Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Christian S. Zang
Department of Forestry, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
Zlatan Angelov
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Aline Anderson de Castro
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Juan Carlos Jimenez
GCU/IPL, University of Valencia, Valencia, Spain
Luiz Felipe Campos De Rezende
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Romina C. Ruscica
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Boris Sakschewski
Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Telegrafenberg A31, Potsdam, Germany
Anna A. Sörensson
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Kirsten Thonicke
Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Telegrafenberg A31, Potsdam, Germany
Carolina Vera
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus
Impactos (IRL 3351 IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Nicolas Viovy
LSCE, CEA–CNRS–Université Paris-Saclay, Saclay, France
Celso Von Randow
Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
Anja Rammig
Technical University of Munich, TUM School of Life
Sciences, Freising, Germany
Related authors
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025, https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening the European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show its ability to capture species-specific evapotranspiration responses to drought and to reproduce flux observations of both gross primary production and evapotranspiration.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Rodrigo San Martin, Catherine Ottlé, Anna Sorenssön, Pradeebane Vattinada Ayar, Florent Mouillot, and Marielle Malfante
EGUsphere, https://doi.org/10.5194/egusphere-2025-3484, https://doi.org/10.5194/egusphere-2025-3484, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied wildfires in the Gran Chaco, one of the world's largest dry forests, to understand why some fires grow larger than others. By analyzing fire size and weather conditions during burning, we found that strong winds and low humidity were key drivers of fire expansion. This work helps improve our understanding of extreme fire events and supports better fire risk management in dry ecosystems.
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025, https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening the European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show its ability to capture species-specific evapotranspiration responses to drought and to reproduce flux observations of both gross primary production and evapotranspiration.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
Jéssica Schüler, Sarah Bereswill, Werner von Bloh, Maik Billing, Boris Sakschewski, Luke Oberhagemann, Kirsten Thonicke, and Mercedes M. C. Bustamante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2225, https://doi.org/10.5194/egusphere-2025-2225, 2025
Short summary
Short summary
We introduced a new plant type into a global vegetation model to better represent the ecology of the Cerrado, South America's second largest biome. This improved the model’s ability to simulate vegetation structure, root systems, and fire dynamics, aligning more closely with observations. Our results enhance understanding of tropical savannas and provide a stronger basis for studying their responses to fire and climate change at regional and global scales.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Marie Brunel, Stephen Wirth, Markus Drüke, Kirsten Thonicke, Henrique Barbosa, Jens Heinke, and Susanne Rolinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-922, https://doi.org/10.5194/egusphere-2025-922, 2025
Short summary
Short summary
Farmers often use fire to clear dead pasture biomass, impacting vegetation and soil nutrients. This study integrates fire management into a DGVM to assess its effects, focusing on Brazil. The results show that combining grazing and fire management reduces vegetation carbon and soil nitrogen over time. The research highlights the need to include these practices in models to improve pasture management assessments and calls for better data on fire usage and its long-term effects.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Marcos B. Sanches, Manoel Cardoso, Celso von Randow, Chris Jones, and Mathew Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-942, https://doi.org/10.5194/egusphere-2025-942, 2025
Preprint archived
Short summary
Short summary
This study examines South America's role in the global carbon cycle using flux and stock analyses from CMIP6 Earth System Models. We discuss the continent’s relevance, model-observation agreement, and the impacts of dry and wet years on major biomes. Additionally, we assess model results indicating that parts of South America could shift from carbon sinks to emitters, significantly affecting the global carbon balance.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
Weather Clim. Dynam., 5, 1505–1522, https://doi.org/10.5194/wcd-5-1505-2024, https://doi.org/10.5194/wcd-5-1505-2024, 2024
Short summary
Short summary
The interplay between the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is well-researched in the tropical Indian Ocean, but their effects on the Southern Hemisphere's extratropical regions during spring are less studied. We show that the positive phase of the IOD can strengthen the El Niño circulation anomalies, heightening their continental impacts. On the other hand, negative IOD combined with La Niña shows less consistent changes among the different methodologies.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Renata Moura da Veiga, Celso von Randow, Chantelle Burton, Douglas Kelley, Manoel Cardoso, and Fabiano Morelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2348, https://doi.org/10.5194/egusphere-2024-2348, 2024
Short summary
Short summary
We systematically reviewed 69 papers on fire emissions from the Brazilian Cerrado biome to provide insights into its placement in the atmospheric carbon budget and support future improved estimation. We find that estimating fire emissions in the Cerrado requires a comprehensive approach, combining quantitative and qualitative aspects of fire. A pathway towards this is the inclusion of fire management representation in land surface models and the integration of observational and modelling data.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
L. Cappelletti, A. Sörensson, R. Ruscica, M. M. Salvia, E. Jobbágy, S. Kuppel, and L. Fita
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 279–283, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-279-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-279-2020, 2020
Cited articles
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Aragão, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S.,
Anderson, L. O., and Shimabukuro, Y. E.: Spatial patterns and fire response
of recent Amazonian droughts, Geophys. Res. Lett., 34, L07701,
https://doi.org/10.1029/2006GL028946, 2007.
Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O.
L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry,
N. J., Boeckx, P., Jong, B. H. J., DeVries, B., Girardin, C. A. J.,
Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y.,
Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C.
M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini,
R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical
biomass map using multiple reference datasets, Glob. Change Biol., 22,
1406–1420, https://doi.org/10.1111/gcb.13139, 2016.
Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., and
Mechoso, C. R.: A Recent Systematic Increase in Vapor Pressure Deficit over
Tropical South America, Sci. Rep., 9, 15331, https://doi.org/10.1038/s41598-019-51857-8, 2019.
Blacutt, L. A., Herdies, D. L., de Gonçalves, L. G. G., Vila, D. A., and
Andrade, M.: Precipitation comparison for the CFSR, MERRA, TRMM3B42 and
Combined Scheme datasets in Bolivia, Atmos. Res., 163, 117–131,
https://doi.org/10.1016/j.atmosres.2015.02.002, 2015.
Burton, C., Rifai, S., and Malhi, Y.: Inter-comparison and assessment of
gridded climate products over tropical forests during the 2015/2016 El
Niño, Philos. T. Roy. Soc. B, 373, 20170406, https://doi.org/10.1098/rstb.2017.0406, 2018.
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins,
M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J.,
Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO
and greenhouse warming, Nat. Clim. Change, 5, 849–859, https://doi.org/10.1038/nclimate2743, 2015.
Castro, A. O., Chen, J., Zang, C. S., Shekhar, A., Jimenez, J. C.,
Bhattacharjee, S., Kindu, M., Morales, V. H., and Rammig, A.: OCO-2
Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the
Amazon Basin and the Extreme Drought Effects of El Niño (2015–2016),
12, 1202–1202, https://doi.org/10.3390/rs12071202, 2020.
Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-llossera, M.,
Camps, A., and Entekhabi, D.: Sensitivity of L-band vegetation optical depth
to carbon stocks in tropical forests: a comparison to higher frequencies and
optical indices, Remote Sens. Environ., 232, 111303,
https://doi.org/10.1016/j.rse.2019.111303, 2019.
Climate Hazards Group: Climate Hazards Group Infrared Precipitation with Stations, Department of Geography, University of
California at Santa Barbara [data set], ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/, last access: 5 November 2020.
Coelho, C. A. S., Cavalcanti, I. A. F., Costa, S. M. S., Freitas, S. R.,
Ito, E. R., Luz, G., Santos, A. F., Nobre, C. A., Marengo, J. A., and Pezza,
A. B.: Climate diagnostics of three major drought events in the Amazon and
illustrations of their seasonal precipitation predictions, Met. Apps, 19,
237–255, https://doi.org/10.1002/met.1324, 2012.
Compo, G. P., Sardeshmukh, P. D., Whitaker, J. S., Brohan, P., Jones, P. D.,
and McColl, C.: Independent confirmation of global land warming without the
use of station temperatures, Geophys. Res. Lett., 40, 3170–3174,
https://doi.org/10.1002/grl.50425, 2013.
Covey, C., Gleckler, P. J., Doutriaux, C., Williams, D. N., Dai, A.,
Fasullo, J., Trenberth, K., and Berg, A.: Metrics for the Diurnal Cycle of
Precipitation: Toward Routine Benchmarks for Climate Models, J. Climate, 29, 4461–447129, https://doi.org/10.1175/JCLI-D-15-0664.1, 2016.
da Rocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C., Pinto, L. D.
V. O., de Freitas, H. C., and e Silva Figueira, A. M.: SEASONALITY OF WATER
AND HEAT FLUXES OVER A TROPICAL FOREST IN EASTERN AMAZONIA, Ecol. Appl., 14, 22–32, https://doi.org/10.1890/02-6001, 2004.
