Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5693-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5693-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Jinnan Gong
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Nigel Roulet
Department of Geography, McGill University and Centre for Climate and
Global Change Research, Burnside Hall, 805 Sherbrooke Street West Montreal, Montréal,
Québec H3A 2K6, Canada
Steve Frolking
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Institute for the Study of Earth, Oceans, and Space, and Department
of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA
Heli Peltola
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Anna M. Laine
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Department of Ecology and Genetics, University of Oulu, P. O. Box
3000, 90014 Oulu, Finland
Nicola Kokkonen
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Eeva-Stiina Tuittila
CORRESPONDING AUTHOR
School of Forest Sciences, University of Eastern Finland, P. O. Box
111, 80101 Joensuu, Finland
Related authors
No articles found.
Jere Kaivosoja, Samuli Launiainen, and Heli Peltola
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-W2-2025, 89–94, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-89-2025, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-89-2025, 2025
Tiia Määttä, Ankur Desai, Masahito Ueyama, Rodrigo Vargas, Eric J. Ward, Zhen Zhang, Gil Bohrer, Kyle Delwiche, Etienne Fluet-Chouinard, Järvi Järveoja, Sara Knox, Lulie Melling, Mats B. Nilsson, Matthias Peichl, Angela Che Ing Tang, Eeva-Stiina Tuittila, Jinsong Wang, Sheel Bansal, Sarah Feron, Manuel Helbig, Aino Korrensalo, Ken W. Krauss, Gavin McNicol, Shuli Niu, Zutao Ouyang, Kathleen Savage, Oliver Sonnentag, Robert Jackson, and Avni Malhotra
EGUsphere, https://doi.org/10.5194/egusphere-2025-5023, https://doi.org/10.5194/egusphere-2025-5023, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We compared ecosystem and plot-scale methane fluxes across wetland and upland sites. Ecosystem-scale fluxes were higher than at plot scale, but differences were small. Vapor pressure deficit, atmospheric pressure, turbulence, and wind direction affected the differences. Both scales could be combined for improved methane flux estimates at coarser temporal scales.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Amey Tilak, Alina Premrov, Ruchita Ingle, Nigel Roulet, Benjamin R. K. Runkle, Matthew Saunders, Avni Malhotra, and Kenneth Byrne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3852, https://doi.org/10.5194/egusphere-2024-3852, 2024
Preprint archived
Short summary
Short summary
For the future model users, 16 peatland and wetland models reviewed to identify individual model operational scale (spatial and temporal), stabilization timeframes of different carbon pools, model specific advantages and limitations, common and specific model driving inputs, critical inputs of individual models impacting CH4 plant mediated, CH4 diffusion and CH4 ebullition. Finally, we qualitatively ranked the process representations in each model for CH4 production, oxidation and transport.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore
Biogeosciences, 19, 3285–3303, https://doi.org/10.5194/bg-19-3285-2022, https://doi.org/10.5194/bg-19-3285-2022, 2022
Short summary
Short summary
Peatland respiration is made up of plant and peat sources. How to separate these sources is not well known as peat respiration is not straightforward and is more influenced by vegetation dynamics than previously thought. Results of plot level measurements from shrubs and sparse grasses in a woody bog show that plants' respiration response to changes in climate is related to their different root structures, implying a difference in the mechanisms by which they obtain water resources.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Cited articles
Alekseychik, P., Lindroth, A., Mammarella, I., Lund, M., Rinne, J., Kasurinen, V., Nilsson, M., Peichl, M., Lohila, A., Aurela, M., Laurila, T., Shurpali, N., Tuittila, E.-S., Martikainen, P. M., and Vesala, T.: Surface energy exchange in natural and managed Fennoscandian peatlands, Mires and Peat, 21, 1–26, https://doi.org/10.19189/MaP.2018.OMB.333, 2018.
Alm, J., Shurpali, N. J., Tuittila, E.-S., Laurila, T., Maljanen, M.,
Saarnio, S., and Minkkinen, K.: Methods for determining emission factors for
the use of peat and peatlands – flux measurements and modelling, Boreal
Environ. Res., 12, 85–100, 2007.
Amarasekare, P.: Competitive coexistence in spatially structured
environments: A synthesis, Ecol. Lett., 6, 1109–1122, 2003.
