Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Christian S. Zang
Department of Forestry, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
Zlatan Angelov
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Aline Anderson de Castro
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Juan Carlos Jimenez
GCU/IPL, University of Valencia, Valencia, Spain
Luiz Felipe Campos De Rezende
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Romina C. Ruscica
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Boris Sakschewski
Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Telegrafenberg A31, Potsdam, Germany
Anna A. Sörensson
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Kirsten Thonicke
Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Telegrafenberg A31, Potsdam, Germany
Carolina Vera
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Nicolas Viovy
LSCE, CEA–CNRS–Université Paris-Saclay, Saclay, France
Celso Von Randow
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Anja Rammig
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Related authors
Benjamin Franklin Meyer, João Paulo Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-3352, https://doi.org/10.5194/egusphere-2024-3352, 2024
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show it's capability at capturing species-specific evapotranspiration responses to drought and reproducing flux observations of both gross primary production and evapotranspiration.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
Weather Clim. Dynam., 5, 1505–1522, https://doi.org/10.5194/wcd-5-1505-2024, https://doi.org/10.5194/wcd-5-1505-2024, 2024
Short summary
Short summary
The interplay between the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is well-researched in the tropical Indian Ocean, but their effects on the Southern Hemisphere's extratropical regions during spring are less studied. We show that the positive phase of the IOD can strengthen the El Niño circulation anomalies, heightening their continental impacts. On the other hand, negative IOD combined with La Niña shows less consistent changes among the different methodologies.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Benjamin Franklin Meyer, João Paulo Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-3352, https://doi.org/10.5194/egusphere-2024-3352, 2024
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show it's capability at capturing species-specific evapotranspiration responses to drought and reproducing flux observations of both gross primary production and evapotranspiration.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-2592, https://doi.org/10.5194/egusphere-2024-2592, 2024
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they’ve changed from 1901 to 2018. We found that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation has increased, especially in the tropics, while N limitation has decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter Verburg, and Yuki Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2551, https://doi.org/10.5194/egusphere-2024-2551, 2024
Short summary
Short summary
An interdisciplinary collaboration of 35 international researchers from 34 institutions highlighting nine recent findings in biosphere research. Within these themes, they discuss issues arising from climate change and other anthropogenic stressors, and highlight the co-benefits of nature-based solutions and ecosystem services. They discuss recent findings in the context of global trade and international policy frameworks, and highlight lessons for local implementation of nature-based solutions.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1914, https://doi.org/10.5194/egusphere-2024-1914, 2024
Short summary
Short summary
Under climate change, the conditions for wildfires to form are becoming more frequent in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a crucial platform for future developments.
Renata Moura da Veiga, Celso von Randow, Chantelle Burton, Douglas Kelley, Manoel Cardoso, and Fabiano Morelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2348, https://doi.org/10.5194/egusphere-2024-2348, 2024
Short summary
Short summary
We systematically reviewed 69 papers on fire emissions from the Brazilian Cerrado biome to provide insights into its placement in the atmospheric carbon budget and support future improved estimation. We find that estimating fire emissions in the Cerrado requires a comprehensive approach, combining quantitative and qualitative aspects of fire. A pathway towards this is the inclusion of fire management representation in land surface models and the integration of observational and modelling data.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Ben F. Meyer, Tom A. M. Pugh, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1028, https://doi.org/10.5194/egusphere-2024-1028, 2024
Short summary
Short summary
Disturbances (e.g. fire) can change which species grow in a forest, affecting water, carbon, energy flows, and the climate. They are expected to increase with climate change, but it is uncertain by how much. We studied how future climate and disturbances might impact vegetation with a simulation model. Our findings highlight the importance of considering both factors, with future disturbance patterns posing significant uncertainty. More research is needed to understand their future development.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