Dirmeyer, P. A., Schlosser, C. A., and Brubaker, K. L.: Precipitation,
Recycling, and Land Memory: An Integrated Analysis, J. Hydrometeorol., 10, 278–288, https://doi.org/10.1175/2008JHM1016.1, 2009.
Dirmeyer, P. A., Cash, B. A., Kinter, J. L., Jung, T., Marx, L., Satoh, M.,
Stan, C., Tomita, H., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M.,
Altshuler, E. L., Huang, B., Jin, E. K., and Manganello, J.: Simulating the
diurnal cycle of rainfall in global climate models: resolution versus
parameterization, Clim. Dynam., 39, 399–418, https://doi.org/10.1007/s00382-011-1127-9, 2012.
Doblas-Reyes, F. J., Sorensson, A. A., Almazroui, M., Dosio, A., Gutowski,
W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B. L.,
Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., and
Zuo, Z.: Linking global to regional climate change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O.,
Yu, R., and Zhou, B., in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1363–1512, https://doi.org/10.1017/9781009157896.012, 2021.
Döll, P. and Lehner, B.: Validation of a new global 30-min drainage
direction map, J. Hydrol., 258, 214–231, https://doi.org/10.1016/S0022-1694(01)00565-0, 2002.
Espinoza, J. C., Sörensson, A. A., Ronchail, J., Molina-Carpio, J.,
Segura, H., Gutierrez-Cori, O., Ruscica, R., Condom, T., and
Wongchuig-Correa, S.: Regional hydro-climatic changes in the Southern Amazon
Basin (Upper Madeira Basin) during the 1982–2017 period, Journal of
Hydrology: Regional Studies, 26, 100637, https://doi.org/10.1016/j.ejrh.2019.100637, 2019.
Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., et al.: Compositional response of Amazon forests to climate
change, Glob. Change Biol., 25, 39–56, https://doi.org/10.1111/gcb.14413, 2019.
European Centre for Medium-Range Weather Forecasts: ERA5 [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 3 March 2020.
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,
Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Alarcón, A.,
Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E.
O. C., Arroyo, L., Aymard C., G. A., Baker, T. R., Baraloto, C., Barroso,
J., Bonal, D., Castro, W., Chama, V., Chave, J., Domingues, T. F., Fauset,
S., Groot, N., Honorio Coronado, E., Laurance, S., Laurance, W. F., Lewis,
S. L., Licona, J. C., Marimon, B. S., Marimon-Junior, B. H., Mendoza
Bautista, C., Neill, D. A., Oliveira, E. A., Oliveira dos Santos, C.,
Pallqui Camacho, N. C., Pardo-Molina, G., Prieto, A., Quesada, C. A.,
Ramírez, F., Ramírez-Angulo, H., Réjou-Méchain, M., Rudas,
A., Saiz, G., Salomão, R. P., Silva-Espejo, J. E., Silveira, M., ter
Steege, H., Stropp, J., Terborgh, J., Thomas-Caesar, R., van der Heijden, G.
M. F., Vásquez Martinez, R., Vilanova, E., and Vos, V. A.: Amazon forest
response to repeated droughts, Global Biogeochem. Cy., 30, 964–982,
https://doi.org/10.1002/2015GB005133, 2016.
Flack-Prain, S., Meir, P., Malhi, Y., Smallman, T. L., and Williams, M.: The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests, Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, 2019.
Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S., Thonicke,
K., von Bloh, W., and Carvalhais, N.: Constraining modelled global
vegetation dynamics and carbon turnover using multiple satellite
observations, Sci. Rep., 9, 18757, https://doi.org/10.1038/s41598-019-55187-7, 2019.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R.
S., Uriarte, M., and Gentine, P.: Tall Amazonian forests are less sensitive
to precipitation variability, Nat. Geosci., 11, 405–409,
https://doi.org/10.1038/s41561-018-0133-5, 2018.
Giles, J. A., Ruscica, R. C., and Menéndez, C. G.: The diurnal cycle of
precipitation over South America represented by five gridded datasets, Int. J. Climatol., 40, 668–686, https://doi.org/10.1002/joc.6229, 2020.
Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin,
P., Ladvocat Cintra, B. B., Feldpausch, T., Phillips, O., and Baker, J.:
Recent Amazon climate as background for possible ongoing and future changes
of Amazon humid forests, Global Biogeochem. Cy., 29, 1384–1399,
https://doi.org/10.1002/2014GB005080, 2015.
