Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1777-2022
https://doi.org/10.5194/bg-19-1777-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)

Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen

Related authors

Applying Satellite Observations to Improve Bottom-Up National Emission Inventories for Methane: Application to Colombia
Sarah E. Hancock, Daniel J. Jacob, Rodrigo Jimenez, Andrés Ardila, Luis Morales-Rincon, Néstor Rojas, Lucas A. Estrada, Nicholas Balasus, James D. East, Melissa P. Sulprizio, Xiaolin Wang, James L. France, Lauren Potyk, Elise Penn, Zichong Chen, Daniel J. Varon, Christian Frankenberg, Marci Baranski, Andreea Calcan, and Robert J. Parker
EGUsphere, https://doi.org/10.5194/egusphere-2025-5478,https://doi.org/10.5194/egusphere-2025-5478, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Probabilities of Detection of Methane Plumes by Remote Sensing and Implications for Inferred Emissions Distributions
Ethan Manninen, Apisada Chulakadabba, Maryann Sargent, Zhan Zhang, Harshil Kamdar, Jack Warren, Sébastien Roche, Christopher Chan Miller, Ethan Kyzivat, Joshua Benmergui, Jasna Pittman, Eleanor Walker, Jacob Bushey, Jenna Samra, Jacob Hawthorne, Bingkun Luo, Maya Nasr, Kang Sun, Jonathan Franklin, Xiong Liu, Jia Chen, and Steven Wofsy
EGUsphere, https://doi.org/10.5194/egusphere-2026-115,https://doi.org/10.5194/egusphere-2026-115, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
ACROPOLIS: Munich urban CO2 sensor network
Patrick Aigner, Jia Chen, Felix Böhm, Mali Chariot, Lukas Emmenegger, Lars Frölich, Stuart Grange, Daniel Kühbacher, Klaus Kürzinger, Olivier Laurent, Moritz Makowski, Pascal Rubli, Adrian Schmitt, and Adrian Wenzel
Atmos. Meas. Tech., 19, 745–773, https://doi.org/10.5194/amt-19-745-2026,https://doi.org/10.5194/amt-19-745-2026, 2026
Short summary
Novel method to locate and quantify point-source methane emissions using time series of ground-based column observations
Friedrich Klappenbach, Jia Chen, Moritz Makowski, Andreas Luther, Ronald C. Cohen, Jonathan E. Franklin, Steven Wofsy, and Taylor Jones
EGUsphere, https://doi.org/10.5194/egusphere-2026-204,https://doi.org/10.5194/egusphere-2026-204, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
2019–2024 trends in African livestock and wetland emissions as contributors to the global methane rise
Nicholas Balasus, Daniel J. Jacob, A. Anthony Bloom, James D. East, Lucas A. Estrada, Sarah E. Hancock, Megan He, Todd A. Mooring, Alexander J. Turner, and John R. Worden
EGUsphere, https://doi.org/10.5194/egusphere-2025-6251,https://doi.org/10.5194/egusphere-2025-6251, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-generation hyperparameter optimization framework, in: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 4–8 August 2019, Anchorage, AK, USA, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial photosynthesis, Science Advances, 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. a
Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson correlation coefficient, in: Noise reduction in speech processing, 37–40, Springer, ISBN 978-3-642-00295-3, 2009. a, b
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, 1st edn., New York, NY, ISBN 978-0-387-31073-2, 2007. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Download
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Share
Altmetrics
Final-revised paper
Preprint