Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3381-2022
https://doi.org/10.5194/bg-19-3381-2022
BG Letters
 | Highlight paper
 | 
20 Jul 2022
BG Letters | Highlight paper |  | 20 Jul 2022

Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens

Related authors

Challenges in the use of local data for regional scale mapping of C and N stocks in the continuous permafrost zone at the Yukon Coastal Plain
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
SOIL, 12, 113–132, https://doi.org/10.5194/soil-12-113-2026,https://doi.org/10.5194/soil-12-113-2026, 2026
Short summary
Absence of nitrogen threshold effect on soil respiration leads to an underestimation of global soil carbon sequestration in model
Daju Wang, Ruowen Yang, Lei Cai, Pierre Gentine, César Terrer, Shuli Niu, Mirco Migliavacca, Wenping Yuan, Ryunosuke Tateno, Junlan Xiao, Josep Peñuelas, Caixian Tang, Yongshuo H. Fu, and Weiyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2026-296,https://doi.org/10.5194/egusphere-2026-296, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
IPSL-Perm-LandN: improving the IPSL Earth System Model to represent permafrost carbon-nitrogen interactions
Rémi Gaillard, Patricia Cadule, Philippe Peylin, Nicolas Vuichard, and Bertrand Guenet
Geosci. Model Dev., 19, 661–711, https://doi.org/10.5194/gmd-19-661-2026,https://doi.org/10.5194/gmd-19-661-2026, 2026
Short summary
Subsets of geostationary satellite data over international observing network sites for studying the diurnal dynamics of energy, carbon, and water cycles
Hirofumi Hashimoto, Weile Wang, Taejin Park, Sepideh Khajehei, Kazuhito Ichii, Andrew R. Michaelis, Alberto Guzman, Ramakrishna R. Nemani, Margaret S. Torn, Koong Yi, and Ian G. Brosnan
Earth Syst. Sci. Data, 18, 397–410, https://doi.org/10.5194/essd-18-397-2026,https://doi.org/10.5194/essd-18-397-2026, 2026
Short summary
A general physiologically driven representation of leaf turnover in grasslands in the QUINCY land surface model (revision: 974a6b7f)
Josua Seitz, Midori Yajima, Yu Zhu, Lumnesh Swaroop Kumar Joseph, Jinyan Yang, Fabrice Lacroix, Yunpeng Luo, Andreas Schaumberger, Michael Bahn, Sönke Zaehle, and Silvia Caldararu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5731,https://doi.org/10.5194/egusphere-2025-5731, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., and Riley, W. J.: Soil Organic Matter Temperature Sensitivity Cannot Be Directly Inferred from Spatial Gradients, Global Biogeochem. Cy., 33, 761–776, 2019. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. a
Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M. D., and Fontaine, S.: Catalytic Power of Enzymes Decreases with Temperature: New Insights for Understanding Soil C Cycling and Microbial Ecology under Warming, Glob. Change Biol., 24, 4238–4250, https://doi.org/10.1111/gcb.14281, 2018. a
Arnalds, O.: The Soils of Iceland, World Soils Book Series, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-9621-7, 2015. a, b
Bárcena, T. G., Gundersen, P., and Vesterdal, L.: Afforestation Effects on SOC in Former Cropland: Oak and Spruce Chronosequences Resampled after 13 Years, Glob. Change Biol., 20, 2938–2952, 2014. a
Download
Co-editor-in-chief
The authors adopted a new and attractive approach, based on the use of thermal springs appearing at different times, to study the short-term and long-term (> 50 years) effect of warming on the soil C stock under subarctic grasslands. This new approach allows to take a new look at the question of a positive feedback between temperature and soils that can amplify global warming. Indeed, most studies on this subject are based on warming experiments conducted over the short term (some years) or on questionable correlative approaches where the temperature co-varies with many other factors (e.g., study of soil C stocks along latitudinal temperature gradients). Their study challenges the current dominant view on the effect of warming on the dynamics of SOM. Indeed, results suggest that soil C losses in the subarctic grasslands studied cease after 5 years of warming. These observations corroborate those obtained in the rare ecosystem warming experiments maintained beyond 10 years. In addition, results suggest that the C stocks present in the deep soil horizons, where plant roots are not or hardly present, are not affected by warming. These unexpected discoveries, together with other recent observations, show the glaring lack of knowledge on the fundamental mechanisms of the effect of temperature on catalytic processes, which seriously compromises our ability to predict the soil-climate feedback.
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Share
Altmetrics
Final-revised paper
Preprint