Articles | Volume 11, issue 7
https://doi.org/10.5194/bg-11-1961-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-1961-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes
J. D. Watts
Flathead Lake Biological Station, The University of Montana, 32125 Bio Station Lane, Polson, MT, USA
Numerical Terradynamic Simulation Group, CHCB 428, 32 Campus Drive, The University of Montana, Missoula, MT, USA
J. S. Kimball
Flathead Lake Biological Station, The University of Montana, 32125 Bio Station Lane, Polson, MT, USA
Numerical Terradynamic Simulation Group, CHCB 428, 32 Campus Drive, The University of Montana, Missoula, MT, USA
F. J. W. Parmentier
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Department of Geosciences and Geography; Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
Department of Biology, San Diego State University, San Diego, CA, USA
W. Oechel
Department of Biology, San Diego State University, San Diego, CA, USA
T. Tagesson
Department of Geography and Geology, Copenhagen University, Øster Voldgade 10, 1350 Copenhagen, Denmark
M. Jackowicz-Korczyński
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
M. Aurela
Finnish Meteorological Institute, Climate Change Research, P.O. Box 503, 00101, Helsinki, Finland
Related authors
Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim, Joseph Glassy, and Jennifer D. Watts
Earth Syst. Sci. Data, 9, 791–808, https://doi.org/10.5194/essd-9-791-2017, https://doi.org/10.5194/essd-9-791-2017, 2017
Short summary
Short summary
We developed a global land parameter data record (LPDR; 2002–2015) using satellite microwave observations. The LPDR algorithms exploit multifrequency microwave observations to derive a set of environmental variables, including surface fractional water, atmosphere precipitable water vapor, daily surface air temperatures, vegetation optical depth, and volumetric soil moisture. The resulting LPDR shows favorable accuracy and provides for the consistent monitoring of global environmental changes.
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Short summary
A new automated method for microwave satellite assessment of lake ice conditions at 5 km resolution was developed for lakes in the Northern Hemisphere. The resulting ice record shows strong agreement with ground observations and alternative ice records. Higher latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower latitude lakes. The new approach allows for rapid monitoring of lake ice cover changes, with accuracy suitable for global change studies.
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024, https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
Short summary
Permafrost landscapes in the Arctic are rapidly changing due to climate warming. Here, we publish aerial images and elevation models with very high spatial detail that help study these landscapes in northwestern Canada and Alaska. The images were collected using the Modular Aerial Camera System (MACS). This dataset has significant implications for understanding permafrost landscape dynamics in response to climate change. It is publicly available for further research.
Ross Charles Petersen, Thomas Holst, Cheng Wu, Radovan Krejci, Jeremy Chan, Claudia Mohr, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3410, https://doi.org/10.5194/egusphere-2024-3410, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Ecosystem-scale emissions of biogenic volatile organic compounds (BVOCs) are important for atmospheric chemistry. Here we investigate boreal BVOC fluxes from a forest in central Sweden. BVOC fluxes were measured above-canopy using proton-transfer-reaction mass spectrometry, while compound-specific monoterpene (MT) fluxes were assessed using a concentration gradient method. We also evaluate the impact of chemical degradation on observed sesquiterpene (SQT) and nighttime MT fluxes.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-3305, https://doi.org/10.5194/egusphere-2024-3305, 2024
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Gaïa Michel, Julien Crétat, Olivier Mathieu, Mathieu Thévenot, Andrey Dara, Robert Granat, Zhendong Wu, Clément Bonnefoy-Claudet, Julianne Capelle, Jean Cacot, and John S. Kimball
EGUsphere, https://doi.org/10.5194/egusphere-2024-1758, https://doi.org/10.5194/egusphere-2024-1758, 2024
Short summary
Short summary
This study questions the usefulness of state-ot-the-art models to characterize the temporal variability of atmosphere-ecosystem CO2 exchanges in western European forests. Their mean annual cycle and annual budget are better captured by statistical than physical models, while their interannual variability and long-term trend are better captured by models forced by climate variability. Accounting for both forest stands and climate variability is thus key for properly assessing CO2 fluxes.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-373, https://doi.org/10.5194/egusphere-2024-373, 2024
Preprint archived
Short summary
Short summary
Our study employs an Adaptive MCMC algorithm (GRaB-AM) to constrain process parameters in the wetlands emission module of the LPJ-GUESS model, using CH4 EC flux observations from 14 diverse wetlands. We aim to derive a single set of parameters capable of representing the diversity of northern wetlands. By reducing uncertainties in model parameters and improving simulation accuracy, our research contributes to more reliable projections of future wetland CH4 emissions and their climate impact.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Kevin J. Gonzalez Martinez, Donatella Zona, Trent Biggs, Kristine Bernabe, Danielle Sirivat, Francia Tenorio, and Walter Oechel
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-117, https://doi.org/10.5194/bg-2023-117, 2023
Revised manuscript not accepted
Short summary
Short summary
Permafrost soils contain twice the amount of carbon than the atmosphere, and its release could majorly affect global temperatures. This study found that a thicker moss layer resulted in cooler temperatures deeper in the soil, despite warmer surface temperatures. The top green living moss layer was the most important in regulating the soil temperatures and should be considered when predicting the response of permafrost thaw to climate change.
