Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3381-2022
https://doi.org/10.5194/bg-19-3381-2022
BG Letters
 | Highlight paper
 | 
20 Jul 2022
BG Letters | Highlight paper |  | 20 Jul 2022

Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens

Related authors

Investigating the complementarity of thermal and physical soil organic carbon fractions
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024,https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Effects of basalt, concrete fines, and steel slag on maize growth and heavy metal accumulation in an enhanced weathering experiment
Jet Rijnders, Arthur Vienne, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2024-3022,https://doi.org/10.5194/egusphere-2024-3022, 2024
Short summary
Overview: Global change effects on terrestrial biogeochemistry at the plant–soil interface
Lucia Fuchslueger, Emily Francesca Solly, Alberto Canarini, and Albert Carles Brangarí
Biogeosciences, 21, 3959–3964, https://doi.org/10.5194/bg-21-3959-2024,https://doi.org/10.5194/bg-21-3959-2024, 2024
Short summary
Annual net CO2 fluxes from drained organic soils used for agriculture in the hemiboreal region of Europe
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-2523,https://doi.org/10.5194/egusphere-2024-2523, 2024
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024,https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024,https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024,https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024,https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024,https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary

Cited articles

Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., and Riley, W. J.: Soil Organic Matter Temperature Sensitivity Cannot Be Directly Inferred from Spatial Gradients, Global Biogeochem. Cy., 33, 761–776, 2019. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. a
Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M. D., and Fontaine, S.: Catalytic Power of Enzymes Decreases with Temperature: New Insights for Understanding Soil C Cycling and Microbial Ecology under Warming, Glob. Change Biol., 24, 4238–4250, https://doi.org/10.1111/gcb.14281, 2018. a
Arnalds, O.: The Soils of Iceland, World Soils Book Series, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-9621-7, 2015. a, b
Bárcena, T. G., Gundersen, P., and Vesterdal, L.: Afforestation Effects on SOC in Former Cropland: Oak and Spruce Chronosequences Resampled after 13 Years, Glob. Change Biol., 20, 2938–2952, 2014. a
Download
Co-editor-in-chief
The authors adopted a new and attractive approach, based on the use of thermal springs appearing at different times, to study the short-term and long-term (> 50 years) effect of warming on the soil C stock under subarctic grasslands. This new approach allows to take a new look at the question of a positive feedback between temperature and soils that can amplify global warming. Indeed, most studies on this subject are based on warming experiments conducted over the short term (some years) or on questionable correlative approaches where the temperature co-varies with many other factors (e.g., study of soil C stocks along latitudinal temperature gradients). Their study challenges the current dominant view on the effect of warming on the dynamics of SOM. Indeed, results suggest that soil C losses in the subarctic grasslands studied cease after 5 years of warming. These observations corroborate those obtained in the rare ecosystem warming experiments maintained beyond 10 years. In addition, results suggest that the C stocks present in the deep soil horizons, where plant roots are not or hardly present, are not affected by warming. These unexpected discoveries, together with other recent observations, show the glaring lack of knowledge on the fundamental mechanisms of the effect of temperature on catalytic processes, which seriously compromises our ability to predict the soil-climate feedback.
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Altmetrics
Final-revised paper
Preprint