Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements
Martijn M. T. A. Pallandt
CORRESPONDING AUTHOR
Department of Biogeochemical Signals, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Jitendra Kumar
Environmental Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA
Marguerite Mauritz
Department of Biological Sciences, The University of Texas at El Paso,
El Paso, TX 79902, USA
Edward A. G. Schuur
Center for Ecosystem Science and Society, and Department of Biological
Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
Anna-Maria Virkkala
Woodwell Climate Research Center, Falmouth, MA 02540, USA
Gerardo Celis
Agronomy Department, University of Florida, Gainesville, FL 32601, USA
Forrest M. Hoffman
Computer Science and Engineering Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA
Mathias Göckede
Department of Biogeochemical Signals, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Related authors
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Martijn Pallandt, Abhishek Chatterjee, Lesley Ott, Julia Marshall, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-604, https://doi.org/10.5194/egusphere-2025-604, 2025
Short summary
Short summary
Climate change is greatly affecting the Arctic. Among these changes is the thawing of permanently frozen soil, which may increase the release of methane, a powerful greenhouse gas (GHG). In this study we investigated the capabilities of tall GHG measuring towers and two satellite systems to detect this methane release. We find that these systems have different strengths and weaknesses, and that individually they struggle to detect these changes, though combined they might cover their weak spots.
Kseniia Ivanova, Anna-Maria Virkkala, Victor Brovkin, Tobias Stacke, Barbara Widhalm, Annett Bartsch, Carolina Voigt, Oliver Sonnentag, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-3968, https://doi.org/10.5194/egusphere-2025-3968, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured over 13,000 methane fluxes at a site in the Canadian Arctic and linked them with drone and free satellite images. We tested four machine-learning methods and two map scales. Metre-scale maps captured small wet and dry features that strongly affect methane release, while coarser maps blurred them. Different models shifted the monthly methane estimate. This helps choose the right data and tools to map methane, design monitoring networks, and check climate models.
Theresia Yazbeck, Mark Schlutow, Abdullah Bolek, Nathalie Ylenia Triches, Elias Wahl, Martin Heimann, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-3791, https://doi.org/10.5194/egusphere-2025-3791, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Natural ecosystems are composed of heterogeneous landscapes challenging CO₂ fluxes quantification per landcover type. Here, we combine UAV measurements of CO₂ gas concentrations with a Large-Eddy simulation model in a submeso scale inversion to separate fluxes by landcover type, demonstrating a promising approach to capture and upscale flux heterogeneity within eddy-covariance footprints.
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 18, 3407–3424, https://doi.org/10.5194/amt-18-3407-2025, https://doi.org/10.5194/amt-18-3407-2025, 2025
Short summary
Short summary
This study explores nitrous oxide (N2O) fluxes from a nutrient-poor sub-Arctic peatland. N2O is a potent greenhouse gas; understanding its fluxes is essential for addressing global warming. Using a new instrument and flux chambers, we introduce a system to reliably detect low N2O fluxes and provide recommendations on chamber closure times and flux calculation methods to better quantify N2O fluxes. We encourage researchers to further investigate N2O fluxes in low-nutrient environments.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Martijn Pallandt, Abhishek Chatterjee, Lesley Ott, Julia Marshall, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-604, https://doi.org/10.5194/egusphere-2025-604, 2025
Short summary
Short summary
Climate change is greatly affecting the Arctic. Among these changes is the thawing of permanently frozen soil, which may increase the release of methane, a powerful greenhouse gas (GHG). In this study we investigated the capabilities of tall GHG measuring towers and two satellite systems to detect this methane release. We find that these systems have different strengths and weaknesses, and that individually they struggle to detect these changes, though combined they might cover their weak spots.
Mark Schlutow, Ray Chew, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-2415, https://doi.org/10.5194/egusphere-2025-2415, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Understanding how greenhouse gases and pollutants move through the atmosphere is crucial. A new model, the Boundary Layer Dispersion and Footprint Model (BLDFM), tracks their movement. Unlike previous models, BLDFM uses a numerical approach without simplifying assumptions. It's flexible and can be used for climate impact studies and industrial emissions monitoring. Our testing and comparison results show BLDFM's potential as a valuable research tool.