Ross Petersen, Thomas Holst, Meelis Mölder, Natascha Kljun, and Janne Rinne
Atmos. Chem. Phys., 23, 7839–7858, https://doi.org/10.5194/acp-23-7839-2023, https://doi.org/10.5194/acp-23-7839-2023, 2023
Short summary
Short summary
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in boreal forest, determined through multiyear measurements at several heights in a boreal forest in Sweden. VOC source/sink seasonality in canopy was explored using these vertical profiles and with measurements from a collection of sonic anemometers on the station flux tower. Our results show seasonality in the source/sink distribution for several VOCs, such as monoterpenes and water-soluble compounds.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Malika Menoud, Carina van der Veen, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, James L. France, Rebecca E. Fisher, Hossein Maazallahi, Mila Stanisavljević, Jarosław Nęcki, Katarina Vinkovic, Patryk Łakomiec, Janne Rinne, Piotr Korbeń, Martina Schmidt, Sara Defratyka, Camille Yver-Kwok, Truls Andersen, Huilin Chen, and Thomas Röckmann
Earth Syst. Sci. Data, 14, 4365–4386, https://doi.org/10.5194/essd-14-4365-2022, https://doi.org/10.5194/essd-14-4365-2022, 2022
Short summary
Short summary
Emission sources of methane (CH4) can be distinguished with measurements of CH4 stable isotopes. We present new measurements of isotope signatures of various CH4 sources in Europe, mainly anthropogenic, sampled from 2017 to 2020. The present database also contains the most recent update of the global signature dataset from the literature. The dataset improves CH4 source attribution and the understanding of the global CH4 budget.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Jessica Plein, Rulon W. Clark, Kyle A. Arndt, Walter C. Oechel, Douglas Stow, and Donatella Zona
Biogeosciences, 19, 2779–2794, https://doi.org/10.5194/bg-19-2779-2022, https://doi.org/10.5194/bg-19-2779-2022, 2022
Short summary
Short summary
Tundra vegetation and the carbon balance of Arctic ecosystems can be substantially impacted by herbivory. We tested how herbivory by brown lemmings in individual enclosure plots have impacted carbon exchange of tundra ecosystems via altering carbon dioxide (CO2) and methane (CH4) fluxes. Lemmings significantly decreased net CO2 uptake while not affecting CH4 emissions. There was no significant difference in the subsequent growing season due to recovery of the vegetation.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Joel Dawson White, Lena Ström, Veiko Lehsten, Janne Rinne, and Dag Ahrén
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-353, https://doi.org/10.5194/bg-2021-353, 2022
Revised manuscript not accepted
Short summary
Short summary
Microbes that produce CH4 play an important role to climate. Microbes which emit CH4 from wetlands is poorly understood. We observed that microbial community was of importance in explaining CH4 emission. We found, that microbes that produce CH4 hold the ability to produce and consume CH4 in multiple ways. This is important in terms of future climate scenarios, where wetlands are expected to shift. Therefore, we expect the community to be highly adaptive to future climate scenarios.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Frans-Jan W. Parmentier, Lennart Nilsen, Hans Tømmervik, and Elisabeth J. Cooper
Earth Syst. Sci. Data, 13, 3593–3606, https://doi.org/10.5194/essd-13-3593-2021, https://doi.org/10.5194/essd-13-3593-2021, 2021
Short summary
Short summary
Satellites provide a global overview of Earth's ecosystems, but they have coarse resolutions and low revisit times. Small-scale vegetation patterns and sudden shifts in plant growth can easily be missed. In this paper, we show how to fill these gaps with vegetation indices obtained with ordinary time-lapse cameras deployed across a valley on Svalbard. We show how to adjust for unwanted camera movement and that vegetation indices from ordinary cameras compare well to those used by satellites.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Seyedmohammad Mousavi, Andreas Colliander, Julie Z. Miller, and John S. Kimball
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-297, https://doi.org/10.5194/tc-2020-297, 2020
Manuscript not accepted for further review
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Sheila Wachiye, Lutz Merbold, Timo Vesala, Janne Rinne, Matti Räsänen, Sonja Leitner, and Petri Pellikka
Biogeosciences, 17, 2149–2167, https://doi.org/10.5194/bg-17-2149-2020, https://doi.org/10.5194/bg-17-2149-2020, 2020