L. Cappelletti, A. Sörensson, R. Ruscica, M. M. Salvia, E. Jobbágy, S. Kuppel, and L. Fita
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 279–283, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-279-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-279-2020, 2020
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Allan Buras, Anja Rammig, and Christian S. Zang
Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, https://doi.org/10.5194/bg-17-1655-2020, 2020
Short summary
Short summary
This study compares the climatic conditions and ecosystem response of the extreme European drought of 2018 with the previous extreme drought of 2003. Using gridded climate data and satellite-based remote sensing information, our analyses qualify 2018 as the new European record drought with wide-ranging negative impacts on European ecosystems. Given the observation of forest-legacy effects in 2019 we call for Europe-wide forest monitoring to assess forest vulnerability to climate change.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Kirsten Thonicke, Fanny Langerwisch, Matthias Baumann, Pedro J. Leitão, Tomáš Václavík, Ane Alencar, Margareth Simões, Simon Scheiter, Liam Langan, Mercedes Bustamante, Ignacio Gasparri, Marina Hirota, Jan Börner, Raoni Rajao, Britaldo Soares-Filho, Alberto Yanosky, José-Manuel Ochoa-Quinteiro, Lucas Seghezzo, Georgina Conti, and Anne Cristina de la Vega-Leinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-221, https://doi.org/10.5194/bg-2019-221, 2019
Publication in BG not foreseen
Short summary
Short summary
Tropical dry forests and savannas harbor unique biodiversity and provide critical ecosystem services (ES), yet they are under severe pressure globally. We need to improve our understanding of how and when this pressure provokes tipping points in biodiversity and the associated social-ecological systems. We propose an approach to investigate how drivers leading to natural vegetation decline trigger biodiversity tipping and illustrate it using the example of the Dry Diagonal in South America.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary
Short summary
Here we provide a comprehensive model description of a global terrestrial biosphere model, named LPJmL4, incorporating the carbon and water cycle and the quantification of agricultural production. The model allows for the consistent and joint quantification of climate and land use change impacts on the biosphere. The model represents the key ecosystem functions, but also the influence of humans on the biosphere. It comes with an evaluation paper to demonstrate the credibility of LPJmL4.
Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha
Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, https://doi.org/10.5194/gmd-11-1377-2018, 2018
Short summary
Short summary
Here we provide a comprehensive evaluation of the now launched version 4.0 of the LPJmL biosphere, water, and agricultural model. The article is the second part to a comprehensive description of the LPJmL4 model. We have evaluated the model against various datasets of satellite observations, agricultural statistics, and in situ measurements by applying a range of metrics. We are able to show that the LPJmL4 model simulates many parameters and relations reasonably.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Susanne Rolinski, Christoph Müller, Jens Heinke, Isabelle Weindl, Anne Biewald, Benjamin Leon Bodirsky, Alberte Bondeau, Eltje R. Boons-Prins, Alexander F. Bouwman, Peter A. Leffelaar, Johnny A. te Roller, Sibyll Schaphoff, and Kirsten Thonicke
Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, https://doi.org/10.5194/gmd-11-429-2018, 2018
Short summary
Short summary
One-third of the global land area is covered with grasslands which are grazed by or mowed for livestock feed. These areas contribute significantly to the carbon capture from the atmosphere when managed sensibly. To assess the effect of this management, we included different options of grazing and mowing into the global model LPJmL 3.6. We found in polar regions even low grazing pressure leads to soil carbon loss whereas in temperate regions up to 1.4 livestock units per hectare can be sustained.
Matthias Forkel, Wouter Dorigo, Gitta Lasslop, Irene Teubner, Emilio Chuvieco, and Kirsten Thonicke
Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, https://doi.org/10.5194/gmd-10-4443-2017, 2017
Short summary
Short summary
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how fires should be accurately represented in global vegetation models. We introduce here a new flexible data-driven fire modelling approach that allows us to explore sensitivities of burned areas to satellite and climate datasets. Our results suggest combining observations with data-driven and process-oriented fire models to better understand the role of fires in the Earth system.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Marcio T. A. H. Muella, Marcelo H. Duarte-Silva, Alison O. Moraes, Eurico R. de Paula, Luiz F. C. de Rezende, Lucilla Alfonsi, and Bruno J. Affonso
Ann. Geophys., 35, 1201–1218, https://doi.org/10.5194/angeo-35-1201-2017, https://doi.org/10.5194/angeo-35-1201-2017, 2017
Short summary
Short summary