Afshan Khaleghi, Mathias Göckede, Nicholas Nickerson, and David Risk
EGUsphere, https://doi.org/10.5194/egusphere-2025-644, https://doi.org/10.5194/egusphere-2025-644, 2025
Short summary
Short summary
Methane is a key greenhouse gas, and identifying its sources is crucial for reducing emissions. This study enhances methane detection at oil and gas sites by combining sensor data with advanced modeling tools. Tests in real-world and simulated conditions showed high accuracy, particularly in favorable atmospheric conditions. These findings improve methane monitoring and support better emission detection in Continuous Emission Monitoring systems.
Valeria Briones, Hélène Genet, Elchin E. Jafarov, Brendan M. Rogers, Jennifer D. Watts, Anna-Maria Virkkala, Annett Bartsch, Benjamin C. Maglio, Joshua Rady, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-226, https://doi.org/10.5194/essd-2025-226, 2025
Manuscript not accepted for further review
Short summary
Short summary
Arctic warming is causing permafrost to thaw, affecting ecosystems and climate. Since land cover, especially vegetation, shapes how permafrost responds, accurate maps are crucial. Using machine learning, we combined existing global and regional datasets to create a hybrid detailed 1-km map of Arctic-Boreal land cover, improving the representation of forests, shrubs, and wetlands across the circumpolar.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024, https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary
Short summary
This study describes the development of a new UAV platform to measure atmospheric greenhouse gas (GHG) mole fractions, 2D wind speed, air temperature, humidity, and pressure. Understanding GHG flux processes and controls across various ecosystems is essential for estimating the current and future state of climate change. It was shown that using the UAV platform for such measurements is beneficial for improving our understanding of GHG processes over complex landscapes.
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Wolfgang Fischer, Christoph K. Thomas, Nikita Zimov, and Mathias Göckede
Biogeosciences, 19, 1611–1633, https://doi.org/10.5194/bg-19-1611-2022, https://doi.org/10.5194/bg-19-1611-2022, 2022
Short summary
Short summary
Arctic permafrost ecosystems may release large amounts of carbon under warmer future climates and may therefore accelerate global climate change. Our study investigated how long-term grazing by large animals influenced ecosystem characteristics and carbon budgets at a Siberian permafrost site. Our results demonstrate that such management can contribute to stabilizing ecosystems to keep carbon in the ground, particularly through drying soils and reducing methane emissions.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Cited articles
Alaska Geobotany Center: Treeline, Alaska Geobotany Center [data set], https://www.geobotany.uaf.edu/cavm/data/ (last access: 28 February 2020), 2005.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical
Guide to Measurement and Data Analysis, 1st Edn., Springer Netherlands, the
Netherlands, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating
carbon dioxide exchange rates of ecosystems: past, present and future, Glob.
Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x,
2003.
Baldocchi, D. D.: How eddy covariance flux measurements have contributed to
our understanding of Global Change Biology, Glob. Change Biol., 26,
242–260, https://doi.org/10.1111/gcb.14807, 2020.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring
Biosphere-Atmosphere Exchanges of Biologically Related Gases with
Micrometeorological Methods, Ecology, 69, 1331–1340,
https://doi.org/10.2307/1941631, 1988.
Belshe, E. F., Schuur, E. A. G., and Bolker, B. M.: Tundra ecosystems
observed to be CO2 sources due to differential amplification of the carbon
cycle, Ecol. Lett., 16, 1307–1315, https://doi.org/10.1111/ele.12164, 2013.
Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M., and Palmer, P.
I.: The Arctic Carbon Cycle and Its Response to Changing Climate, Curr.
Clim. Change Rep., 7, 14–34, https://doi.org/10.1007/s40641-020-00169-5,
2021.
Burba, G. and Anderson, D.: A Brief Practical Guide to Eddy Covariance Flux
Measurements: Principles and Workflow Examples for Scientific and Industrial
Applications, LI-COR Biosciences, Lincoln,
https://doi.org/10.13140/RG.2.1.1626.4161, 2010.
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes
all of the time? A primer on the temporal representativeness of FLUXNET, J.
Geophys. Res.-Biogeo., 122, 289–307,
https://doi.org/10.1002/2016JG003576, 2017.