Anderson K. and Neuhauser C.: Patterns in spatial simulations – are they
real?, Ecol. Model., 155, 19–30, 2000.
Andrus R. E.: Some aspects of Sphagnum ecology, Can. J. Bot., 64, 416–426,
1986.
Asaeda, T. and Karunaratne, S.: Dynamic modelling of the growth of
Phragmites australis: model description, Aquat. Bot., 67, 301–318, 2000.
Bengtsson, F., Granath, G., and Rydin, H.: Photosynthesis, growth, and decay
traits in Sphagnum – a multispecies comparison, Ecol. Evol., 6,
3325–3341, 2016.
Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., and
Ferrier, S.: Space can substitute for time in predicting climate-change
effects on biodiversity, P. Natl. Acad. Sci. USA, 110, 9374–9379, https://doi.org/10.1073/pnas.1220228110,
2013.
Bolker, B. M., Pacala, S. W., and Neuhauser, C.: Spatial dynamics in model
plant communities: What do we really know?, Am. Nat., 162, 135–148, 2003.
Boulangeat, I., Svenning, J. C., Daufresne, T., Leblond, M., and Gravel, D.:
The transient response of ecosystems to climate change is amplified by
trophic interactions, Oikos, 127, 1822–1833, 2018.
Branham, J. E. and Strack, M.: Saturated hydraulic conductivity in
Sphagnum-dominated peatlands: do microforms matter?, Hydrol. Process., 28, 4352–4362,
2014.
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model, Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, 2017.
Chen, J. M., Liu, J., Cihlar, J., abd Goulden, M. L.: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications, Ecol. Modell., 124, 99–119, 1999.
Choudhury, B. J. and Monteith, J. L.: A four‐layer model for the heat budget of homogeneous land surfaces, Q. J. Roy. Meteor. Soc., 114, 373–398, 1988.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604, 1978.
Clark, J. S., Bell, D., Chu, C., Courbaud, B., Dietze, M., Hersh, M.,
HilleRisLambers, J., Ibanez, I., LaDeau, S., McMahon, S., Metcalf, J., Mohan,
J., Moran, E., Pangle, L., Pearson, S., Salk, C., Shen, Z., Valle, D., and
Wyckoff, P.: High-dimensional coexistence based on individual variation: a
synthesis of evidence, Ecol. Monogr., 80, 569–608, 2010.
Clymo, R. S.: The growth of Sphagnum: Methods of measurement, J. Ecol., 58, 13–49, 1970.
Cornelissen, J. H., Lang, S. I., Soudzilovskaia, N. A., and During, H. J.:
Comparative cryptogam ecology: a review of bryophyte and lichen traits that
drive biogeochemistry, Ann. Botany, 99, 987–1001, 2007
Czárán, T. and Iwasa, Y.: Spatiotemporal models of population and
community dynamics, Trends Ecol. Evol., 13, 294–295, 1998.
Daamen, C. C. and McNaughton, K. G.:
Modeling energy fluxes from sparse canopies and understorys, Agronomy Journal, 92, 837–847, 2000.
Dieleman, C. M., Branfireun, B. A., Mclaughlin, J. W., and Lindo, Z.: Climate
change drives a shift in peatland ecosystem plant community: Implications
for ecosystem function and stability, Glob. Change Biol., 21, 388–395,
2015.
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and Harden
J. W.: Differential response of carbon fluxes to climate in three peatland
ecosystems that vary in the presence and stability of permafrost,
permafrost, J. Geophys. Res.-Biogeo., 119, 1576–1595, 2014.
Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, T. M., Bubier, L. J., and
Crill, P. M.: Modeling seasonal to annual carbon balance of Mer Bleue Bog,
Ontario, Canada, Global Biogeochem. Cy., 16, 4-1-4-21, https://doi.org/10.1029/2001GB001457,
2002.
Gassmann, F., Klötzli, F., and Walther, G.: Simulation of observed types
of dynamics of plants and plant communities, J. Veg. Sci.,
11, 397–408, 2003.
Goetz, J. D. and Price, J. S.: Role of morphological structure and layering
of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates, Can. J. Soil Sci., 95, 109–124, 2015.