In this study we analyzed ~ 17 years of GPS data from receivers installed in the observatory of Cachoeira Paulista, Brazil. We statistically analyzed the occurrence of GPS signal amplitude fluctuations caused by irregularities in the Earth's upper atmosphere. These signal fluctuations are known to provoke positional errors for GPS users. The results revealed that the secular variations in the Earth’s magnetic field are affecting the climatology of such GPS signal fluctuations.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Elisângela Broedel, Celso Von Randow, Luz Adriana Cuartas, Antonio Donato Nobre, Alessandro Carioca de Araújo, Bart Kruijt, Etienne Tourigny, Luiz Antônio Cândido, Martin Hodnett, and Javier Tomasella
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-203, https://doi.org/10.5194/hess-2017-203, 2017
Revised manuscript not accepted
Short summary
Short summary
This work describes the simulation of surface fluxes in two distinct environments along a topographic gradient in a central Amazonian forest using the INLAND Model. The results show that a surface model can capture the small differences related to energy, water and carbon balance between both sites. These confirms the importance to incorporate subgrid scale variability by including relief attributes of topography, soil and vegetation to better representing Terra Firme forests in these models.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
F. Langerwisch, A. Walz, A. Rammig, B. Tietjen, K. Thonicke, and W. Cramer
Earth Syst. Dynam., 7, 559–582, https://doi.org/10.5194/esd-7-559-2016, https://doi.org/10.5194/esd-7-559-2016, 2016
Short summary
Short summary
In Amazonia, carbon fluxes are considerably influenced by annual flooding. We applied the newly developed model RivCM to several climate change scenarios to estimate potential changes in riverine carbon. We find that climate change causes substantial changes in riverine organic and inorganic carbon, as well as changes in carbon exported to the atmosphere and ocean. Such changes could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
C. Yue, P. Ciais, P. Cadule, K. Thonicke, and T. T. van Leeuwen
Geosci. Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015, https://doi.org/10.5194/gmd-8-1321-2015, 2015
Short summary
Short summary
We conducted parallel simulations using a global land surface model, with and without fires being included, respectively. When the anthropogenic land cover change fire is excluded, we find that natural wildfires have reduced the global land carbon uptake by 0.3Pg C per year over 1901-2012. This is equivalent to 20% of the land carbon uptake in a world without fire. This fire-induced reduction in carbon uptake could be partly explained by climate variability, in particular the ENSO events.
S. Rolinski, A. Rammig, A. Walz, W. von Bloh, M. van Oijen, and K. Thonicke
Biogeosciences, 12, 1813–1831, https://doi.org/10.5194/bg-12-1813-2015, https://doi.org/10.5194/bg-12-1813-2015, 2015
Short summary
Short summary
Extreme weather events can but do not have to cause extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions.
We use a simple probabilistic risk assessment and apply it to terrestrial ecosystems, defining a hazard as negative net biome productivity. In Europe, ecosystems are vulnerable to drought in the Mediterranean and temperate region, whereas vulnerability in Scandinavia is not caused by water shortages.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
G. Martins, C. von Randow, G. Sampaio, and A. J. Dolman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-671-2015, https://doi.org/10.5194/hessd-12-671-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Studies on numerical modeling in Amazonia show that the models fail to capture important aspects of climate variability in this region and it is important to understand the reasons that cause this drawback. We study how the general circulation models of the CMIP5 simulate the inter-relations between regional precipitation, moisture convergence and SST in the adjacent oceans, to assess how flaws in the representation of these processes can translate into biases in simulated rainfall in Amazonia.
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
M. Forkel, N. Carvalhais, S. Schaphoff, W. v. Bloh, M. Migliavacca, M. Thurner, and K. Thonicke
Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, https://doi.org/10.5194/bg-11-7025-2014, 2014
Y. Wei, S. Liu, D. N. Huntzinger, A. M. Michalak, N. Viovy, W. M. Post, C. R. Schwalm, K. Schaefer, A. R. Jacobson, C. Lu, H. Tian, D. M. Ricciuto, R. B. Cook, J. Mao, and X. Shi
Geosci. Model Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-2014, https://doi.org/10.5194/gmd-7-2875-2014, 2014
M. Van Oijen, J. Balkovi, C. Beer, D. R. Cameron, P. Ciais, W. Cramer, T. Kato, M. Kuhnert, R. Martin, R. Myneni, A. Rammig, S. Rolinski, J.-F. Soussana, K. Thonicke, M. Van der Velde, and L. Xu
Biogeosciences, 11, 6357–6375, https://doi.org/10.5194/bg-11-6357-2014, https://doi.org/10.5194/bg-11-6357-2014, 2014
Short summary
Short summary
We use a new risk analysis method, and six vegetation models, to analyse how climate change may alter drought risks in European ecosystems. The conclusions are (1) drought will pose increasing risks to productivity in the Mediterranean area; (2) this is because severe droughts will become more frequent, not because ecosystems will become more vulnerable; (3) future C sequestration will be at risk because carbon gain in primary productivity will be more affected than carbon loss in respiration.
