Articles | Volume 19, issue 2
https://doi.org/10.5194/bg-19-295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Department of Earth and Environmental Sciences, Dalhousie University,
Halifax, Canada
Ulf Riebesell
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Kai G. Schulz
Centre for Coastal Biogeochemistry, School of Environment, Science and
Engineering, Southern Cross University, Lismore, Australia
Elisabeth von der Esch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Eric P. Achterberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Lennart T. Bach
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart,
Tasmania, Australia
Related authors
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
Biogeosciences, 22, 2517–2540, https://doi.org/10.5194/bg-22-2517-2025, https://doi.org/10.5194/bg-22-2517-2025, 2025
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles in the northwestern Labrador Sea. We found that sea-ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Falilu Adekunbi, Michaël Grelaud, Gerald Langer, Lucian Chukwu, Marta Álvarez, Shakirudeen Odunuga, Kai George Schulz, and Patrizia Ziveri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3201, https://doi.org/10.5194/egusphere-2025-3201, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study is the first to explore seasonal changes in coccolithophores, microscopic algae important for ocean life and the carbon cycle, off the coast of Nigeria. Their abundance and diversity increased during the rainy season, driven by shifts in the Intertropical Convergence Zone. Despite regional differences, these coastal communities show patterns similar to other parts of the world, revealing possible shared environmental pressures.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Allanah Joy Paul, Mathias Haunost, Silvan Urs Goldenberg, Jens Hartmann, Nicolás Sánchez, Julieta Schneider, Niels Suitner, and Ulf Riebesell
Biogeosciences, 22, 2749–2766, https://doi.org/10.5194/bg-22-2749-2025, https://doi.org/10.5194/bg-22-2749-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being assessed for its potential to absorb atmospheric CO2 and store it for a long time. OAE still needs comprehensive assessment of its safety and effectiveness. We studied an idealised OAE application in a natural low-nutrient ecosystem over 1 month. Our results showed that biogeochemical functioning remained mostly stable but that the long-term capability for storing carbon may be limited at high alkalinity concentration.
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
Biogeosciences, 22, 2517–2540, https://doi.org/10.5194/bg-22-2517-2025, https://doi.org/10.5194/bg-22-2517-2025, 2025
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles in the northwestern Labrador Sea. We found that sea-ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Ulf Riebesell
Biogeosciences, 22, 2381–2381, https://doi.org/10.5194/bg-22-2381-2025, https://doi.org/10.5194/bg-22-2381-2025, 2025
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025, https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Short summary
We studied the potential effects of increasing ocean alkalinity on a natural plankton community in subtropical waters of the Atlantic near Gran Canaria, Spain. Alkalinity is the capacity of water to resist acidification, and plankton are usually microscopic plants (phytoplankton) and animals (zooplankton), often less than 2.5 cm in length. This study suggests that increasing ocean alkalinity did not have a significant negative impact on the plankton community studied.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Kittu, Joaquín Ortíz-Cortes, and Kai George Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-524, https://doi.org/10.5194/egusphere-2025-524, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester additional atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested Ca- and Si-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Giulia Faucher, Mathias Haunost, Allanah Joy Paul, Anne Ulrike Christiane Tietz, and Ulf Riebesell
Biogeosciences, 22, 405–415, https://doi.org/10.5194/bg-22-405-2025, https://doi.org/10.5194/bg-22-405-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated for its capacity to absorb atmospheric CO2 in the ocean and store it long term to mitigate climate change. As researchers plan for field tests to gain insights into OAE, sharing knowledge on its environmental impact on marine ecosystems is urgent. Our study examined NaOH-induced OAE in Emiliania huxleyi, a key coccolithophore species, and found that the added total alkalinity (ΔTA) should stay below 600 µmol kg⁻¹ to avoid negative impacts.
