276, https://doi.org/10.1002/2016GL070875,
2017.
Sterner, R. W., Andersen, T., Elser, J. J., Hessen, D. O., Hood, J. M.,
McCauley, E., and Urabe, J.: Scale-dependent carbon: Nitrogen: phosphorus
seston stoichiometry in marine and freshwaters, Limnol. Oceanogr., 53,
1169–1180, https://doi.org/10.4319/lo.2008.53.3.1169, 2008.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
Stramma, L., Bange, H. W., Czeschel, R., Lorenzo, A., and Frank, M.: On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru, Biogeosciences, 10, 7293–7306, https://doi.org/10.5194/bg-10-7293-2013, 2013.
Takahashi, K. and Martínez, A. G.: The very strong coastal El Niño in 1925 in the far-eastern Pacific, Clim. Dynam., 52, 7389–7415, 2019.
Taucher, J., Bach, L. T., Boxhammer, T., Nauendorf, A., Achterberg, E. P.,
Algueró-Muñiz, M., Arístegui, J., Czerny, J., Esposito, M.,
Guan, W., Haunost, M., Horn, H. G., Ludwig, A., Meyer, J., Spisla, C.,
Sswat, M., Stange, P., and Riebesell, U.: Influence of Ocean Acidification
and Deep Water Upwelling on Oligotrophic Plankton Communities in the
Subtropical North Atlantic: Insights from an In situ Mesocosm Study, Front.
Mar. Sci., 4, 1–18, https://doi.org/10.3389/fmars.2017.00085, 2017.
Terry, K. L., Hirata, J., and Laws, E. A.: Light-limited growth of two
strains of the marine diatom Phaeodactylum tricornutum Bohlin: Chemical
composition, carbon partitioning and the diel periodicity of physiological
processes, J. Exp. Mar. Bio. Ecol., 68, 209–227,
https://doi.org/10.1016/0022-0981(83)90054-0, 1983.
Thiel, M., Macaya, E. C., Acuña, E., Arntz, W. E., Bastias, H.,
Brokordt, K., Camus, P. A., Castilla, J. C., Castro, L. R., Cortés, M.,
Dumont, C. P., Escribano, R., Fernández, M., Gajardo, J. A., Gaymer, C.
F., Gomez, I., González, A. E., González, H. E., Haye, P. A.,
Illanes, J.-E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G.,
Luxoro, C., Manríquez, P. H., Marín, V., Muñoz, P., Navarrete,
S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H. H., Stotz, W.,
Tala, F., Thomas, A., Vargas, C. A., Vasquez, J. A., and Alonso Vega, J. M.:
The Humboldt Current System of Northern and Central Chile: Oceanographic
Processes, Ecological Interactions and Socioeconomic Feedback, Oceanogr. Mar.
Biol. An Annu. Rev., 45, 195–344, 2007.
Thompson, M. and Wood, R.: Harmonized guidelines for internal quality
control in analytical chemistry laboratories, in: Pure and Applied Chemistry,
edited by: Burrows, H. and Stohner, J., IUPAC, UK, 649–666, 1995.
Wassmann, P.: Retention versus export food chains: processes controlling sinking loss from marine pelagic systems, Hydrobiologia, 363, 29–57, 1997.
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
The eastern boundary upwelling system off Peru is among Earth's most productive ocean...
Altmetrics
Final-revised paper
Preprint