C. Yue, P. Ciais, P. Cadule, K. Thonicke, S. Archibald, B. Poulter, W. M. Hao, S. Hantson, F. Mouillot, P. Friedlingstein, F. Maignan, and N. Viovy
Geosci. Model Dev., 7, 2747–2767, https://doi.org/10.5194/gmd-7-2747-2014, https://doi.org/10.5194/gmd-7-2747-2014, 2014
Short summary
Short summary
ORCHIDEE-SPITFIRE model could moderately capture the decadal trend and variation of burned area during the 20th century, and the spatial and temporal patterns of contemporary vegetation fires. The model has a better performance in simulating fires for regions dominated by climate-driven fires, such as boreal forests. However, it has limited capability to reproduce the infrequent but important large fires in different ecosystems, where urgent model improvement is needed in the future.
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
Related subject area
Biogeochemistry: Air - Land Exchange
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
An elucidatory model of oxygen’s partial pressure inside substomatal cavities
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024, https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere. This can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may overestimate the quantity available for exchange by a factor of 5–20, suggesting that ammonia emissions from soil may be overestimated.
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024, https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures of ≥ −10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice-nucleating particles in the air above the Alps, potentially affecting mixed-phase cloud development.
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024, https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emission reductions.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
EGUsphere, https://doi.org/10.5194/egusphere-2024-752, https://doi.org/10.5194/egusphere-2024-752, 2024
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Cited articles
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Aragão, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S.,
Anderson, L. O., and Shimabukuro, Y. E.: Spatial patterns and fire response
of recent Amazonian droughts, Geophys. Res. Lett., 34, L07701,
https://doi.org/10.1029/2006GL028946, 2007.
Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O.
L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry,
N. J., Boeckx, P., Jong, B. H. J., DeVries, B., Girardin, C. A. J.,
Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y.,
Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C.
M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini,
R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical
biomass map using multiple reference datasets, Glob. Change Biol., 22,
1406–1420, https://doi.org/10.1111/gcb.13139, 2016.
Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., and
Mechoso, C. R.: A Recent Systematic Increase in Vapor Pressure Deficit over
Tropical South America, Sci. Rep., 9, 15331, https://doi.org/10.1038/s41598-019-51857-8, 2019.
Blacutt, L. A., Herdies, D. L., de Gonçalves, L. G. G., Vila, D. A., and
Andrade, M.: Precipitation comparison for the CFSR, MERRA, TRMM3B42 and
Combined Scheme datasets in Bolivia, Atmos. Res., 163, 117–131,
https://doi.org/10.1016/j.atmosres.2015.02.002, 2015.
Burton, C., Rifai, S., and Malhi, Y.: Inter-comparison and assessment of
gridded climate products over tropical forests during the 2015/2016 El
Niño, Philos. T. Roy. Soc. B, 373, 20170406, https://doi.org/10.1098/rstb.2017.0406, 2018.
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins,
M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J.,
Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO
and greenhouse warming, Nat. Clim. Change, 5, 849–859, https://doi.org/10.1038/nclimate2743, 2015.
Castro, A. O., Chen, J., Zang, C. S., Shekhar, A., Jimenez, J. C.,
Bhattacharjee, S., Kindu, M., Morales, V. H., and Rammig, A.: OCO-2
Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the
Amazon Basin and the Extreme Drought Effects of El Niño (2015–2016),
12, 1202–1202, https://doi.org/10.3390/rs12071202, 2020.
Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-llossera, M.,
Camps, A., and Entekhabi, D.: Sensitivity of L-band vegetation optical depth
to carbon stocks in tropical forests: a comparison to higher frequencies and
optical indices, Remote Sens. Environ., 232, 111303,
https://doi.org/10.1016/j.rse.2019.111303, 2019.
Climate Hazards Group: Climate Hazards Group Infrared Precipitation with Stations, Department of Geography, University of
California at Santa Barbara [data set], ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/, last access: 5 November 2020.
Coelho, C. A. S., Cavalcanti, I. A. F., Costa, S. M. S., Freitas, S. R.,
Ito, E. R., Luz, G., Santos, A. F., Nobre, C. A., Marengo, J. A., and Pezza,
A. B.: Climate diagnostics of three major drought events in the Amazon and
illustrations of their seasonal precipitation predictions, Met. Apps, 19,
237–255, https://doi.org/10.1002/met.1324, 2012.
Compo, G. P., Sardeshmukh, P. D., Whitaker, J. S., Brohan, P., Jones, P. D.,
and McColl, C.: Independent confirmation of global land warming without the
use of station temperatures, Geophys. Res. Lett., 40, 3170–3174,
https://doi.org/10.1002/grl.50425, 2013.