Golian, S., Javadian, M., and Behrangi, A.: On the use of satellite, gauge,
and reanalysis precipitation products for drought studies, Environ. Res.
Lett., 14, 075005, https://doi.org/10.1088/1748-9326/ab2203, 2019.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Hadley Centre for Climate Prediction and Research: The WFDEI Meteorological Forcing Data, Met Office, Ministry
of Defence, United Kingdom [data set], ftp://rfdata:forceDATA@ftp.iiasa.ac.at, last access: 2 February 2019.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hobeichi, S.: Derived Optimal Linear Combination Evapotranspiration – DOLCE v3.0, ARC Centre of Excellence for Climate Extremes [data set], https://researchdata.edu.au/derived-optimal-linear-dolce-v30/1697055, last access: 1 March 2022.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Hubau, W., Lewis, S. L., Phillips, O. L., et al.: Asynchronous carbon sink saturation in African and Amazonian tropical forests, Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0, 2020.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J. and Bolvin, D. T.: Tropical Rainfall Measurement Mission, Mesoscale
Atmospheric Processes Laboratory, NASA Goddard Space Flight Center [data set], https://disc.gsfc.nasa.gov/datasets/, last access: 5 March 2019.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jimenez, J. C., Barichivich, J., Mattar, C., Takahashi, K.,
Santamaría-Artigas, A., Sobrino, J. A., and Malhi, Y.: Spatio-temporal
patterns of thermal anomalies and drought over tropical forests driven by
recent extreme climatic anomalies, Philos. T. Roy. Soc. B, 373, 20170300,
https://doi.org/10.1098/rstb.2017.0300, 2018.
Jimenez, J. C., Marengo, J. A., Alves, L. M., Sulca, J. C., Takahashi, K.,
Ferrett, S., and Collins, M.: The role of ENSO flavours and TNA on recent
droughts over Amazon forests and the Northeast Brazil region, Int. J.
Climatol., 41, 3761–3780, https://doi.org/10.1002/joc.6453, 2019.
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J.,
Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and van der Schrier, G.: Record-breaking warming and extreme drought in the
Amazon rainforest during the course of El Niño 2015–2016, Sci. Rep., 6,
33130, https://doi.org/10.1038/srep33130, 2016.
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions, Institute of Industrial Science, The University of Tokyo [data set], https://doi.org/10.20783/DIAS.501, 2017.
Koch, A., Hubau, W., and Lewis, S. L.: Earth System Models Are Not Capturing
Present-Day Tropical Forest Carbon Dynamics, Earth's Future, 9, e2020EF001874, https://doi.org/10.1029/2020EF001874, 2021.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Glob. Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389, 2017.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and
Nepstad, D.: The 2010 Amazon Drought, Science, 331, 554–554,
https://doi.org/10.1126/science.1200807, 2011.
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre,
C. A.: Climate Change, Deforestation, and the Fate of the Amazon, Science,
319, 169–172, https://doi.org/10.1126/science.1146961, 2008.
Malhi, Y., Aragao, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R.,
Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the
likelihood and mechanism of a climate-change-induced dieback of the Amazon
rainforest, P. Natl. Acad. Sci. USA, 106, 20610–20615, https://doi.org/10.1073/pnas.0804619106, 2009.
Marengo, J. A. and Espinoza, J. C.: Extreme seasonal droughts and floods in
Amazonia: causes, trends and impacts: EXTREMES IN AMAZONIA, Int. J.
Climatol., 36, 1033–1050, https://doi.org/10.1002/joc.4420, 2016.
Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F., and Oyama, M.
D.: Hydro-climatic and ecological behaviour of the drought of Amazonia in
2005, Phil. T. Roy. Soc. B, 363, 1773–1778,
https://doi.org/10.1098/rstb.2007.0015, 2008a.