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn,
M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi,
D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K.,
Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A.,
Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa,
H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T.,
Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick,
K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E.,
Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E.
S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C.,
Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A.,
Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of
Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites,
Agr. Forest Meteorol., 301–302, 108350,
https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Dengel, S., Zona, D., Sachs, T., Aurela, M., Jammet, M., Parmentier, F. J. W., Oechel, W., and Vesala, T.: Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands, Biogeosciences, 10, 8185–8200, https://doi.org/10.5194/bg-10-8185-2013, 2013.
Desai, A. R.: Climatic and phenological controls on coherent regional
interannual variability of carbon dioxide flux in a heterogeneous landscape,
J. Geophys. Res.-Biogeo., 115, G00J02,
https://doi.org/10.1029/2010JG001423, 2010.
Dolman, A. J., Shvidenko, A., Schepaschenko, D., Ciais, P., Tchebakova, N., Chen, T., van der Molen, M. K., Belelli Marchesini, L., Maximov, T. C., Maksyutov, S., and Schulze, E.-D.: An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods, Biogeosciences, 9, 5323–5340, https://doi.org/10.5194/bg-9-5323-2012, 2012.
EROS (Earth Resources Observation and Science Center): USGS EROS Archive – Digital Elevation – HYDRO1K, USGS [data set], https://doi.org/10.5066/F77P8WN0, 2018.
Emmerton, C. A., Louis, V. L. S., Humphreys, E. R., Gamon, J. A., Barker, J.
D., and Pastorello, G. Z.: Net ecosystem exchange of CO2 with rapidly
changing high Arctic landscapes, Glob. Change Biol., 22, 1185–1200,
https://doi.org/10.1111/gcb.13064, 2016.
Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C., and Shaver,
G. R.: Seasonal patterns of carbon dioxide and water fluxes in three
representative tundra ecosystems in northern Alaska, Ecosphere, 3, 1–19,
https://doi.org/10.1890/ES11-00202.1, 2012.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer,
C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross,
P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for defensible annual sums of net ecosystem exchange,
Agr. Forest Meteorol., 107, 43–69,
https://doi.org/10.1016/S0168-1923(00)00225-2, 2001.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Global Soil Data Task Group: Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS), ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/569, 2000
Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., Bernhofer, C., Bonnefond, J. M., Brunet, Y., Carrara, A., Clement, R., Dellwik, E., Elbers, J., Eugster, W., Fuhrer, J., Granier, A., Grünwald, T., Heinesch, B., Janssens, I. A., Knohl, A., Koeble, R., Laurila, T., Longdoz, B., Manca, G., Marek, M., Markkanen, T., Mateus, J., Matteucci, G., Mauder, M., Migliavacca, M., Minerbi, S., Moncrieff, J., Montagnani, L., Moors, E., Ourcival, J.-M., Papale, D., Pereira, J., Pilegaard, K., Pita, G., Rambal, S., Rebmann, C., Rodrigues, A., Rotenberg, E., Sanz, M. J., Sedlak, P., Seufert, G., Siebicke, L., Soussana, J. F., Valentini, R., Vesala, T., Verbeeck, H., and Yakir, D.: Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems, Biogeosciences, 5, 433–450, https://doi.org/10.5194/bg-5-433-2008, 2008.
Harff, J. and Davis, J.: Regionalization in geology by multivariate
classification, Math. Geol., 22, 573–588,
https://doi.org/10.1007/BF00890505, 1990.
Hargrove, W. W. and Hoffman, F. M.: Potential of Multivariate Quantitative
Methods for Delineation and Visualization of Ecoregions, Environ. Manage.,
34, S39–S60, https://doi.org/10.1007/s00267-003-1084-0, 2004.
Hargrove, W. W., Hoffman, F. M., and Law, B. E.: New analysis reveals
representativeness of the AmeriFlux network, EOS T. Am. Geophys. Un.,
84, 529–535, https://doi.org/10.1029/2003EO480001, 2003.
Hargrove, W. W., Hoffman, F. M., and Hessburg, P. F.: Mapcurves: a
quantitative method for comparing categorical maps, J. Geogr. Syst., 8, 187,
https://doi.org/10.1007/s10109-006-0025-x, 2006.