Gong, J., Wang, K., Kellomäki, S., Wang, K., Zhang, C., Martikainen, P. J. and Shurpali, N.: Modeling water table changes in boreal peatlands of Finland under changing climate conditions, Ecological Modelling, 244, 65–78, 2012.
Gong, J., Shurpali, N., Kellomäki, S., Wang, K., Salam, M. M., and
Martikainen, P. J.: High sensitivity of peat moisture content to seasonal
climate in a cutaway peatlandcultivated with a perennial crop (Phalaris
arundinacea, L.): a modeling study, Agr. Forest Meteorol.,
180, 225–235, 2013.
Gong, J., Jia, X., Zha, T., Wang, B., Kellomäki, S., and Peltola, H.:
Modeling the effects of plant-interspace heterogeneity on water-energy
balances in a semiarid ecosystem, Agr. Forest Meteorol., 221,
189–206, 2016.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Gunnarsson, U., Malmer, N., and Rydin, H.: Dynamics or constancy in Sphagnum
dominated mire ecosystems?, A 40-year study, Ecography, 25, 685–704, 2002.
Hartmann, H. and Trumbore, S.: Understanding the roles of nonstructural
carbohydrates in forest trees – from what we can measure to what we want to
know, New Phytol., 211, 386–403, 2016.
Hájek, T. and Beckett, R. P.: Effect of water content components on
desiccation and recovery in Sphagnum mosses, Ann. Bot., 101,
165–173, 2008.
Hayward P. M. and Clymo R. S.: Profiles of water content and pore size in
Sphagnum and peat, and their relation to peat bog ecology, P. Roy. Soc. Lond. B Bio., 215, 299–325,
1982.
Hayward P. M. and Clymo R. S.: The growth of Sphagnum: experiments on, and
simulation of, some effects of light flux and water-table depth, J. Ecol., 71, 845–863, 1983.
Holmgren, M., Lin, C., Murillo, J. E., Nieuwenhuis, A., Penninkhof, J.,
Sanders, N., Bart, T., Veen, H., Vasander, H., Vollebregt, M. E., and
Limpens, J.: Positive shrub-tree interactions facilitate woody encroachment
in boreal peatlands, J. Ecol., 103, 58–66, 2015.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013.
Jassey, V. E. and Signarbieux, C.: Effects of climate warming on Sphagnum
photosynthesis in peatlands depend on peat moisture and species-specific
anatomical traits, Glob. Change Biol., 25, 3859–3870, 2019.
Johnson, M. G., Granath, G., Tahvanainen, T., Pouliot, R., Stenøien, H.
K., Rochefort, L., Rydin, H., and Shaw, A. J.: Evolution of niche preference
in Sphagnum peat mosses, Evolution, 69, 90–103, 2015.
Kellomäki, S. and Väisänen, H.: Modelling the dynamics of the
forest ecosystem for climate change studies in the boreal conditions, Ecol.
Model., 97, 121–140, 1997.
Keuper, F., Dorrepaal, E., Van Bodegom, P. M., Aerts, R., Van Logtestijn, R.
S. P., Callaghan, T. V., and Cornelissen, J. H. C.: A Race for Space? How
Sphagnum fuscum stabilizes vegetation composition during long-term climate
manipulations, Glob. Change Biol., 17, 2162–2171, 2011.
Kokkonen, N., Laine, A., Laine, J., Vasander, H., Kurki, K., Gong, J., and
Tuittila, E.-S.: Responses of peatland vegetation to 15-year water level
drawdown as mediated by fertility level. J. Veg. Sci., 30, 1206–1216,
2019.
Korrensalo, A., Hájek, T., Vesala, T., Mehtätalo, L., and Tuittila,
E. S.: Variation in photosynthetic properties among bog plants, Botany,
94, 1127–1139, 2016.
Korrensalo, A., Alekseychik, P., Hájek, T., Rinne, J., Vesala, T., Mehtätalo, L., Mammarella, I., and Tuittila, E.-S.: Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration, Biogeosciences, 14, 257–269, https://doi.org/10.5194/bg-14-257-2017, 2017.
Laiho, R.: Decomposition in peatlands: Reconciling seemingly contrasting
results on the impacts of lowered water levels, Soil Biol. Biochem., 38, 2011–2024, 2006.