Short summary
Short summary
Limited data on emissions in Africa translate into uncertainty during GHG budgeting. We studied annual CO2, N2O, and CH4 emissions in four land-use types in Kenyan savanna using static chambers and gas chromatography. CO2 emissions varied between seasons and land-use types. Soil moisture and vegetation explained the seasonal variation, while soil temperature was insignificant. N2O and CH4 emissions did not vary at all sites. Our results are useful in climate change mitigation interventions.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-651, https://doi.org/10.5194/hess-2019-651, 2020
Revised manuscript not accepted
Short summary
Short summary
The annual ET is approximately equal to precipitation during six measured years for grazed savanna grassland. The computed annual transpiration was highly constrained when rainfall was near or above the long-term mean but was reduced during severe drought year. The developed methodologies can be used in a wide range of arid and semi-arid ecosystems.
Bing Pu, Paul Ginoux, Huan Guo, N. Christina Hsu, John Kimball, Beatrice Marticorena, Sergey Malyshev, Vaishali Naik, Norman T. O'Neill, Carlos Pérez García-Pando, Juliette Paireau, Joseph M. Prospero, Elena Shevliakova, and Ming Zhao
Atmos. Chem. Phys., 20, 55–81, https://doi.org/10.5194/acp-20-55-2020, https://doi.org/10.5194/acp-20-55-2020, 2020
Short summary
Short summary
Dust emission initiates when surface wind velocities exceed a threshold depending on soil and surface characteristics and varying spatially and temporally. Climate models widely use wind erosion thresholds. The climatological monthly global distribution of the wind erosion threshold, Vthreshold, is retrieved using satellite and reanalysis products and improves the simulation of dust frequency, magnitude, and the seasonal cycle in the Geophysical Fluid Dynamics Laboratory land–atmosphere model.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019, https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, and Charles E. Miller
The Cryosphere, 13, 197–218, https://doi.org/10.5194/tc-13-197-2019, https://doi.org/10.5194/tc-13-197-2019, 2019
Short summary
Short summary
To better understand active-layer freezing process and its climate sensitivity, we developed a new 1 km snow data set for permafrost modeling and used the model simulations with multiple new in situ and P-band radar data sets to characterize the soil freeze onset and duration of zero curtain in Arctic Alaska. Results show that zero curtains of upper soils are primarily affected by early snow cover accumulation, while zero curtains of deeper soils are more closely related to maximum thaw depth.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Sophia Walther, Luis Guanter, Birgit Heim, Martin Jung, Gregory Duveiller, Aleksandra Wolanin, and Torsten Sachs
Biogeosciences, 15, 6221–6256, https://doi.org/10.5194/bg-15-6221-2018, https://doi.org/10.5194/bg-15-6221-2018, 2018
Short summary
Short summary
We explored the timing of the peak of the short annual growing season in tundra ecosystems as indicated by an extensive suite of satellite indicators of vegetation productivity. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. Plants also experience growth after optimal conditions for assimilation regarding light and temperature have passed. Our results have implications for the modelling of the circumpolar carbon balance.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018, https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Short summary
In order to support the evaluation of coupled atmospheric–land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties and upscaled airborne flux measurements to high resolution flux maps. A machine learning technique allows us to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers.
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018, https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
Short summary
We compared two different fast-response humidity sensors simultaneously on different airborne platforms. One is a particular, well-establed Lyman-alpha hygrometer that has been used for decades as the standard for fast airborne humidity measurements. However, it is not available any more. The other one is a hygrometer based on the absorption of infrared radiation, from LI-COR. For an environment of low vibrations, the LI-COR sensor is suitable for fast airborne water vapour measurements.