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025, https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024, https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2-equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was mildly delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and on its ecological implications.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
Biogeosciences, 21, 4521–4532, https://doi.org/10.5194/bg-21-4521-2024, https://doi.org/10.5194/bg-21-4521-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as a carbon dioxide removal technology for climate change mitigation. With an experiment on species communities, we show that larval and juvenile fish can be resilient to the resulting perturbation of seawater. Fish may hence recruit successfully and continue to support fisheries' production in regions of OAE. Our findings help to establish an environmentally safe operating space for this ocean-based solution.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Tyler Cyronak, Rebecca Albright, and Lennart T. Bach
State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023, https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. This chapter of the Guide to Best Practices in Ocean Alkalinity Enhancement Research focuses on field experiments.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement is a CO2 removal method with significant potential, but it can lead to a perturbation of the ocean with trace metals such as nickel. This study tested the effect of increasing nickel concentrations on phytoplankton growth and photosynthesis. We found that the response to nickel varied across the 11 phytoplankton species tested here, but the majority were rather insensitive. We note, however, that responses may be different under other experimental conditions.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Albert, A., Echevin, V., Lévy, M., and Aumont, O.: Impact of nearshore
wind stress curl on coastal circulation and primary productivity in the Peru
upwelling system, J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2010JC006569, 2010.
Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., and
Riebesell, U.: Influence of plankton community structure on the sinking
velocity of marine aggregates, Global Biogeochem. Cy., 30, 1145–1165,
2016.
Bach, L. T., Paul, A. J., Boxhammer, T., von der Esch, E., Graco, M., Schulz, K. G., Achterberg, E., Aguayo, P., Arístegui, J., Ayón, P., Baños, I., Bernales, A., Boegeholz, A. S., Chavez, F., Chavez, G., Chen, S.-M., Doering, K., Filella, A., Fischer, M., Grasse, P., Haunost, M., Hennke, J., Hernández-Hernández, N., Hopwood, M., Igarza, M., Kalter, V., Kittu, L., Kohnert, P., Ledesma, J., Lieberum, C., Lischka, S., Löscher, C., Ludwig, A., Mendoza, U., Meyer, J., Meyer, J., Minutolo, F., Ortiz Cortes, J., Piiparinen, J., Sforna, C., Spilling, K., Sanchez, S., Spisla, C., Sswat, M., Zavala Moreira, M., and Riebesell, U.: Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru, Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, 2020a.
Bach, L. T., Paul, A. J., Boxhammer, T., von der Esch, E., Graco, M., Schulz, K. G., Achterberg, E., Aguayo, P., Arístegui, J., Ayón, P., Baños, I., Bernales, A., Boegeholz, A. S., Chavez, F., et al.: KOSMOS 2017 Peru mesocosm study: overview data, [data set], https://doi.org/10.1594/PANGAEA.923395, 2020b.
Bakun, A. and Weeks, S. J.: The marine ecosystem off Peru: What are the
secrets of its fishery productivity and what might its future hold?, Prog.
Oceanogr., 79, 290–299,
https://doi.org/10.1016/j.pocean.2008.10.027, 2008.
Bates, N. R.: Seawater carbonate chemistry distributions across the Eastern
South Pacific Ocean sampled as part of the GEOTRACES project and changes in
marine carbonate chemistry over the past 20 years, Front Mar. Sci., 5,
1–18, https://doi.org/10.3389/fmars.2018.00398, 2018.
Beaudoing, H. and Rodell, M.: NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4
3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/E7TYRXPJKWOQ, 2020.
Bedard, J., Therriault, J. C., and Berube, J.: Assessment of the importance of
nutrient recycling by seabirds in the St. Lawrence Estuary, Can. J. Fish.
Aquat. Sci., 37, 583–588, https://doi.org/10.1139/f80-074,
1980.
Bockmon, E. E. and Dickson, A. G.: A seawater filtration method suitable for
total dissolved inorganic carbon and pH analyses,
Limnol. Oceanogr.-Meth., 12, 191–195,
https://doi.org/10.4319/lom.2014.12.191, 2014.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Capone, D. G. and Hutchins, D. A.: Microbial biogeochemistry of coastal
upwelling regimes in a changing ocean, Nat. Geosci., 6, 711,
https://doi.org/10.1038/ngeo1916, 2013.