Covey, C., Gleckler, P. J., Doutriaux, C., Williams, D. N., Dai, A.,
Fasullo, J., Trenberth, K., and Berg, A.: Metrics for the Diurnal Cycle of
Precipitation: Toward Routine Benchmarks for Climate Models, J. Climate, 29, 4461–447129, https://doi.org/10.1175/JCLI-D-15-0664.1, 2016.
da Rocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C., Pinto, L. D.
V. O., de Freitas, H. C., and e Silva Figueira, A. M.: SEASONALITY OF WATER
AND HEAT FLUXES OVER A TROPICAL FOREST IN EASTERN AMAZONIA, Ecol. Appl., 14, 22–32, https://doi.org/10.1890/02-6001, 2004.
Dirmeyer, P. A., Schlosser, C. A., and Brubaker, K. L.: Precipitation,
Recycling, and Land Memory: An Integrated Analysis, J. Hydrometeorol., 10, 278–288, https://doi.org/10.1175/2008JHM1016.1, 2009.
Dirmeyer, P. A., Cash, B. A., Kinter, J. L., Jung, T., Marx, L., Satoh, M.,
Stan, C., Tomita, H., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M.,
Altshuler, E. L., Huang, B., Jin, E. K., and Manganello, J.: Simulating the
diurnal cycle of rainfall in global climate models: resolution versus
parameterization, Clim. Dynam., 39, 399–418, https://doi.org/10.1007/s00382-011-1127-9, 2012.
Doblas-Reyes, F. J., Sorensson, A. A., Almazroui, M., Dosio, A., Gutowski,
W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B. L.,
Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., and
Zuo, Z.: Linking global to regional climate change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O.,
Yu, R., and Zhou, B., in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1363–1512, https://doi.org/10.1017/9781009157896.012, 2021.
Döll, P. and Lehner, B.: Validation of a new global 30-min drainage
direction map, J. Hydrol., 258, 214–231, https://doi.org/10.1016/S0022-1694(01)00565-0, 2002.
Espinoza, J. C., Sörensson, A. A., Ronchail, J., Molina-Carpio, J.,
Segura, H., Gutierrez-Cori, O., Ruscica, R., Condom, T., and
Wongchuig-Correa, S.: Regional hydro-climatic changes in the Southern Amazon
Basin (Upper Madeira Basin) during the 1982–2017 period, Journal of
Hydrology: Regional Studies, 26, 100637, https://doi.org/10.1016/j.ejrh.2019.100637, 2019.
Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., et al.: Compositional response of Amazon forests to climate
change, Glob. Change Biol., 25, 39–56, https://doi.org/10.1111/gcb.14413, 2019.
European Centre for Medium-Range Weather Forecasts: ERA5 [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 3 March 2020.
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,
Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Alarcón, A.,
Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E.
O. C., Arroyo, L., Aymard C., G. A., Baker, T. R., Baraloto, C., Barroso,
J., Bonal, D., Castro, W., Chama, V., Chave, J., Domingues, T. F., Fauset,
S., Groot, N., Honorio Coronado, E., Laurance, S., Laurance, W. F., Lewis,
S. L., Licona, J. C., Marimon, B. S., Marimon-Junior, B. H., Mendoza
Bautista, C., Neill, D. A., Oliveira, E. A., Oliveira dos Santos, C.,
Pallqui Camacho, N. C., Pardo-Molina, G., Prieto, A., Quesada, C. A.,
Ramírez, F., Ramírez-Angulo, H., Réjou-Méchain, M., Rudas,
A., Saiz, G., Salomão, R. P., Silva-Espejo, J. E., Silveira, M., ter
Steege, H., Stropp, J., Terborgh, J., Thomas-Caesar, R., van der Heijden, G.
M. F., Vásquez Martinez, R., Vilanova, E., and Vos, V. A.: Amazon forest
response to repeated droughts, Global Biogeochem. Cy., 30, 964–982,
https://doi.org/10.1002/2015GB005133, 2016.
Flack-Prain, S., Meir, P., Malhi, Y., Smallman, T. L., and Williams, M.: The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests, Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, 2019.
Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S., Thonicke,
K., von Bloh, W., and Carvalhais, N.: Constraining modelled global
vegetation dynamics and carbon turnover using multiple satellite
observations, Sci. Rep., 9, 18757, https://doi.org/10.1038/s41598-019-55187-7, 2019.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R.
S., Uriarte, M., and Gentine, P.: Tall Amazonian forests are less sensitive
to precipitation variability, Nat. Geosci., 11, 405–409,
https://doi.org/10.1038/s41561-018-0133-5, 2018.