Hessburg, P. F., Salter, R. B., Richmond, M. B., and Smith, B. G.:
Ecological subregions of the Interior Columbia Basin, USA, Appl. Veg. Sci.,
3, 163–180, https://doi.org/10.2307/1478995, 2000.
Hill, T., Chocholek, M., and Clement, R.: The case for increasing the
statistical power of eddy covariance ecosystem studies: why, where and how?,
Glob. Change Biol., 23, 2154–2165, https://doi.org/10.1111/gcb.13547, 2017.
Hoffman, F. M., Kumar, J., Mills, R. T., and Hargrove, W. W.:
Representativeness-based sampling network design for the State of Alaska,
Landsc. Ecol., 28, 1567–1586, https://doi.org/10.1007/s10980-013-9902-0,
2013.
Horst, T. W. and Weil, J. C.: Footprint estimation for scalar flux
measurements in the atmospheric surface layer, Bound.-Lay. Meteorol., 59,
279–296, https://doi.org/10.1007/BF00119817, 1992.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad.
Sci., 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
ICOS ERIC: ICOS Handbook 2020, 2nd rev. Edn., edited by: Ahlgren, K. and Keski-Nisula, M., ICOS ERIC, Helsinki, ISBN 978-952-69501-1-2, 2020.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by:Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, ISBN 978-92-9169-143-2, 2014.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, 2019.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeo.,
116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J.,
and Baldocchi, D.: Biophysical controls on interannual variability in
ecosystem-scale CO2 and CH4 exchange in a California rice paddy, J. Geophys.
Res.-Biogeo., 121, 978–1001, https://doi.org/10.1002/2015JG003247,
2016.
Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E.,
Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., Papale,
D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I.,
Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I., Cescatti, A.,
Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen,
E., Friborg, T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig,
M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss, K.
W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T. H., Nilsson, M. B., Niu,
S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L.,
Richardson, A. D., Runkle, B. R. K., Ryu, Y., Sachs, T., Schäfer, K. V.
R., Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M.,
Vargas, R., Vesala, T., Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and
Zona, D.: FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and
Future Directions, B. Am. Meteorol. Soc., 100, 2607–2632,
https://doi.org/10.1175/BAMS-D-18-0268.1, 2019.
Kountouris, P., Gerbig, C., Rödenbeck, C., Karstens, U., Koch, T. F., and Heimann, M.: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes, Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, 2018.
Kumar, J., Mills, R. T., Hoffman, F. M., and Hargrove, W. W.: Parallel
k-Means Clustering for Quantitative Ecoregion Delineation Using Large Data
Sets, Proced. Comput. Sci., 4, 1602–1611,
https://doi.org/10.1016/j.procs.2011.04.173, 2011.
Kutzbach, L., Wille, C., and Pfeiffer, E.-M.: The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia, Biogeosciences, 4, 869–890, https://doi.org/10.5194/bg-4-869-2007, 2007.
Lara, M. J., McGuire, A. D., Euskirchen, E. S., Genet, H., Yi, S., Rutter,
R., Iversen, C., Sloan, V., and Wullschleger, S. D.: Local-scale Arctic
tundra heterogeneity affects regional-scale carbon dynamics, Nat. Commun.,
11, 4925, https://doi.org/10.1038/s41467-020-18768-z, 2020.
Leclerc, M. Y. and Thurtell, G. W.: Footprint prediction of scalar fluxes
using a Markovian analysis, Bound.-Lay. Meteorol., 52, 247–258,
https://doi.org/10.1007/BF00122089, 1990.
Lee, X., Massman, W., and Law, B. (Eds.): Handbook of Micrometeorology: A
Guide for Surface Flux Measurement and Analysis, 1st Edn., Springer
Netherlands, the Netherlands, 250 pp., https://doi.org/10.1007/1-4020-2265-4,
2005.
Lüers, J., Westermann, S., Piel, K., and Boike, J.: Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago, Biogeosciences, 11, 6307–6322, https://doi.org/10.5194/bg-11-6307-2014, 2014.