Carter, B. R., Radich, J. A., Doyle, H. L., and Dickson, A. G.: An automated
system for spectrophotometric seawater pH measurements, Limnol. Oceanogr.-Meth., 11, 16–27, https://doi.org/10.4319/lom.2013.11.16,
2013.
Chavez, F. P. and Messié, M.: A comparison of eastern boundary upwelling
ecosystems, Prog. Oceanogr., 83, 80–96,
https://doi.org/10.1016/j.pocean.2009.07.032, 2009.
Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., and Csirke, J.:
The northern Humboldt Current System: Brief history, present status and a
view towards the future, Prog. Oceanogr., 79, 95–105,
https://doi.org/10.1016/j.pocean.2008.10.012, 2008.
Chen, B., Cai, W. J., and Chen, L.: The marine carbonate system of the Arctic
Ocean: assessment of internal consistency and sampling considerations,
summer 2010, Mar. Chem., 176, 174–188,
https://doi.org/10.1016/j.marchem.2015.09.007, 2015.
Chen, S.-M., Riebesell, U., Schulz, K. G., von der Esch, E., Achterberg,
E. P., and Bach, L. T.: KOSMOS 2017 Peru mesocosm study: carbonate chemistry
data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.933337, 2021.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements:
total hydrogen ion concentration scale calibration of m-cresol purple and
at-sea results, Deep Sea Res. Pt. I, 40, 2115–2129,
https://doi.org/10.1016/0967-0637(93)90048-8, 1993.
Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877–1882, https://doi.org/10.5194/bg-6-1877-2009, 2009.
Coverly, S., Kérouel, R., and Aminot, A.: A re-examination of matrix
effects in the segmented-flow analysis of nutrients in sea and estuarine
water, Anal. Chim. Acta, 712, 94–100, 2012.
Czerny, J., Schulz, K. G., Krug, S. A., Ludwig, A., and Riebesell, U.: Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms “KOSMOS”, Biogeosciences, 10, 1937–1941, https://doi.org/10.5194/bg-10-1937-2013, 2013a.
Czerny, J., Schulz, K. G., Ludwig, A., and Riebesell, U.: Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting, Biogeosciences, 10, 1379–1390, https://doi.org/10.5194/bg-10-1379-2013, 2013b.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and Wallmann, K.: Organic carbon production, mineralisation and preservation on the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, 2015.
Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L., and Ganachaud, A.:
Denitrification and N2 fixation in the Pacific Ocean, Global Biogeochem. Cy., 15, 483–506,
https://doi.org/10.1029/2000GB001291, 2001.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature,
445, 163–167, https://doi.org/10.1038/nature05392, 2007.
Dickson, A. G.: Standards for ocean measurements, Oceanogr., 23, 34–47,
doi10.5670/oceanog.2010.22, 2010.
Dickson, A. G., Wesolowski, D. J., Palmer, D. A., and Mesmer, R. E.: Dissociation
constant of bisulfate ion in aqueous sodium chloride solutions to 250 ∘C, J. Phys. Chem., 94, 7978–7985,
https://doi.org/10.1021/j100383a042, 1990.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for
oceanic CO2 analysis: a method for the certification of total
alkalinity, Mar. Chem., 80, 185–197,
https://doi.org/10.1016/S0304-4203(02)00133-0, 2003.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication 3, 191 pp., 2007.
Dlugokencky, E. and Tans, P.: NOAA/GML, available at: https://gml.noaa.gov/ccgg/trends/, last access: 6 April 2021.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English,
C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., and
Polovina, J.: Climate change impacts on marine ecosystems, Ann. Rev. Mar.
Sci., 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611, 2012.
Douglas, N. K. and Byrne, R. H.: Achieving accurate spectrophotometric pH
measurements using unpurified meta-cresol purple, Mar. Chem., 190, 66–72,
2017.
Echevin, V., Aumont, O., Ledesma, J., and Flores, G.: The seasonal cycle of
surface chlorophyll in the Peruvian upwelling system: A modelling study,
Prog. Oceanogr., 79, 167–176,
https://doi.org/10.1016/j.pocean.2008.10.026, 2008.
