Articles | Volume 19, issue 14
Biogeosciences, 19, 3381–3393, 2022
https://doi.org/10.5194/bg-19-3381-2022
Biogeosciences, 19, 3381–3393, 2022
https://doi.org/10.5194/bg-19-3381-2022
BG Letters
 | Highlight paper
20 Jul 2022
BG Letters  | Highlight paper | 20 Jul 2022

Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

Niel Verbrigghe et al.

Related authors

Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022,https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Estimating the lateral transfer of organic carbon through the European river network using a land surface model
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022,https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022,https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022,https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-121,https://doi.org/10.5194/gmd-2022-121, 2022
Preprint under review for GMD
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022,https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022,https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
The European forest carbon budget under future climate conditions and current management practices
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022,https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022,https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022,https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary

Cited articles

Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., and Riley, W. J.: Soil Organic Matter Temperature Sensitivity Cannot Be Directly Inferred from Spatial Gradients, Global Biogeochem. Cy., 33, 761–776, 2019. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. a
Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M. D., and Fontaine, S.: Catalytic Power of Enzymes Decreases with Temperature: New Insights for Understanding Soil C Cycling and Microbial Ecology under Warming, Glob. Change Biol., 24, 4238–4250, https://doi.org/10.1111/gcb.14281, 2018. a
Arnalds, O.: The Soils of Iceland, World Soils Book Series, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-9621-7, 2015. a, b
Bárcena, T. G., Gundersen, P., and Vesterdal, L.: Afforestation Effects on SOC in Former Cropland: Oak and Spruce Chronosequences Resampled after 13 Years, Glob. Change Biol., 20, 2938–2952, 2014. a
Download
Co-editor-in-chief
The authors adopted a new and attractive approach, based on the use of thermal springs appearing at different times, to study the short-term and long-term (> 50 years) effect of warming on the soil C stock under subarctic grasslands. This new approach allows to take a new look at the question of a positive feedback between temperature and soils that can amplify global warming. Indeed, most studies on this subject are based on warming experiments conducted over the short term (some years) or on questionable correlative approaches where the temperature co-varies with many other factors (e.g., study of soil C stocks along latitudinal temperature gradients). Their study challenges the current dominant view on the effect of warming on the dynamics of SOM. Indeed, results suggest that soil C losses in the subarctic grasslands studied cease after 5 years of warming. These observations corroborate those obtained in the rare ecosystem warming experiments maintained beyond 10 years. In addition, results suggest that the C stocks present in the deep soil horizons, where plant roots are not or hardly present, are not affected by warming. These unexpected discoveries, together with other recent observations, show the glaring lack of knowledge on the fundamental mechanisms of the effect of temperature on catalytic processes, which seriously compromises our ability to predict the soil-climate feedback.
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Altmetrics
Final-revised paper
Preprint