Malone, S., Oh, Y., Arndt, K., Burba, G., Commane, R., Contosta, A., Goodrich, J., Loescher, H., Starr, G., and Varner, R.: Gaps in Network Infrastructure limit our understanding of biogenic methane emissions in the United States, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2021-256, in review, 2021.
Marushchak, M. E., Kiepe, I., Biasi, C., Elsakov, V., Friborg, T., Johansson, T., Soegaard, H., Virtanen, T., and Martikainen, P. J.: Carbon dioxide balance of subarctic tundra from plot to regional scales, Biogeosciences, 10, 437–452, https://doi.org/10.5194/bg-10-437-2013, 2013.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström,
L., Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst
during onset of freezing, Nature, 456, 628–630,
https://doi.org/10.1038/nature07464, 2008.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, 2019.
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M.,
Björk, R. G., Björkman, M. P., Blok, D., Chaudhary, N., Chisholm,
C., Classen, A. T., Hasselquist, N. J., Jonsson, M., Kristensen, J. A.,
Kumordzi, B. B., Lee, H., Mayor, J. R., Prevéy, J., Pantazatou, K.,
Rousk, J., Sponseller, R. A., Sundqvist, M. K., Tang, J., Uddling, J.,
Wallin, G., Zhang, W., Ahlström, A., Tenenbaum, D. E., and Abdi, A. M.:
Patchy field sampling biases understanding of climate change impacts across
the Arctic, Nat. Ecol. Evol., 2, 1443–1448,
https://doi.org/10.1038/s41559-018-0612-5, 2018.
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A.,
Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G.,
Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag,
J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling, B.,
Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and
environmental predictors of permafrost region soil organic carbon stocks,
Sci. Adv., 7, eaaz5236, https://doi.org/10.1126/sciadv.aaz5236, 2021.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A.
D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol.,
147, 209–232, https://doi.org/10.1016/j.agrformet.2007.08.011, 2007.
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M.,
Selbmann, A.-K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L.,
Björkman, M. P., Bloom, A. A., Celis, G., Christensen, T. R.,
Christiansen, C. T., Commane, R., Cooper, E. J., Crill, P., Czimczik, C.,
Davydov, S., Du, J., Egan, J. E., Elberling, B., Euskirchen, E. S., Friborg,
T., Genet, H., Göckede, M., Goodrich, J. P., Grogan, P., Helbig, M.,
Jafarov, E. E., Jastrow, J. D., Kalhori, A. A. M., Kim, Y., Kimball, J. S.,
Kutzbach, L., Lara, M. J., Larsen, K. S., Lee, B.-Y., Liu, Z., Loranty, M.
M., Lund, M., Lupascu, M., Madani, N., Malhotra, A., Matamala, R.,
McFarland, J., McGuire, A. D., Michelsen, A., Minions, C., Oechel, W. C.,
Olefeldt, D., Parmentier, F.-J. W., Pirk, N., Poulter, B., Quinton, W.,
Rezanezhad, F., Risk, D., Sachs, T., Schaefer, K., Schmidt, N. M., Schuur,
E. A. G., Semenchuk, P. R., Shaver, G., Sonnentag, O., Starr, G., Treat, C.
C., Waldrop, M. P., Wang, Y., Welker, J., Wille, C., Xu, X., Zhang, Z.,
Zhuang, Q., and Zona, D.: Large loss of CO2 in winter observed across
the northern permafrost region, Nat. Clim. Change, 9, 852–857,
https://doi.org/10.1038/s41558-019-0592-8, 2019.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci., 12, 917–921,
https://doi.org/10.1038/s41561-019-0454-z, 2019.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.888600, 2018.
Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhori, A. A.
M.: Annual patterns and budget of CO2 flux in an Arctic tussock tundra
ecosystem, J. Geophys. Res.-Biogeo., 119, 323–339,
https://doi.org/10.1002/2013JG002431, 2014.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
Pallandt, M. M. T. A., Celis, G., and Göckede, M.: High latitude carbon flux sites, NSF OPP Arctic data center [data set], https://cosima.nceas.ucsb.edu/carbon-flux-sites/ (last access: 27 January 2022), 2018.