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018, https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary
Short summary
We measured methane fluxes of a boreal bog from six different plant community types in 2012–2014. We found only little variation in methane fluxes among plant community types. Peat temperature as well as both leaf area of plant species with air channels and of all vegetation are important factors controlling the fluxes. We also detected negative net fluxes indicating methane consumption each year. Our results can be used to improve the models of peatland methane dynamics under climate change.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, Rolf H. Reichle, Umakant Mishra, Donatella Zona, and Walter C. Oechel
The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, https://doi.org/10.5194/tc-12-145-2018, 2018
Short summary
Short summary
An important feature of the Arctic is large spatial heterogeneity in active layer conditions. We developed a modeling framework integrating airborne longwave radar and satellite data to investigate active layer thickness (ALT) sensitivity to landscape heterogeneity in Alaska. We find uncertainty in spatial and vertical distribution of soil organic carbon is the largest factor affecting ALT accuracy. Advances in remote sensing of soil conditions will enable more accurate ALT predictions.
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Mathilde Jammet, Sigrid Dengel, Ernesto Kettner, Frans-Jan W. Parmentier, Martin Wik, Patrick Crill, and Thomas Friborg
Biogeosciences, 14, 5189–5216, https://doi.org/10.5194/bg-14-5189-2017, https://doi.org/10.5194/bg-14-5189-2017, 2017
Short summary
Short summary
The quantitative importance of northern lakes in terrestrial carbon budgets is uncertain, as year-round observations of carbon fluxes are rare. We measured CH4 and CO2 fluxes from a subarctic lake and nearby fen during 2.5 years with one eddy covariance system. We identified drivers of seasonal variability in lake fluxes and show the importance of winter and spring for annual carbon exchange in both ecosystems. The lake as a source of atmospheric carbon partially compensates the fen carbon sink.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim, Joseph Glassy, and Jennifer D. Watts
Earth Syst. Sci. Data, 9, 791–808, https://doi.org/10.5194/essd-9-791-2017, https://doi.org/10.5194/essd-9-791-2017, 2017
Short summary
Short summary
We developed a global land parameter data record (LPDR; 2002–2015) using satellite microwave observations. The LPDR algorithms exploit multifrequency microwave observations to derive a set of environmental variables, including surface fractional water, atmosphere precipitable water vapor, daily surface air temperatures, vegetation optical depth, and volumetric soil moisture. The resulting LPDR shows favorable accuracy and provides for the consistent monitoring of global environmental changes.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai
Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, https://doi.org/10.5194/gmd-10-3189-2017, 2017
Short summary
Short summary
We apply the
development and systems operationssoftware development model to create the eddy4R–Docker open-source, flexible, and modular eddy-covariance data processing environment. Test applications to aircraft and tower data, as well as a software cross validation demonstrate its efficiency and consistency. Key improvements in accessibility, extensibility, and reproducibility build the foundation for deploying complex scientific algorithms in an effective and scalable manner.
Ting Sun, Zhi-Hua Wang, Walter C. Oechel, and Sue Grimmond
Geosci. Model Dev., 10, 2875–2890, https://doi.org/10.5194/gmd-10-2875-2017, https://doi.org/10.5194/gmd-10-2875-2017, 2017
Short summary
Short summary
The diurnal hysteresis behaviour found between the net storage heat flux and net all-wave radiation has been captured in the Objective Hysteresis Model (OHM). To facilitate use, and enhance physical interpretations of the OHM coefficients, we develop the Analytical Objective Hysteresis Model (AnOHM) using an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the surface energy balance relationship.
Norbert Pirk, Jakob Sievers, Jordan Mertes, Frans-Jan W. Parmentier, Mikhail Mastepanov, and Torben R. Christensen
Biogeosciences, 14, 3157–3169, https://doi.org/10.5194/bg-14-3157-2017, https://doi.org/10.5194/bg-14-3157-2017, 2017
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Andrew D. Venter, Kerneels Jaars, Stefan J. Siebert, Tuomas Laurila, Janne Rinne, and Lauri Laakso
Biogeosciences, 14, 1039–1054, https://doi.org/10.5194/bg-14-1039-2017, https://doi.org/10.5194/bg-14-1039-2017, 2017
Short summary
Short summary
This study presents measurements of carbon dioxide exchange between the atmosphere and a grazed savanna grassland ecosystem for 3 years. We find that the yearly variation in carbon dioxide balance is largely determined by the changes in the early wet season balance (September to November) and in the mid-growing season balance (December to January).