Giles, J. A., Ruscica, R. C., and Menéndez, C. G.: The diurnal cycle of
precipitation over South America represented by five gridded datasets, Int. J. Climatol., 40, 668–686, https://doi.org/10.1002/joc.6229, 2020.
Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin,
P., Ladvocat Cintra, B. B., Feldpausch, T., Phillips, O., and Baker, J.:
Recent Amazon climate as background for possible ongoing and future changes
of Amazon humid forests, Global Biogeochem. Cy., 29, 1384–1399,
https://doi.org/10.1002/2014GB005080, 2015.
Golian, S., Javadian, M., and Behrangi, A.: On the use of satellite, gauge,
and reanalysis precipitation products for drought studies, Environ. Res.
Lett., 14, 075005, https://doi.org/10.1088/1748-9326/ab2203, 2019.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Hadley Centre for Climate Prediction and Research: The WFDEI Meteorological Forcing Data, Met Office, Ministry
of Defence, United Kingdom [data set], ftp://rfdata:forceDATA@ftp.iiasa.ac.at, last access: 2 February 2019.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hobeichi, S.: Derived Optimal Linear Combination Evapotranspiration – DOLCE v3.0, ARC Centre of Excellence for Climate Extremes [data set], https://researchdata.edu.au/derived-optimal-linear-dolce-v30/1697055, last access: 1 March 2022.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Hubau, W., Lewis, S. L., Phillips, O. L., et al.: Asynchronous carbon sink saturation in African and Amazonian tropical forests, Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0, 2020.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J. and Bolvin, D. T.: Tropical Rainfall Measurement Mission, Mesoscale
Atmospheric Processes Laboratory, NASA Goddard Space Flight Center [data set], https://disc.gsfc.nasa.gov/datasets/, last access: 5 March 2019.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jimenez, J. C., Barichivich, J., Mattar, C., Takahashi, K.,
Santamaría-Artigas, A., Sobrino, J. A., and Malhi, Y.: Spatio-temporal
patterns of thermal anomalies and drought over tropical forests driven by
recent extreme climatic anomalies, Philos. T. Roy. Soc. B, 373, 20170300,
https://doi.org/10.1098/rstb.2017.0300, 2018.
Jimenez, J. C., Marengo, J. A., Alves, L. M., Sulca, J. C., Takahashi, K.,
Ferrett, S., and Collins, M.: The role of ENSO flavours and TNA on recent
droughts over Amazon forests and the Northeast Brazil region, Int. J.
Climatol., 41, 3761–3780, https://doi.org/10.1002/joc.6453, 2019.
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J.,
Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and van der Schrier, G.: Record-breaking warming and extreme drought in the
Amazon rainforest during the course of El Niño 2015–2016, Sci. Rep., 6,
33130, https://doi.org/10.1038/srep33130, 2016.
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions, Institute of Industrial Science, The University of Tokyo [data set], https://doi.org/10.20783/DIAS.501, 2017.
Koch, A., Hubau, W., and Lewis, S. L.: Earth System Models Are Not Capturing
Present-Day Tropical Forest Carbon Dynamics, Earth's Future, 9, e2020EF001874, https://doi.org/10.1029/2020EF001874, 2021.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Glob. Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389, 2017.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and
Nepstad, D.: The 2010 Amazon Drought, Science, 331, 554–554,
https://doi.org/10.1126/science.1200807, 2011.
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre,
C. A.: Climate Change, Deforestation, and the Fate of the Amazon, Science,
319, 169–172, https://doi.org/10.1126/science.1146961, 2008.
Malhi, Y., Aragao, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R.,
Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the
likelihood and mechanism of a climate-change-induced dieback of the Amazon
rainforest, P. Natl. Acad. Sci. USA, 106, 20610–20615, https://doi.org/10.1073/pnas.0804619106, 2009.
Marengo, J. A. and Espinoza, J. C.: Extreme seasonal droughts and floods in
Amazonia: causes, trends and impacts: EXTREMES IN AMAZONIA, Int. J.
Climatol., 36, 1033–1050, https://doi.org/10.1002/joc.4420, 2016.
Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F., and Oyama, M.
D.: Hydro-climatic and ecological behaviour of the drought of Amazonia in
2005, Phil. T. Roy. Soc. B, 363, 1773–1778,
https://doi.org/10.1098/rstb.2007.0015, 2008a.