Laine, A. M. Juurola, E., Hájek, T., and Tuittila, E.-S.: Sphagnum
growth and ecophysiology during mire succession, Oecologia, 167, 1115–1125,
2011.
Laine, J., Komulainen, V.-M., Laiho, R., Minkkinen, K., Rasinmaki, A., Sallantaus, T., Sarkkola, S., Silvan, N.,
Tolonen, K., Tuittila, E.-S., Vasander, H., and Päivänen, J.:
Lakkasuo – a guide to mire ecosystem, Department of Forest Ecology
Publications, University of Helsinki, 31, 123 pp, 2004.
Laine, J., Flatberg, K. I., Harju, P., Timonen, T., Minkkinen, K., Laine,
A., Tuittila, E.-S., and Vasander, H.: Sphagnum Mosses – The Stars of
European Mires, University of Helsinki Department of Forest Sciences,
Sphagna Ky., 326 pp, 2018.
Laine J., Harju P., Timonen T., Laine A., Tuittila E.-S., Minkkinen K., and
Vasander H.: The inticate beauty of Sphagnum mosses – a Finnish guide to
identification (Univ Helsinki Dept Forest Ecol Publ 39), Department of
Forest Ecology, University of Helsinki, Helsinki, 1–190, 2009.
Laine, A., Ehonen, S., Juurola, E., Mehtätalo, L., and Tuittila, E.-S.: Performance of late succession species along a chronosequence: Environment does not exclude Sphagnum fuscum from the early stages of mire development, J. Veget. Sci., 26, 291–301, https://doi.org/10.1111/jvs.12231, 2015.
Laing, C. G., Granath, G., Belyea, L. R., Allton K. E., and Rydin, H.:
Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon
cycling in peatlands, Oikos, 123, 817–828, 2014.
Larcher, W.: Physiological Plant Ecology: Ecophysiology and Stress
Physiology of Functional Groups, Springer, 514 pp., 2003.
Letts, M. G., Roulet, N. T., and Comer, N. T.: Parametrization of peatland
hydraulic properties for the Canadian land surface scheme, Atmos. Ocean,
38, 141–160, 2000.
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G.,
Palacio, S., Piper, F. I., and Lloret, F.: Dynamics of non-structural
carbohydrates in terrestrial plants: a global synthesis, Ecol. Monogr., 86,
495–516, 2016.
McCarter, C. P. R. and Price, J. S.: Ecohydrology of Sphagnum moss hummocks:
mechanisms of capitula water supply and simulated effects of evaporation,
Ecohydrology, 7, 33–44, 2014.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
Munir, T. M., Perkins, M., Kaing, E., and Strack, M.: Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change, Biogeosciences, 12, 1091–1111, https://doi.org/10.5194/bg-12-1091-2015, 2015.
Murray, K. J., Harley, P. C., Beyers, J., Walz, H., and Tenhunen, J. D.:
Water content effects on photosynthetic response of Sphagnum mosses from the
foothills of the Philip Smith Mountains, Alaska, Oecologia, 79, 244–250,
1989.
Nijp, J. J., Limpens, J., Metselaar, K., van der Zee, S. E. A. T. M.,
Berendse, F., and Robroek, B. J. M.: Can frequent precipitation moderate the
impact of drought on peatmoss carbon uptake in northern peatlands?, New
Phytol., 203, 70–80, 2014.
O'Neill, K. P.: Role of bryophyte-dominated ecosystems in the global carbon
budget, in: Bryophyte biology, edited by: Shaw, A. J. and Goffi, B.,
Cambridge University Press, Cambridge, UK, 344–368, 2000.
Pastor, J., Peckham, B., Bridgham, S., Weltzin, J., and Chen J.: Plant
community dynamics, nutrient cycling, and alternative stable equilibria in
peatlands, American Naturalist, 160, 553–568, 2002.
Päivänen, J.: Hydraulic conductivity and water retention in peat
soils, Acta Forestalia Fennica, 129, 1–69, 1973.
Price, J. S., Whittington, P. N., Elrick, D. E., Strack, M., Brunet, N., and
Faux, E.: A method to determine unsaturated hydraulic conductivity in living
and undecomposed moss, Soil Sci. Soc. Am. J., 72, 487–491, 2008.