Fassbender, A. J., Sabine, C. L., Feely, R. A., Langdon, C., and Mordy, C. W.: Inorganic
carbon dynamics during northern California coastal upwelling,
Cont. Shelf Res., 31, 1180–1192,
https://doi.org/10.1016/j.csr.2011.04.006, 2011.
Fassbender, A. J., Sabine, C. L., and Feifel, K. M.: Consideration of coastal
carbonate chemistry in understanding biological calcification, Geophys. Res.
Lett., 43, 4467–4476, https://doi.org/10.1002/2016GL068860,
2016.
Feely, R. A., Wanninkhof, R., Takahashi, T., and Tans, P.: Influence of El
Niño on the equatorial Pacific contribution to atmospheric CO2
accumulation, Nature, 398, 597–601,
https://doi.org/10.1038/19273, 1999.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.:
Evidence for upwelling of corrosive “acidified” water onto the continental
shelf, Science, 320, 1490–1492,
https://doi.org/10.1126/science.1155676, 2008.
Franco, A. C., Hernández-Ayón, J.M., Beier, E., Garçon, V.,
Maske, H., Paulmier, A., Färber-Lorda, J., Castro, R., and
Sosa-Ávalos, R.: Air-sea CO2 fluxes above the stratified oxygen minimum
zone in the coastal region off Mexico. J. Geophys. Res.-Oceans, 119,
2923–2937, 2014.
Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T. and Riebesell,
U.: Dynamics and stoichiometry of nutrients and phytoplankton in waters
influenced by the oxygen minimum zone in the eastern tropical Pacific, Deep
Sea Res. Pt. I., 62, 20–31,
https://doi.org/10.1016/j.dsr.2011.12.004, 2012.
Friederich, G. E., Ledesma, J., Ulloa, O., and Chavez, F. P.: Air–sea carbon
dioxide fluxes in the coastal southeastern tropical Pacific, Prog.
Oceanogr., 79, 156–166,
https://doi.org/10.1016/j.pocean.2008.10.001, 2008.
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., and Lange,
C.: Vertical and horizontal extension of the oxygen minimum zone in the
eastern South Pacific Ocean, Deep Sea Res. Pt. II,
56, 992–1003, https://doi.org/10.1016/j.dsr2.2008.11.001, 2009.
Gafar, N. A. and Schulz, K. G.: A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections, Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, 2018.
Galán, A., Molina, V., Thamdrup, B., Woebken, D., Lavik, G., Kuypers,
M. M., and Ulloa, O.: Anammox bacteria and the anaerobic oxidation of ammonium
in the oxygen minimum zone off northern Chile, Deep Sea Res. Pt. II, 56, 1021–1031,
https://doi.org/10.1016/j.dsr2.2008.09.016, 2009.
Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El
Niño, Int. J. Climatol., 38, 1296–1302,
https://doi.org/10.1002/joc.5426, 2018.
Gattuso, J. P., Epitalon, J. M., Lavigne, H., Orr, J., Gentili, B., Hagens,
M., Hofmann, A., Mueller, J. D., Proye, A., Rae, J., and Soetaert, K.: Package
“seacarb”, avaialable at: http://CRAN.R-project.org/package=seacarb, last access: 5 June 2020.
Gilly, W. F., Beman, J. M., Litvin, S. Y., and Robison, B. H.: Oceanographic and
biological effects of shoaling of the oxygen minimum zone, Ann. Rev. Mar.
Sci., 5, 393–420, https://doi.org/10.1146/annurev-marine-120710-100849,
2013.
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry
under global change, Philos. T. Roy. Soc. A, 369,
1980–1996, https://doi.org/10.1098/rsta.2011.0003, 2011.
Hamersley, M. R., Lavik, G., Woebken, D., Rattray, J. E., Lam, P., Hopmans,
E. C., Damsté, J. S. S., Krüger, S., Graco, M., Gutiérrez, D., and
Kuypers, M. M.: Anaerobic ammonium oxidation in the Peruvian oxygen minimum
zone, Limnol. Oceanogr., 52, 923–933,
https://doi.org/10.4319/lo.2007.52.3.0923, 2007.