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de
Oliveira, G., de Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F.:
The Drought of Amazonia in 2005, J. Climate, 21, 495–516,
https://doi.org/10.1175/2007JCLI1600.1, 2008b.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez,
D. A.: The drought of 2010 in the context of historical droughts in the
Amazon region: DROUGHT AMAZON 2010, Geophys. Res. Lett., 38, L12703,
https://doi.org/10.1029/2011GL047436, 2011.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martens, B., Miralles, D. G., Lievens, H., van der
Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E.,
Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3 [data set], https://www.gleam.eu/datasets, last access: 22 April 2019.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges: Land feedbacks during droughts and
heatwaves, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Muñoz-Sabater, J., Dutra, E., Balsamo, G., Boussetta, S., Zsoter, E.,
Albergel, C., and Agusti-Panareda, A.: ERA5-Land: an improved version of the
ERA5 reanalysis land component, Joint ISWG
and LSA-SAF Workshop IPMA, Lisbon, 26–28, 2018.
Nogueira, M.: Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over
the last 40 years: Process-based analysis of systematic and random
differences, J. Hydrol., 583, 124632,
https://doi.org/10.1016/j.jhydrol.2020.124632, 2020.
Papastefanou, P.: Scripts for reproducing the analysis,
figures and tables of the bg-2020-425 study, Github [code],
https://github.com/PhillipPapastefanou/DroughtAnalysis (last access: 31 August 2022), 2021.
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B.,
Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock,
J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo,
L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando,
P., Chave, J., de Oliveira, Á. C. A., Cardozo, N. D., Czimczik, C. I.,
Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E.,
Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D.,
Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz,
M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. ter, Stropp, J.,
Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade,
A., Chao, K.-J., Erwin, T., Di Fiore, A., C., E. H., Keeling, H., Killeen,
T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N.,
Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh,
J., and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest,
Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009.
Physical Sciences Laboratory: CRU – NCEP/NCAR Reanalysis, Boulder Colorado, https://crudata.uea.ac.uk/cru/data/ncep/, last access: 1 December 2020.
Rao, K., Anderegg, W. R. L., Sala, A., Martínez-Vilalta, J., and
Konings, A. G.: Satellite-based vegetation optical depth as an indicator of
drought-driven tree mortality, Remote Sens. Environ., 227, 125–136,
https://doi.org/10.1016/j.rse.2019.03.026, 2019.
Rifai, S. W., Li, S., and Malhi, Y.: Coupling of El Niño events and
long-term warming leads to pervasive climate extremes in the terrestrial
tropics, Environ. Res. Lett., 14, 105002, https://doi.org/10.1088/1748-9326/ab402f, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M. and the NASA Goddard Space Flight Center: Global Land Data Assimilation System [data set], https://ldas.gsfc.nasa.gov/gldas/forcing-data, last access: 1 December 2020.
Ruida, Z., Chen, X., Wang, Z., Lai, C., and Goddard, S.: Package scPDSI, https://github.com/Sibada/scPDSI,
2018.
Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., and Espinoza, J.
C.: Effects of Amazon basin deforestation on regional atmospheric
circulation and water vapor transport towards tropical South America, Clim.
Dynam., 54, 4169–4189, https://doi.org/10.1007/s00382-020-05223-4, 2020.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018.
Schneider, U., Becker, A., Finger, P., Anja, M.-C., and Markus, Z.: GPCC
Full Data Monthly Version 2018.0 at 0.5∘: Monthly Land-Surface
Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050, 2018.
Schneider, U., Hänsel, S., Finger, P., Rustemeier, E.,
and Ziese, M.: GPCC Full Data Monthly Product Version 2022 [data set], https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html, last access: 2 March 2019.
Seiler, C., Hutjes, R. W. A., Kruijt, B., and Hickler, T.: The sensitivity
of wet and dry tropical forests to climate change in Bolivia, J. Geophys. Res.-Biogeo., 120, 399–413, https://doi.org/10.1002/2014JG002749, 2015.
Seto, S., Iguchi, T., and Meneghini, R.: Comparison of TRMM PR V6 and V7
focusing heavy rainfall, in: 2011 IEEE International Geoscience and Remote
Sensing Symposium, IGARSS 2011, Vancouver, BC, Canada, IEEE, 2582–2585,
https://doi.org/10.1109/IGARSS.2011.6049769, 2011.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Sörensson, A. A. and Ruscica, R. C.: Intercomparison and Uncertainty
Assessment of Nine Evapotranspiration Estimates Over South America, Water
Resour. Res., 54, 2891–2908, https://doi.org/10.1002/2017WR021682, 2018.
Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J. H. C., Dekker, S.