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de
Oliveira, G., de Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F.:
The Drought of Amazonia in 2005, J. Climate, 21, 495–516,
https://doi.org/10.1175/2007JCLI1600.1, 2008b.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez,
D. A.: The drought of 2010 in the context of historical droughts in the
Amazon region: DROUGHT AMAZON 2010, Geophys. Res. Lett., 38, L12703,
https://doi.org/10.1029/2011GL047436, 2011.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martens, B., Miralles, D. G., Lievens, H., van der
Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E.,
Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3 [data set], https://www.gleam.eu/datasets, last access: 22 April 2019.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges: Land feedbacks during droughts and
heatwaves, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Muñoz-Sabater, J., Dutra, E., Balsamo, G., Boussetta, S., Zsoter, E.,
Albergel, C., and Agusti-Panareda, A.: ERA5-Land: an improved version of the
ERA5 reanalysis land component, Joint ISWG
and LSA-SAF Workshop IPMA, Lisbon, 26–28, 2018.
Nogueira, M.: Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over
the last 40 years: Process-based analysis of systematic and random
differences, J. Hydrol., 583, 124632,
https://doi.org/10.1016/j.jhydrol.2020.124632, 2020.
Papastefanou, P.: Scripts for reproducing the analysis,
figures and tables of the bg-2020-425 study, Github [code],
https://github.com/PhillipPapastefanou/DroughtAnalysis (last access: 31 August 2022), 2021.
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B.,
Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock,
J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo,
L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando,
P., Chave, J., de Oliveira, Á. C. A., Cardozo, N. D., Czimczik, C. I.,
Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E.,
Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D.,
Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz,
M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. ter, Stropp, J.,
Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade,
A., Chao, K.-J., Erwin, T., Di Fiore, A., C., E. H., Keeling, H., Killeen,
T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N.,
Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh,
J., and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest,
Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009.
Physical Sciences Laboratory: CRU – NCEP/NCAR Reanalysis, Boulder Colorado, https://crudata.uea.ac.uk/cru/data/ncep/, last access: 1 December 2020.
Rao, K., Anderegg, W. R. L., Sala, A., Martínez-Vilalta, J., and
Konings, A. G.: Satellite-based vegetation optical depth as an indicator of
drought-driven tree mortality, Remote Sens. Environ., 227, 125–136,
https://doi.org/10.1016/j.rse.2019.03.026, 2019.
Rifai, S. W., Li, S., and Malhi, Y.: Coupling of El Niño events and
long-term warming leads to pervasive climate extremes in the terrestrial
tropics, Environ. Res. Lett., 14, 105002, https://doi.org/10.1088/1748-9326/ab402f, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M. and the NASA Goddard Space Flight Center: Global Land Data Assimilation System [data set], https://ldas.gsfc.nasa.gov/gldas/forcing-data, last access: 1 December 2020.
Ruida, Z., Chen, X., Wang, Z., Lai, C., and Goddard, S.: Package scPDSI, https://github.com/Sibada/scPDSI,
2018.
Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., and Espinoza, J.
C.: Effects of Amazon basin deforestation on regional atmospheric
circulation and water vapor transport towards tropical South America, Clim.
Dynam., 54, 4169–4189, https://doi.org/10.1007/s00382-020-05223-4, 2020.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S.,
White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks
in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018.
Schneider, U., Becker, A., Finger, P., Anja, M.-C., and Markus, Z.: GPCC
Full Data Monthly Version 2018.0 at 0.5∘: Monthly Land-Surface
Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050, 2018.
Schneider, U., Hänsel, S., Finger, P., Rustemeier, E.,
and Ziese, M.: GPCC Full Data Monthly Product Version 2022 [data set], https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html, last access: 2 March 2019.
Seiler, C., Hutjes, R. W. A., Kruijt, B., and Hickler, T.: The sensitivity
of wet and dry tropical forests to climate change in Bolivia, J. Geophys. Res.-Biogeo., 120, 399–413, https://doi.org/10.1002/2014JG002749, 2015.
Seto, S., Iguchi, T., and Meneghini, R.: Comparison of TRMM PR V6 and V7
focusing heavy rainfall, in: 2011 IEEE International Geoscience and Remote
Sensing Symposium, IGARSS 2011, Vancouver, BC, Canada, IEEE, 2582–2585,
https://doi.org/10.1109/IGARSS.2011.6049769, 2011.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Sörensson, A. A. and Ruscica, R. C.: Intercomparison and Uncertainty
Assessment of Nine Evapotranspiration Estimates Over South America, Water
Resour. Res., 54, 2891–2908, https://doi.org/10.1002/2017WR021682, 2018.
Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J. H. C., Dekker, S.
C., van Nes, E. H., Rockström, J., and Tuinenburg, O. A.: Hysteresis of
tropical forests in the 21st century, Nat. Commun., 11, 4978,
https://doi.org/10.1038/s41467-020-18728-7, 2020.