Parmentier, F.-J. W., Christensen, T. R., Rysgaard, S., Bendtsen, J., Glud,
R. N., Else, B., van Huissteden, J., Sachs, T., Vonk, J. E., and Sejr, M.
K.: A synthesis of the arctic terrestrial and marine carbon cycles under
pressure from a dwindling cryosphere, Ambio, 46, 53–69,
https://doi.org/10.1007/s13280-016-0872-8, 2017.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and the ONEFlux
processing pipeline for eddy covariance data, Sci. Data, 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Jr., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen,
M.: ArcticDEM, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov,
M. M., Daniëls, F. J. A., Eidesen, P. B., Ermokhina, K. A., Frost, G.
V., Jedrzejek, B., Jorgenson, M. T., Kennedy, B. E., Kholod, S. S.,
Lavrinenko, I. A., Lavrinenko, O. V., Magnússon, B., Matveyeva, N. V.,
Metúsalemsson, S., Nilsen, L., Olthof, I., Pospelov, I. N., Pospelova,
E. B., Pouliot, D., Razzhivin, V., Schaepman-Strub, G., Šibík, J.,
Telyatnikov, M. Y., and Troeva, E.: A raster version of the Circumpolar
Arctic Vegetation Map (CAVM), Remote Sens. Environ., 232, 111297,
https://doi.org/10.1016/j.rse.2019.111297, 2019.
Schimel, D., Hargrove, W., Hoffman, F., and MacMahon, J.: NEON: a
hierarchically designed national ecological network, Front. Ecol. Environ.,
5, 59–59, https://doi.org/10.1890/1540-9295(2007)5[59:NAHDNE]2.0.CO;2,
2007.
Schmid, H. P.: Source areas for scalars and scalar fluxes, Bound.-Lay.
Meteorol., 67, 293–318, https://doi.org/10.1007/BF00713146, 1994.
Schmid, H. P.: Footprint modeling for vegetation atmosphere exchange
studies: a review and perspective, Agr. Forest Meteorol., 113, 159–183,
https://doi.org/10.1016/S0168-1923(02)00107-7, 2002.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
Permafrost Carbon to Climate Change: Implications for the Global Carbon
Cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P.,
Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais,
P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J.,
Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D.,
Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M.,
O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E.,
Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M.,
Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M.,
Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of
vulnerability of permafrost carbon to climate change, Clim. Change, 119,
359–374, https://doi.org/10.1007/s10584-013-0730-7, 2013.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Glob. Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shiga, Y. P., Michalak, A. M., Kawa, S. R., and Engelen, R. J.: In-situ CO2
monitoring network evaluation and design: A criterion based on atmospheric
CO2 variability, J. Geophys. Res.-Atmos., 118, 2007–2018,
https://doi.org/10.1002/jgrd.50168, 2013.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T.,
Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma
permafrost: A synthesis of depositional characteristics and carbon
vulnerability, Earth-Sci. Rev., 172, 75–86,
https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Sturtevant, C. S. and Oechel, W. C.: Spatial variation in landscape-level
CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation,
wetness, and the thaw lake cycle, Glob. Change Biol., 19, 2853–2866,
https://doi.org/10.1111/gcb.12247, 2013.
Sulkava, M., Luyssaert, S., Zaehle, S., and Papale, D.: Assessing and
improving the representativeness of monitoring networks: The European flux
tower network example, J. Geophys. Res.-Biogeo., 116, G00J04,
https://doi.org/10.1029/2010JG001562, 2011.
Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F.,
Camps-Valls, G., Ogee, J., Verrelst, J., and Papale, D.: Partitioning net
carbon dioxide fluxes into photosynthesis and respiration using neural
networks, Glob. Change Biol., 26, 5235–5253,
https://doi.org/10.1111/gcb.15203, 2020.
Tuovinen, J.-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T., Mikola, J., Ivakhov, V., Kondratyev, V., and Laurila, T.: Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness, Biogeosciences, 16, 255–274, https://doi.org/10.5194/bg-16-255-2019, 2019.
Ueyama, M., Iwata, H., Harazono, Y., Euskirchen, E. S., Oechel, W. C., and
Zona, D.: Growing season and spatial variations of carbon fluxes of Arctic
and boreal ecosystems in Alaska (USA), Ecol. Appl., 23, 1798–1816,
https://doi.org/10.1890/11-0875.1, 2013.