Haugan, P. M. and Drange, H.: Effects of CO2 on the ocean environment,
Energy Convers. Manag., 37, 1019–1022,
https://doi.org/10.1016/0196-8904(95)00292-8, 1996.
Hauri, C., Gruber, N., Plattner, G. K., Alin, S., Feely, R. A., Hales, B., and
Wheeler, P. A.: Ocean acidification in the California current system, available at: https://www.jstor.org/stable/24861024 (last access: 22 June 2020), Oceanogr., 22, 60–71, 2009.
Hauss, H., Franz, J. M., and Sommer, U.: Changes in N: P stoichiometry
influence taxonomic composition and nutritional quality of phytoplankton in
the Peruvian upwelling, J. Sea Res., 73, 74–85, https://doi.org/10.1016/j.seares.2012.06.010, 2012.
Hofmann, G. E., Barry, J. P., Edmunds, P. J., Gates, R. D., Hutchins, D. A.,
Klinger, T., and Sewell, M. A.: The effect of ocean acidification on
calcifying organisms in marine ecosystems: an organism-to-ecosystem
perspective, Annu. Rev. Ecol. Evol. Syst., 41, 127–147,
https://doi.org/10.1146/annurev.ecolsys.110308.120227, 2010.
Igarza, M., Saìnchez, S., Bernales, A., Gutieìrrez, D., Meyer, J.,
Riebesell, U., Graco, M., Bach, L., Dittmar, T., and Niggemann, J.:
Dissolved organic matter production during an artificially-induced red tide
off central Peru, Biogeosciences, in preparation, 2022.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in a
warming world, Ann. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Koeve, W. and Oschlies, A.: Potential impact of DOM accumulation on fCO2 and carbonate ion computations in ocean acidification experiments, Biogeosciences, 9, 3787–3798, https://doi.org/10.5194/bg-9-3787-2012, 2012.
Lam, P., Lavik, G., Jensen, M.M., van de Vossenberg, J., Schmid, M.,
Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S., and Kuypers, M. M.:
Revising the nitrogen cycle in the Peruvian oxygen minimum zone, P. Natl. Acad. Sci. USA, 106, 4752–4757,
https://doi.org/10.1073/pnas.0812444106, 2009.
Lefèvre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., and
Smyth, T.: Observations of pCO2 in the coastal upwelling off Chile:
Spatial and temporal extrapolation using satellite data, J. Geophys. Res.-Oceans, 107, 1–15, https://doi.org/10.1029/2000JC000395,
2002.
Levin, L. A. and Breitburg, D. L.: Linking coasts and seas to address ocean
deoxygenation, Nat. Clim. Chang., 5, 401–403,
https://doi.org/10.1038/nclimate2595, 2015.
Lischka, S., Büdenbender, J., Boxhammer, T., and Riebesell, U.: Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth, Biogeosciences, 8, 919–932, https://doi.org/10.5194/bg-8-919-2011, 2011.
Loucaides, S., Tyrrell, T., Achterberg, E.P., Torres, R., Nightingale, P.D.,
Kitidis, V., Serret, P., Woodward, M., and Robinson, C.: Biological and
physical forcing of carbonate chemistry in an upwelling filament off
northwest Africa: Results from a Lagrangian study, Global Biogeochem. Cy., 26, GB3008, https://doi.org/10.1029/2011GB004216, 2012.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Ma, J., Shu, H., Yang, B., Byrne, R. H., and Yuan, D.: Spectrophotometric
determination of pH and carbonate ion concentrations in seawater: Choices,
constraints and consequences, Anal. Chim. Acta, 1081, 18–31,
https://doi.org/10.1016/j.aca.2019.06.024, 2019.
Maas, A. E., Wishner, K. F., and Seibel, B. A.: The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones, Biogeosciences, 9, 747–757, https://doi.org/10.5194/bg-9-747-2012, 2012.
