Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1601-2021
https://doi.org/10.5194/bg-18-1601-2021
Research article
 | 
05 Mar 2021
Research article |  | 05 Mar 2021

Winter atmospheric nutrient and pollutant deposition on Western Sayan Mountain lakes (Siberia)

Daniel Diaz-de-Quijano, Aleksander Vladimirovich Ageev, Elena Anatolevna Ivanova, and Olesia Valerevna Anishchenko

Related subject area

Biogeochemistry: Air - Land Exchange
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023,https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023,https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022,https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022,https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022,https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary

Cited articles

Anishchenko, O. V., Glushchenko, L. A., Dubovskaya, O. P., Zuev, I. V., Ageev, A. V., and Ivanova, E. A.: Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains, Water Resour., 42, 670–682, https://doi.org/10.1134/S0097807815050036, 2015. 
APHA: Standard methods for the examination of water and wastewater, 17th edn., American Public Health Association, Washington DC, USA, 1989. 
Banks, H. H. and Nighswander, J. E.: Relative contribution of Hemlock pollen to the phosphorus loading of the Clear lake ecosystem near Minden, Ontario, Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America, Proceedings, 22–24 June 1999, Durham NH, 168–174, 2000. 
Bergström, A.-K. and Jansson, M.: Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere, Glob. Change Biol., 12, 635–643, https://doi.org/10.1111/j.1365-2486.2006.01129.x, 2006. 
Bergström, A.-K., Faithfull, C., Karlsson, D., and Karlsson, J.: Nitrogen deposition and warming – effects on phytoplankton nutrient limitation in subarctic lakes, Glob. Change Biol., 19, 2557–2568, https://doi.org/10.1111/gcb.12234, 2013. 
Download
Short summary
Winter atmospheric nitrogen (N) and phosphorus (P) depositions were measured for the first time in the Western Sayan Mountains (Siberia). The low and very low atmospheric N and P depositions could be responsible for the observed lake phytoplankton N–P colimitation. We hypothesize that slight imbalances in the nutrient deposition, as expected in the context of global change (climate, forest fires and anthropogenic nitrogen emissions), could have important effects on the ecology of these lakes.
Altmetrics
Final-revised paper
Preprint