C., van Nes, E. H., Rockström, J., and Tuinenburg, O. A.: Hysteresis of
tropical forests in the 21st century, Nat. Commun., 11, 4978,
https://doi.org/10.1038/s41467-020-18728-7, 2020.
Stephenson, N.: Actual evapotranspiration and deficit: biologically
meaningful correlates of vegetation distribution across spatial scales, J
Biogeogr., 25, 855–870, https://doi.org/10.1046/j.1365-2699.1998.00233.x, 1998.
Toomey, M., Roberts, D. A., Still, C., Goulden, M. L., and McFadden, J. P.:
Remotely sensed heat anomalies linked with Amazonian forest biomass
declines, Geophys. Res. Lett., 38, L19704,
https://doi.org/10.1029/2011GL049041, 2011.
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S.
C.: Origin and fate of atmospheric moisture over continents: ORIGIN AND FATE
OF ATMOSPHERIC MOISTURE, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
[data set], Boulder, CO, https://doi.org/10.5065/PZ8F-F017, 2018.
von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B.,
Silva, R. L., Hodnett, M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M.
J., Cardoso, F. L., and Kabat, P.: Comparative measurements and seasonal
variations in energy and carbon exchange over forest and pasture in South
West Amazonia, Theor. Appl. Climatol., 78, 5–26,
https://doi.org/10.1007/s00704-004-0041-z, 2004.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E.,
Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.:
Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional
Reference Crop Evaporation over Land during the Twentieth Century, J. Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wells, N., Goddard, S., and Hayes, M. J.: A Self-Calibrating Palmer Drought
Severity Index, J. Climate, 17, 2335–2351,
https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004.
Willmott, C. J., Rowe, C. M., and Philpot, W. D.: Small-Scale Climate Maps:
A Sensitivity Analysis of Some Common Assumptions Associated with Grid-Point
Interpolation and Contouring, Am. Cartographer, 12, 5–16,
https://doi.org/10.1559/152304085783914686, 1985.
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D.,
Wu, J., and Moorcroft, P.: Leaf surface water, not plant water stress,
drives diurnal variation in tropical forest canopy water content, New Phytol., 231, 122–136, https://doi.org/10.1111/nph.17254, 2021.
Yang, H., Piao, S., Zeng, Z., Ciais, P., Yin, Y., Friedlingstein, P., Sitch,
S., Ahlström, A., Guimberteau, M., Huntingford, C., Levis, S., Levy, P.
E., Huang, M., Li, Y., Li, X., Lomas, M. R., Peylin, P., Poulter, B., Viovy,
N., Zaehle, S., Zeng, N., Zhao, F., and Wang, L.: Multicriteria evaluation
of discharge simulation in Dynamic Global Vegetation Models, J. Geophys.
Res.-Atmos., 120, 7488–7505, https://doi.org/10.1002/2015JD023129, 2015.
Yang, Y., Saatchi, S. S., Xu, L., Yu, Y., Choi, S., Phillips, N., Kennedy,
R., Keller, M., Knyazikhin, Y., and Myneni, R. B.: Post-drought decline of
the Amazon carbon sink, Nat. Commun., 9, 3172,
https://doi.org/10.1038/s41467-018-05668-6, 2018.
Zang, C. S., Buras, A., Esquivel-Muelbert, A., Jump, A. S., Rigling, A., and
Rammig, A.: Standardized drought indices in ecological research: Why one
size does not fit all, Glob. Change Biol., 26, 322–324, https://doi.org/10.1111/gcb.14809, 2020.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., Hirota, M., Montade, V.,
Sampaio, G., Staal, A., Wang-Erlandsson, L., and Rammig, A.: Self-amplified
Amazon forest loss due to vegetation-atmosphere feedbacks, Nat. Commun., 8,
14681, https://doi.org/10.1038/ncomms14681, 2017.
Zeng, N., Yoon, J.-H., Marengo, J. A., Subramaniam, A., Nobre, C. A.,
Mariotti, A., and Neelin, J. D.: Causes and impacts of the 2005 Amazon
drought, Environ. Res. Lett., 3, 014002,
https://doi.org/10.1088/1748-9326/3/1/014002, 2008.
Ziese, M., Schneider, U., Meyer-Christoffer, A., Schamm, K., Vido, J., Finger, P., Bissolli, P., Pietzsch, S., and Becker, A.: The GPCC Drought Index – a new, combined and gridded global drought index, Earth Syst. Sci. Data, 6, 285–295, https://doi.org/10.5194/essd-6-285-2014, 2014.
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess...
Altmetrics
Final-revised paper
Preprint