Matear, R. J. and Hirst, A. C.: Long-term changes in dissolved oxygen
concentrations in the ocean caused by protracted global warming, Global Biogeochem. Cy., 17, 1125,
https://doi.org/10.1029/2002GB001997, 2003.
Matear, R. J., Hirst, A. C., and McNeil, B. I.: Changes in dissolved oxygen in
the Southern Ocean with climate change, Geochem. Geophys. Geosyst., 11,
https://doi.org/10.1029/2000GC000086, 2000.
McNeil, C. L. and Merlivat, L.: The warm oceanic surface layer: Implications
for CO2 fluxes and surface gas measurements,
Geophys. Res. Lett., 23, 3575–3578,
https://doi.org/10.1029/96GL03426, 1996.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.: Measurement
of the apparent dissociation constants of carbonic acid in seawater at
atmospheric pressure 1, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Messié, M. and Chavez, F. P.: Nutrient supply, surface currents, and
plankton dynamics predict zooplankton hotspots in coastal upwelling systems,
Geophys. Res. Lett., 44, 8979–8986,
https://doi.org/10.1002/2017GL074322, 2017.
Mogollón, R. and Calil, P. H.: Modelling the mechanisms and drivers of
the spatiotemporal variability of pCO2 and air–sea CO2 fluxes in
the Northern Humboldt Current System, Ocean Model., 132, 61–72,
https://doi.org/10.1016/j.ocemod.2018.10.005, 2018.
Montecino, V. and Lange, C. B.: The Humboldt Current System: Ecosystem
components and processes, fisheries, and sediment studies, Prog. Oceanogr.,
83, 65–79, https://doi.org/10.1016/j.pocean.2009.07.041,
2009.
Morris, A. W. and Riley, J. P.: The determination of nitrate in sea water,
Anal. Chim. Acta, 29, 272–279,
https://doi.org/10.1016/S0003-2670(00)88614-6, 1963.
Mullin, J. and Riley, J. P.: The colorimetric determination of silicate with
special reference to sea and natural waters, Anal. Chim. Acta, 12, 162–176,
https://doi.org/10.1016/S0003-2670(00)87825-3, 1955.
Murphy, J. A. M. E. S. and Riley, J. P.: A modified single solution method for the
determination of phosphate in natural waters, Anal. Chim. Acta, 27, 31–36,
https://doi.org/10.1016/S0003-2670(00)88444-5, 1962.
Myklestad, S. M.: Dissolved organic carbon from phytoplankton, Mar.
Chem., 5, 111–148, 2000.
Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P.: Comparison of ten packages that compute ocean carbonate chemistry, Biogeosciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-2015, 2015.
Orr, J. C., Epitalon, J. M., Dickson, A. G., and Gattuso, J. P.: Routine
uncertainty propagation for the marine carbon dioxide system, Mar. Chem.,
207, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006,
2018.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Paulmier, A., Ruiz-Pino, D., and Garçon, V.: The oxygen minimum zone
(OMZ) off Chile as intense source of CO2 and N2O, Cont. Shelf
Res., 28, 2746–2756,
https://doi.org/10.1016/j.csr.2008.09.012, 2008.
Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in the oxygen minimum zone (OMZ), Biogeosciences, 8, 239–252, https://doi.org/10.5194/bg-8-239-2011, 2011.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for
CO2 system calculations, ORNL/CDIAC-105a, Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
Raimondi, L., Matthews, J. B. R., Atamanchuk, D., Azetsu-Scott, K., and
Wallace, D. W.: The internal consistency of the marine carbon dioxide system
for high latitude shipboard and in situ monitoring, Mar. Chem., 213, 49–70,
https://doi.org/10.1016/j.marchem.2019.03.001, 2019.
Redfield, A. C.: The influence of organisms on the composition of seawater,
The Sea, 2, 26–77, 1963.
Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R., and Schulz, K. G.: Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research, Biogeosciences, 10, 1835–1847, https://doi.org/10.5194/bg-10-1835-2013, 2013.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K.,
Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P.,
Lohmann, D., and Toll, D.: The Global Land Data Assimilation System,
B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
RStudio Team: RStudio: Integrated Development for R. RStudio, Inc.,
Boston, MA URL, available at: https://www.rstudio.com/ (last access: 6 April 2021), 2015.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339, 2017.