Youngwook Kim, John S. Kimball, Joseph Glassy, and Jinyang Du
Earth Syst. Sci. Data, 9, 133–147, https://doi.org/10.5194/essd-9-133-2017, https://doi.org/10.5194/essd-9-133-2017, 2017
Short summary
Short summary
A new freeze–thaw (FT) Earth system data record (ESDR) was developed from satellite passive microwave remote sensing that quantifies the daily landscape frozen or non-frozen status over a 25 km resolution global grid and 1979–2014 record. The FT-ESDR shows favorable accuracy and performance, enabling new studies of climate change and frozen season impacts on surface water mobility and ecosystem processes.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Aino Korrensalo, Pavel Alekseychik, Tomáš Hájek, Janne Rinne, Timo Vesala, Lauri Mehtätalo, Ivan Mammarella, and Eeva-Stiina Tuittila
Biogeosciences, 14, 257–269, https://doi.org/10.5194/bg-14-257-2017, https://doi.org/10.5194/bg-14-257-2017, 2017
Short summary
Short summary
Photosynthetic parameters of peatland plant species were measured over one growing season in an ombrotrophic bog. Based on these measurements, ecosystem-level photosynthesis was calculated for the whole growing season and compared with an estimate derived from micrometeorological measurements. These two estimates corresponded well. Species with low areal cover at the site but high photosynthetic efficiency appeared to be potentially important for the ecosystem-level carbon balance.
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Short summary
A new automated method for microwave satellite assessment of lake ice conditions at 5 km resolution was developed for lakes in the Northern Hemisphere. The resulting ice record shows strong agreement with ground observations and alternative ice records. Higher latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower latitude lakes. The new approach allows for rapid monitoring of lake ice cover changes, with accuracy suitable for global change studies.
Mathias Hoffmann, Maximilian Schulz-Hanke, Juana Garcia Alba, Nicole Jurisch, Ulrike Hagemann, Torsten Sachs, Michael Sommer, and Jürgen Augustin
Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017, https://doi.org/10.5194/amt-10-109-2017, 2017
Short summary
Short summary
Processes driving production and transport of CH4 in wetlands are complex. We present an algorithm to separate open-water automatic chamber CH4 fluxes into diffusion and ebullition. This helps to reveal dynamics, identify drivers and obtain reliable CH4 emissions. The algorithm is based on sudden concentration changes during single measurements. A variable filter is applied using a multiple of the interquartile range. The algorithm was verified for data of a rewetted former fen grassland site.
Kerneels Jaars, Pieter G. van Zyl, Johan P. Beukes, Heidi Hellén, Ville Vakkari, Micky Josipovic, Andrew D. Venter, Matti Räsänen, Leandra Knoetze, Dirk P. Cilliers, Stefan J. Siebert, Markku Kulmala, Janne Rinne, Alex Guenther, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 16, 15665–15688, https://doi.org/10.5194/acp-16-15665-2016, https://doi.org/10.5194/acp-16-15665-2016, 2016
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) – important in tropospheric ozone and secondary organic aerosol formation – were measured at a savannah grassland in South Africa. Results presented are the most extensive for this type of landscape. Compared to other parts of the world, monoterpene levels were similar, while very low isoprene levels led to significantly lower total BVOC levels. BVOC levels were an order of magnitude lower compared to anthropogenic VOC levels measured at Welgegund.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Pekka Rantala, Leena Järvi, Risto Taipale, Terhi K. Laurila, Johanna Patokoski, Maija K. Kajos, Mona Kurppa, Sami Haapanala, Erkki Siivola, Tuukka Petäjä, Taina M. Ruuskanen, and Janne Rinne
Atmos. Chem. Phys., 16, 7981–8007, https://doi.org/10.5194/acp-16-7981-2016, https://doi.org/10.5194/acp-16-7981-2016, 2016
Short summary
Short summary
Fluxes of volatile organic compounds (VOCs) were measured above an urban landscape in Helsinki, northern Europe. We found that traffic was a major source for many oxygenated and aromatic VOCs, whereas isoprene originated mostly from the urban vegetation. Overall, the VOC fluxes were quite small in comparison with the earlier urban VOC flux measurements.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Daniela Franz, Franziska Koebsch, Eric Larmanou, Jürgen Augustin, and Torsten Sachs
Biogeosciences, 13, 3051–3070, https://doi.org/10.5194/bg-13-3051-2016, https://doi.org/10.5194/bg-13-3051-2016, 2016
Short summary
Short summary
Based on the eddy covariance method we investigate the ecosystem–atmosphere exchange of CH4 and CO2 at a eutrophic shallow lake as a challenging ecosystem often evolving during peatland rewetting. Both open water and emergent vegetation are net emitters of CH4 and CO2, but with strikingly different release rates. Even after 9 years of rewetting the lake ecosystem exhibits a considerable carbon loss and global warming impact, the latter mainly driven by high CH4 emissions from the open waterbody.