Stephenson, N.: Actual evapotranspiration and deficit: biologically
meaningful correlates of vegetation distribution across spatial scales, J
Biogeogr., 25, 855–870, https://doi.org/10.1046/j.1365-2699.1998.00233.x, 1998.
Toomey, M., Roberts, D. A., Still, C., Goulden, M. L., and McFadden, J. P.:
Remotely sensed heat anomalies linked with Amazonian forest biomass
declines, Geophys. Res. Lett., 38, L19704,
https://doi.org/10.1029/2011GL049041, 2011.
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S.
C.: Origin and fate of atmospheric moisture over continents: ORIGIN AND FATE
OF ATMOSPHERIC MOISTURE, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
[data set], Boulder, CO, https://doi.org/10.5065/PZ8F-F017, 2018.
von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B.,
Silva, R. L., Hodnett, M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M.
J., Cardoso, F. L., and Kabat, P.: Comparative measurements and seasonal
variations in energy and carbon exchange over forest and pasture in South
West Amazonia, Theor. Appl. Climatol., 78, 5–26,
https://doi.org/10.1007/s00704-004-0041-z, 2004.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E.,
Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.:
Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional
Reference Crop Evaporation over Land during the Twentieth Century, J. Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wells, N., Goddard, S., and Hayes, M. J.: A Self-Calibrating Palmer Drought
Severity Index, J. Climate, 17, 2335–2351,
https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004.
Willmott, C. J., Rowe, C. M., and Philpot, W. D.: Small-Scale Climate Maps:
A Sensitivity Analysis of Some Common Assumptions Associated with Grid-Point
Interpolation and Contouring, Am. Cartographer, 12, 5–16,
https://doi.org/10.1559/152304085783914686, 1985.
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D.,
Wu, J., and Moorcroft, P.: Leaf surface water, not plant water stress,
drives diurnal variation in tropical forest canopy water content, New Phytol., 231, 122–136, https://doi.org/10.1111/nph.17254, 2021.
Yang, H., Piao, S., Zeng, Z., Ciais, P., Yin, Y., Friedlingstein, P., Sitch,
S., Ahlström, A., Guimberteau, M., Huntingford, C., Levis, S., Levy, P.
E., Huang, M., Li, Y., Li, X., Lomas, M. R., Peylin, P., Poulter, B., Viovy,
N., Zaehle, S., Zeng, N., Zhao, F., and Wang, L.: Multicriteria evaluation
of discharge simulation in Dynamic Global Vegetation Models, J. Geophys.
Res.-Atmos., 120, 7488–7505, https://doi.org/10.1002/2015JD023129, 2015.
Yang, Y., Saatchi, S. S., Xu, L., Yu, Y., Choi, S., Phillips, N., Kennedy,
R., Keller, M., Knyazikhin, Y., and Myneni, R. B.: Post-drought decline of
the Amazon carbon sink, Nat. Commun., 9, 3172,
https://doi.org/10.1038/s41467-018-05668-6, 2018.
Zang, C. S., Buras, A., Esquivel-Muelbert, A., Jump, A. S., Rigling, A., and
Rammig, A.: Standardized drought indices in ecological research: Why one
size does not fit all, Glob. Change Biol., 26, 322–324, https://doi.org/10.1111/gcb.14809, 2020.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., Hirota, M., Montade, V.,
Sampaio, G., Staal, A., Wang-Erlandsson, L., and Rammig, A.: Self-amplified
Amazon forest loss due to vegetation-atmosphere feedbacks, Nat. Commun., 8,
14681, https://doi.org/10.1038/ncomms14681, 2017.
Zeng, N., Yoon, J.-H., Marengo, J. A., Subramaniam, A., Nobre, C. A.,
Mariotti, A., and Neelin, J. D.: Causes and impacts of the 2005 Amazon
drought, Environ. Res. Lett., 3, 014002,
https://doi.org/10.1088/1748-9326/3/1/014002, 2008.
Ziese, M., Schneider, U., Meyer-Christoffer, A., Schamm, K., Vido, J., Finger, P., Bissolli, P., Pietzsch, S., and Becker, A.: The GPCC Drought Index – a new, combined and gridded global drought index, Earth Syst. Sci. Data, 6, 285–295, https://doi.org/10.5194/essd-6-285-2014, 2014.
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess...
Altmetrics
Final-revised paper
Preprint