Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3381-2022
https://doi.org/10.5194/bg-19-3381-2022
BG Letters
 | Highlight paper
 | 
20 Jul 2022
BG Letters | Highlight paper |  | 20 Jul 2022

Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens

Related authors

Dynamics and environmental drivers of methane and nitrous oxide fluxes at the soil and ecosystem levels in a wet tropical forest
Laëtitia Bréchet, Mercedes Ibáñez, Robert B. Jackson, Benoît Burban, Clément Stahl, Damien Bonal, and Ivan A. Janssens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3501,https://doi.org/10.5194/egusphere-2025-3501, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Increased soil CO2 emissions after basalt amendment were partly offset by biochar addition in an urban field experiment
Arthur Vienne, Jennifer Newell, Jasper Roussard, Rory Doherty, Siobhan F. Cox, Gary Lyons, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-3232,https://doi.org/10.5194/egusphere-2025-3232, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Accounting for empirical global soil organic characteristics and moisture heterogeneities in soil organic decomposition scheme of land surface models
Elodie Salmon, Bertrand Guenet, and Agnès Ducharne
EGUsphere, https://doi.org/10.5194/egusphere-2025-3511,https://doi.org/10.5194/egusphere-2025-3511, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Water vapour dynamics as a key determinant of atmospheric composition and transport mechanisms
Andrew S. Kowalski, Ivan A. Janssens, and Óscar Pérez-Priego
EGUsphere, https://doi.org/10.5194/egusphere-2025-2695,https://doi.org/10.5194/egusphere-2025-2695, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Effects of basalt, concrete fines, and steel slag on maize growth and toxic trace element accumulation in an enhanced weathering experiment
Jet Rijnders, Arthur Vienne, and Sara Vicca
Biogeosciences, 22, 2803–2829, https://doi.org/10.5194/bg-22-2803-2025,https://doi.org/10.5194/bg-22-2803-2025, 2025
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Disentangling future effects of climate change and forest disturbance on vegetation composition and land surface properties of the boreal forest
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025,https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Simulating vertical phytoplankton dynamics in a stratified ocean using a two-layered ecosystem model
Qi Zheng, Johannes J. Viljoen, Xuerong Sun, Žarko Kovač, Shubha Sathyendranath, and Robert J. W. Brewin
Biogeosciences, 22, 3253–3278, https://doi.org/10.5194/bg-22-3253-2025,https://doi.org/10.5194/bg-22-3253-2025, 2025
Short summary
Assessing the lifetime of anthropogenic CO2 and its sensitivity to different carbon cycle processes
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
Biogeosciences, 22, 2767–2801, https://doi.org/10.5194/bg-22-2767-2025,https://doi.org/10.5194/bg-22-2767-2025, 2025
Short summary
Foliar nutrient uptake from dust sustains plant nutrition
Anton Lokshin, Daniel Palchan, Elnatan Golan, Ran Erel, Daniele Andronico, and Avner Gross
Biogeosciences, 22, 2653–2666, https://doi.org/10.5194/bg-22-2653-2025,https://doi.org/10.5194/bg-22-2653-2025, 2025
Short summary
The effectiveness of agricultural carbon dioxide removal using the University of Victoria Earth System Climate Model
Rebecca Chloe Evans and H. Damon Matthews
Biogeosciences, 22, 1969–1984, https://doi.org/10.5194/bg-22-1969-2025,https://doi.org/10.5194/bg-22-1969-2025, 2025
Short summary

Cited articles

Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., and Riley, W. J.: Soil Organic Matter Temperature Sensitivity Cannot Be Directly Inferred from Spatial Gradients, Global Biogeochem. Cy., 33, 761–776, 2019. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. a
Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M. D., and Fontaine, S.: Catalytic Power of Enzymes Decreases with Temperature: New Insights for Understanding Soil C Cycling and Microbial Ecology under Warming, Glob. Change Biol., 24, 4238–4250, https://doi.org/10.1111/gcb.14281, 2018. a
Arnalds, O.: The Soils of Iceland, World Soils Book Series, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-9621-7, 2015. a, b
Bárcena, T. G., Gundersen, P., and Vesterdal, L.: Afforestation Effects on SOC in Former Cropland: Oak and Spruce Chronosequences Resampled after 13 Years, Glob. Change Biol., 20, 2938–2952, 2014. a
Download
Co-editor-in-chief
The authors adopted a new and attractive approach, based on the use of thermal springs appearing at different times, to study the short-term and long-term (> 50 years) effect of warming on the soil C stock under subarctic grasslands. This new approach allows to take a new look at the question of a positive feedback between temperature and soils that can amplify global warming. Indeed, most studies on this subject are based on warming experiments conducted over the short term (some years) or on questionable correlative approaches where the temperature co-varies with many other factors (e.g., study of soil C stocks along latitudinal temperature gradients). Their study challenges the current dominant view on the effect of warming on the dynamics of SOM. Indeed, results suggest that soil C losses in the subarctic grasslands studied cease after 5 years of warming. These observations corroborate those obtained in the rare ecosystem warming experiments maintained beyond 10 years. In addition, results suggest that the C stocks present in the deep soil horizons, where plant roots are not or hardly present, are not affected by warming. These unexpected discoveries, together with other recent observations, show the glaring lack of knowledge on the fundamental mechanisms of the effect of temperature on catalytic processes, which seriously compromises our ability to predict the soil-climate feedback.
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Share
Altmetrics
Final-revised paper
Preprint