Norbert Pirk, Mikhail Mastepanov, Frans-Jan W. Parmentier, Magnus Lund, Patrick Crill, and Torben R. Christensen
Biogeosciences, 13, 903–912, https://doi.org/10.5194/bg-13-903-2016, https://doi.org/10.5194/bg-13-903-2016, 2016
Short summary
Short summary
The exchange of greenhouse gases between the land and the atmosphere is often measured by monitoring the gas concentrations inside a chamber which is placed on the ground. We investigated different ways to calculate the gas exchange rate and identified several different processes which influence the gas exchange measurement.
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
P. Dass, M. A. Rawlins, J. S. Kimball, and Y. Kim
Biogeosciences, 13, 45–62, https://doi.org/10.5194/bg-13-45-2016, https://doi.org/10.5194/bg-13-45-2016, 2016
Short summary
Short summary
Productivity of the vegetation of northern Eurasia has been found to be increasing over the last few decades. Using statistical tools we investigate major factors driving the increase in photosynthetic activity. Most of this change is explained by rising temperatures, which drive an increase in productivity. However, the contribution of changing patterns of rainfall and cloudiness is also significant, especially in the southern parts of the region which exhibit higher drought vulnerability.
J. Patokoski, T. M. Ruuskanen, M. K. Kajos, R. Taipale, P. Rantala, J. Aalto, T. Ryyppö, T. Nieminen, H. Hakola, and J. Rinne
Atmos. Chem. Phys., 15, 13413–13432, https://doi.org/10.5194/acp-15-13413-2015, https://doi.org/10.5194/acp-15-13413-2015, 2015
Short summary
Short summary
In this study, main source areas for long-lived VOCs at the boreal forest in SMEAR II were determined. Air masses arriving from eastern and western directions were more polluted than those arriving from the northern direction. The biogenic and anthropogenic influences of three different source profiles were determined. The elevated trace gas concentrations from forest fire episodes were observed clearly in the trajectory analysis.
M. K. Kajos, P. Rantala, M. Hill, H. Hellén, J. Aalto, J. Patokoski, R. Taipale, C. C. Hoerger, S. Reimann, T. M. Ruuskanen, J. Rinne, and T. Petäjä
Atmos. Meas. Tech., 8, 4453–4473, https://doi.org/10.5194/amt-8-4453-2015, https://doi.org/10.5194/amt-8-4453-2015, 2015
Y. Yi, J. S. Kimball, M. A. Rawlins, M. Moghaddam, and E. S. Euskirchen
Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, https://doi.org/10.5194/bg-12-5811-2015, 2015
Short summary
Short summary
We found that regional warming promotes widespread deepening of soil thaw in the pan-Arctic area; continued warming will most likely promote permafrost degradation in the warm permafrost areas. We also found that deeper snowpack enhances soil respiration from deeper soil carbon pool more than temperature does, particularly in the cold permafrost areas, where a large amount of soil carbon is stored in deep perennial frozen soils but is potentially vulnerable to mobilization from climate change.
P. Rantala, J. Aalto, R. Taipale, T. M. Ruuskanen, and J. Rinne
Biogeosciences, 12, 5753–5770, https://doi.org/10.5194/bg-12-5753-2015, https://doi.org/10.5194/bg-12-5753-2015, 2015
M. Hoffmann, M. Schulz-Hanke, J. Garcia Alba, N. Jurisch, U. Hagemann, T. Sachs, M. Sommer, and J. Augustin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-12923-2015, https://doi.org/10.5194/bgd-12-12923-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Processes driving the production, transformation and transport of CH4 in wetlands are highly complex. Thus, serious challenges are constitutes in terms of process understanding, potential drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate CH4 fluxes measured with closed chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential drivers.