Price, J. S. and Whittington, P. N.: Water flow in Sphagnum hummocks:
Mesocosm measurements and modelling, J. Hydrol., 381, 333–340,
2010.
Rice, S. K., Aclander, L., and Hanson, D. T.: Do bryophyte shoot systems
function like vascular plant leaves or canopies?, Functional trait
relationships in Sphagnum mosses (Sphagnaceae), Am. J. Botany,
95, 1366–1374, 2008.
Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T.,
Haapanala, S., Pihlatie, M., and Tuittila, E.-S.: Spatial variation in plant
community functions regulates carbon gas dynamics in a boreal fen ecosystem,
Tellus B, 59, 838–852, 2007.
Robroek, B. J. M., Limpens, J., Breeuwer, A., Crushell, P. H., and Schouten,
M. G. C.: Interspecific competition between Sphagnum mosses at different
water tables, Funct. Ecol., 21, 805–812, 2007a.
Robroek, B. J. M., Limpens, J., Breeuwer, A., van Ruijven, J., and Schouten,
M. G. C.: Precipitation determines the persistence of hollow Sphagnum species
on hummocks, Wetlands, 4, 979–986, 2007b.
Robroek, B. J. M., Schouten, M. G. C., Limpens, J., Berendse, F., and Poorter,
H.: Interactive effects of water table and precipitation on net CO2
assimilation of three co-occurring Sphagnum mosses differing in distribution
above the water table, Glob. Change Biol., 15, 680–691, 2009.
Ruder, S.: An overview of gradient descent optimization algorithms, CoRR,
abs/1609.04747, 2016.
Runkle, B. R. K., Wille, C., Gažovič, M., Wilmking, M., and Kutzbach,
L.: The surface energy balance and its drivers in a boreal peatland fen of
northwestern Russia, J. Hydrol., 511, 359–373, 2014.
Rydin, H.: Interspecific competition between Sphagnum mosses on a raised bog,
Oikos, 66, 413–423, 1993.
Rydin, H.: Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna, Oikos, 374–379, 1985.
Rydin, H.: Competition and niche separation in Sphagnum, Can. J. Botany, 64, 1817–1824, 1986.
Rydin, H.: Competition between Sphagnum species under controlled conditions,
Bryologist, 100, 302–307, 1997.
Rydin, H. and McDonald, A. J. S.: Tolerance of
Sphagnum to water level, J. Bryol., 13, 571–578, 1985.
Rydin, H., Gunnarsson, U., and Sundberg, S.: The role of Sphagnum in
peatland development and persistence, in: Boreal peatland ecosystems, edited
by: Wieder, R. K. and Vitt, D. H., 30 Ecological Studies Series, Springer
Verlag, Berlin, 47–65, 2006.
Sato, H., Itoh, A., and Kohyama, T.: SEIB-DGVM: A new Dynamic Global
Vegetation Model using a spatially explicit individual-based approach, Ecol.
Model., 200, 279–307, 2007.
Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global
vegetation models: learning from community ecology, New Phytol., 198,
957–969, 2013.
Schipperges, B. and Rydin, H.: Response of photosynthesis of Sphagnum
species from contrasting microhabitats to tissue water content and repeated
desiccation, New Phytol., 140, 677–684, 1998.
Smirnoff, N.: The carbohydrates of bryophytes in relation to desiccation
tolerance, J. Bryology, 17, 185–191, 1992.
Straková, P., Niemi, R. M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., and Laiho, R.: Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes, Biogeosciences, 8, 2741–2755, https://doi.org/10.5194/bg-8-2741-2011, 2011.
Straková, P., Penttilä, T., Laine, J., and Laiho, R.: Disentangling
direct and indirect effects of water table drawdown on above-and belowground
plant litter decomposition: consequences for accumulation of organic matter
in boreal peatlands, Glob. Change Biol., 18, 322–335, 2012.
Strandman, H., Väisänen, H., and Kellomäki, S.: A procedure for
generating synthetic weather records in conjunction of climatic scenario for
modelling of ecological impacts of changing climate in boreal conditions,
Ecol. Model., 70, 195–220, 1993.