Vesala, T., Kljun, N., Rannik, U., Rinne, J., Sogachev, A., Markkanen, T.,
Sabelfeld, K., Foken, T., and Leclerc, M. Y.: Flux and concentration
footprint modelling: state of the art, Environ. Pollut. Barking Essex 1987,
152, 653–666, https://doi.org/10.1016/j.envpol.2007.06.070, 2008.
Villarreal, S. and Vargas, R.: Representativeness of FLUXNET Sites Across
Latin America, J. Geophys. Res.-Biogeo., 126, e2020JG006090,
https://doi.org/10.1029/2020JG006090, 2021.
Virkkala, A.-M., Virtanen, T., Lehtonen, A., Rinne, J., and Luoto, M.: The
current state of CO2 flux chamber studies in the Arctic tundra: A review,
Prog. Phys. Geog. Earth Environ., 42, 162–184,
https://doi.org/10.1177/0309133317745784, 2018.
Virkkala, A.-M., Abdi, A. M., Luoto, M., and Metcalfe, D. B.: Identifying
multidisciplinary research gaps across Arctic terrestrial gradients,
Environ. Res. Lett., 14, 124061, https://doi.org/10.1088/1748-9326/ab4291,
2019.
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C.,
Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur,
E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys,
E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst,
S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Loius, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, Mats. B.,
Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I.,
Chae, N., Poyatos, R., López-Blanco, E., Røjle Christensen, T., Jung
Kwon, M., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of
ecosystem CO2 fluxes across the terrestrial tundra and boreal domain:
regional patterns and uncertainties, Glob. Change Biol., 27, 4040–4059,
https://doi.org/10.1111/gcb.15659, 2021.
Virtanen, T. and Ek, M.: The fragmented nature of tundra landscape, Int. J.
Appl. Earth Obs., 27, 4–12,
https://doi.org/10.1016/j.jag.2013.05.010, 2014.
Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.-M.: Methane
emission from Siberian arctic polygonal tundra: eddy covariance measurements
and modeling, Glob. Change Biol., 14, 1395–1408,
https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.
Xiao, J., Chen, J., Davis, K. J., and Reichstein, M.: Advances in upscaling
of eddy covariance measurements of carbon and water fluxes, J. Geophys. Res.-Biogeo., 117, G00J01, https://doi.org/10.1029/2011JG001889, 2012.
Ylläsjärvi, I. and Kuuluvainen, T.: How homogeneous is the boreal
forest? Characteristics and variability of old-growth forest on a
Hylocomium – Myrtillus site type in the Pallas-Yllästunturi National
Park, northern Finland, Ann. Bot. Fenn., 46, 263–279, 2009.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zhou, Y., Narumalani, S., Waltman, W. J., Waltman, S. W., and Palecki, M.
A.: A GIS-based Spatial Pattern Analysis Model for eco-region mapping and
characterization, Int. J. Geogr. Inf. Sci., 17, 445–462,
https://doi.org/10.1080/1365881031000086983, 2003.
Ziehn, T., Nickless, A., Rayner, P. J., Law, R. M., Roff, G., and Fraser, P.: Greenhouse gas network design using backward Lagrangian particle dispersion modelling -− Part 1: Methodology and Australian test case, Atmos. Chem. Phys., 14, 9363–9378, https://doi.org/10.5194/acp-14-9363-2014, 2014.
Zimov, S. A., Davidov, S. P., Voropaev, Y. V., Prosiannikov, S. F.,
Semiletov, I. P., Chapin, M. C., and Chapin, F. S.: Siberian CO2 efflux in
winter as a CO2 source and cause of seasonality in atmospheric CO2, Climatic
Change, 33, 111–120, https://doi.org/10.1007/BF00140516, 1996.
Zona, D., Lipson, D. A., Richards, J. H., Phoenix, G. K., Liljedahl, A. K., Ueyama, M., Sturtevant, C. S., and Oechel, W. C.: Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning, Biogeosciences, 11, 5877–5888, https://doi.org/10.5194/bg-11-5877-2014, 2014.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl,
A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget, P. Natl.
Acad. Sci., 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the...
Altmetrics
Final-revised paper
Preprint