Schulz, K. G. and Riebesell, U.: Diurnal changes in seawater carbonate
chemistry speciation at increasing atmospheric carbon dioxide, Mar. Biol.,
160, 1889–1899, https://doi.org/10.1007/s00227-012-1965-y,
2013.
Schulz, K. G., Bellerby, R. G. J., Brussaard, C. P. D., Büdenbender, J., Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S., Krug, S. A., Lischka, S., Ludwig, A., Meyerhöfer, M., Nondal, G., Silyakova, A., Stuhr, A., and Riebesell, U.: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide, Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, 2013.
Schulz, K.G., Bach, L.T., Bellerby, R.G., Bermúdez, R., Büdenbender,
J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A., Meyerhöfer, M. and
Larsen, A.: Phytoplankton blooms at increasing levels of atmospheric carbon
dioxide: experimental evidence for negative effects on prymnesiophytes and
positive on small picoeukaryotes, Front. Mar. Sci., 64,
https://doi.org/10.3389/fmars.2017.00064, 2017.
Schulz, K. G., Hartley, S., and Eyre, B.: Upwelling amplifies ocean
acidification on the East Australian Shelf: implications for marine
ecosystems, Front. Mar. Sci., 636,
https://doi.org/10.3389/fmars.2019.00636, 2019.
Schulz, K. G., Achterberg, E. P., Arístegui, J., Bach, L. T., Baños, I., Boxhammer, T., Erler, D., Igarza, M., Kalter, V., Ludwig, A., Löscher, C., Meyer, J., Meyer, J., Minutolo, F., von der Esch, E., Ward, B. B., and Riebesell, U.: Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification – a mesocosm approach, Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, 2021.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep Sea Res. Pt. I, 57, 587–595,
https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
Striebel, M., Kirchmaier, L. and Hingsamer, P.: Different mixing techniques
in experimental mesocosms – does mixing affect plankton biomass and
community composition?, Limnol. Oceanogr.-Meth., 11, 176–186,
https://doi.org/10.4319/lom.2013.11.176, 2013.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R.A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., and Watson,
A.: Climatological mean and decadal change in surface ocean pCO2, and
net sea–air CO2 flux over the global oceans,
Deep Sea Res. Pt. II, 56, 554–577,
https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Taucher, J., Bach, L. T., Boxhammer, T., Nauendorf, A., Achterberg, E. P.,
Algueró-Muñiz, M., Arístegui, J., Czerny, J., Esposito, M.,
Guan, W., and Haunost, M.: Influence of ocean acidification and deep water
upwelling on oligotrophic plankton communities in the subtropical North
Atlantic: insights from an in situ mesocosm study, Front Mar. Sci., 4, 85,
https://doi.org/10.3389/fmars.2017.00085, 2017.
Trenberth, K. E.: The definition of el nino, B. Am. Meteorol. Soc.,
78, 2771–2778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO> 2.0.CO;2, 1997.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep Sea Res., 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Van Geen, A., Takesue, R. K., Goddard, J., Takahashi, T., Barth, J. A., and
Smith, R.L.: Carbon and nutrient dynamics during coastal upwelling off Cape
Blanco, Oregon, Deep Sea Res. Pt. II, 47,
975–1002, https://doi.org/10.1016/S0967-0645(99)00133-2, 2000.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes, The
carbon cycle and atmospheric CO2: natural variations Archean to
present, 32, 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Whitney, F. A., Freeland, H. J., and Robert, M.: Persistently declining oxygen
levels in the interior waters of the eastern subarctic Pacific, Prog.
Oceanogr., 75, 179–199,
https://doi.org/10.1016/j.pocean.2007.08.007, 2007.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium,
kinetics, isotopes (No. 65), Gulf Professional Publishing, ISBN 9780444509468, 2001.
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and...
Altmetrics
Final-revised paper
Preprint