Tahvanainen, T.: Abrupt ombrotrophication of a boreal aapa mire triggered by
hydrological disturbance in the catchment, J. Ecol., 99, 404–415,
2011.
Tatsumi, S., Cadotte M. W., and Mori, A. S.: Individual-based models of
community assembly: Neighbourhood competition drives phylogenetic community
structure, J. Ecol., 107, 735–746, 2019.
Thompson, D. K., Baisley, A. S., and Waddington, J. M.: Seasonal variation in
albedo and radiation exchange between a burned and unburned forested
peatland: implications for peatland evaporation, Hydrol. Proc., 29,
3227–3235, 2015.
Titus, J. E. and Wagner, D. J.: Carbon balance for two Sphagnum mosses:
water balance resolves a physiological paradox, Ecology, 65, 1765–1774,
1984.
Turetsky, M. R.: The role of bryophytes in carbon and nitrogen cycling,
Bryologist, 106, 395–409, 2003.
Turetsky, M. R., Crow, S. E., Evans, R. J., Vitt, D. H., and Wieder, R. K.:
Trade-offs in resource allocation among moss species control decomposition
in boreal peatlands, J. Ecol., 96, 1297–1305, 2008.
Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking,
S., McGuire, A. D., and Tuittila, E.: The resilience and functional role of
moss in boreal and arctic ecosystems, New Phytol., 196, 49–67, 2012.
van Gaalen, K. E., Flanagan, L. B., Peddle, D. R.: Photosynthesis,
chlorophyll fluorescence and spectral reflectance in Sphagnum moss at
varying water contents, Oecologia, 153, 19–28, 2007.
van Genuchten, M.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,
44, 892–898, 1980.
Väliranta, M., Korhola, A., Seppä, H., Tuittila, E. S.,
Sarmaja-Korjonen, K., Laine, J., and Alm, J.: High-resolution reconstruction
of wetness dynamics in a southern boreal raised bog, Finland, during the
late Holocene: a quantitative approach, Holocene, 17, 1093–1107, 2007.
Venäläinen, A., Tuomenvirta, H., Lahtinen, R., and Heikinheimo, M.:
The influence of climate warming on soil frost on snow-free surfaces in
Finland, Climate Change, 50, 111–128, 2001.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Vitt, D. H.: Peatlands: Ecosystems dominated by bryophytes, in: Bryophyte biology, edited by: Shaw, A. J.
and Goffi, B., Cambridge University
Press, Cambridge, UK, 312–343, 2000.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D.
K., and Moore, P. A.: Hydrological feedbacks in northern peatlands,
Ecohydrology, 8, 113–127, 2015.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and
permafrost into a dynamic global vegetation model: 2. Evaluation and
sensitivity of vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, GB3015, https://doi.org/10.1029/2008GB003413, 2009.
Weiss, R., Alm, J., Laiho, R., and Laine, J.: Modeling moisture retention in
peat soils, Soil Sci. Soc. Am. J., 62, 305–313, 1998.
Whittington, P. N. and Price, J. S.: The effects of water table draw-down
(as a surrogate for climate change) on the hydrology of a fen peatland,
Canada, Hydrol. Proc., 20, 3589–3600, 2006.
Wilson, P. G.: The relationship among micro-topographic variation, water
table depth and biogeochemistry in an ombrotrophic bog, Master Thesis,
Department of Geography McGill University, Montreal, Quebec, p. 103, 2012.
Wojtuń, B., Sendyk, A., and Martynia, D.: Sphagnum species along
environmental gradients in mires of the Sudety Mountains (SW Poland), Boreal
Environ. Res., 18, 74–88, 2003.
Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern
peatlands to absorb the atmospheric carbon dioxide: The different responses
of bogs and fens, Global Biogeochem. Cy., 28, 1005–1024,
https://doi.org/10.1002/2014GB004845, 2014.
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami,
S., Iversen, C. M., Kattge, J., Norby, R. J., van Bodegom, P. M., and Xu, X.:
Plant functional types in Earth system models: past experiences and future
directions for application of dynamic vegetation models in high-latitude
ecosystems, Ann. Bot., 114, 1–16, 2014.
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
In this study, which combined a field and lab experiment with modelling, we developed a...
Altmetrics
Final-revised paper
Preprint