T. De Groote, D. Zona, L. S. Broeckx, M. S. Verlinden, S. Luyssaert, V. Bellassen, N. Vuichard, R. Ceulemans, A. Gobin, and I. A. Janssens
Geosci. Model Dev., 8, 1461–1471, https://doi.org/10.5194/gmd-8-1461-2015, https://doi.org/10.5194/gmd-8-1461-2015, 2015
Short summary
Short summary
This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of short rotation coppice (SRC) plantations. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. The simulations show that the model predicts aboveground biomass production, ecosystem photosynthesis and ecosystem respiration well.
J. Tang, P. A. Miller, A. Persson, D. Olefeldt, P. Pilesjö, M. Heliasz, M. Jackowicz-Korczynski, Z. Yang, B. Smith, T. V. Callaghan, and T. R. Christensen
Biogeosciences, 12, 2791–2808, https://doi.org/10.5194/bg-12-2791-2015, https://doi.org/10.5194/bg-12-2791-2015, 2015
D. Zona, D. A. Lipson, J. H. Richards, G. K. Phoenix, A. K. Liljedahl, M. Ueyama, C. S. Sturtevant, and W. C. Oechel
Biogeosciences, 11, 5877–5888, https://doi.org/10.5194/bg-11-5877-2014, https://doi.org/10.5194/bg-11-5877-2014, 2014
H. N. Mbufong, M. Lund, M. Aurela, T. R. Christensen, W. Eugster, T. Friborg, B. U. Hansen, E. R. Humphreys, M. Jackowicz-Korczynski, L. Kutzbach, P. M. Lafleur, W. C. Oechel, F. J. W. Parmentier, D. P. Rasse, A. V. Rocha, T. Sachs, M. K. van der Molen, and M. P. Tamstorf
Biogeosciences, 11, 4897–4912, https://doi.org/10.5194/bg-11-4897-2014, https://doi.org/10.5194/bg-11-4897-2014, 2014
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014, https://doi.org/10.5194/bg-11-4651-2014, 2014
Q. Zhu, Q. Zhuang, D. Henze, K. Bowman, M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, Y. Sawa, and W. Oechel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-22587-2014, https://doi.org/10.5194/acpd-14-22587-2014, 2014
Revised manuscript not accepted
J. B. Fisher, M. Sikka, W. C. Oechel, D. N. Huntzinger, J. R. Melton, C. D. Koven, A. Ahlström, M. A. Arain, I. Baker, J. M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Masri, D. Hayes, C. Huntingford, A. K. Jain, P. E. Levy, M. R. Lomas, B. Poulter, D. Price, A. K. Sahoo, K. Schaefer, H. Tian, E. Tomelleri, H. Verbeeck, N. Viovy, R. Wania, N. Zeng, and C. E. Miller
Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, https://doi.org/10.5194/bg-11-4271-2014, 2014
Y. Mi, J. van Huissteden, F. J. W. Parmentier, A. Gallagher, A. Budishchev, C. T. Berridge, and A. J. Dolman
Biogeosciences, 11, 3985–3999, https://doi.org/10.5194/bg-11-3985-2014, https://doi.org/10.5194/bg-11-3985-2014, 2014
A. Virkkula, J. Levula, T. Pohja, P. P. Aalto, P. Keronen, S. Schobesberger, C. B. Clements, L. Pirjola, A.-J. Kieloaho, L. Kulmala, H. Aaltonen, J. Patokoski, J. Pumpanen, J. Rinne, T. Ruuskanen, M. Pihlatie, H. E. Manninen, V. Aaltonen, H. Junninen, T. Petäjä, J. Backman, M. Dal Maso, T. Nieminen, T. Olsson, T. Grönholm, J. Aalto, T. H. Virtanen, M. Kajos, V.-M. Kerminen, D. M. Schultz, J. Kukkonen, M. Sofiev, G. De Leeuw, J. Bäck, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-14-4473-2014, https://doi.org/10.5194/acp-14-4473-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
S. Dengel, D. Zona, T. Sachs, M. Aurela, M. Jammet, F. J. W. Parmentier, W. Oechel, and T. Vesala
Biogeosciences, 10, 8185–8200, https://doi.org/10.5194/bg-10-8185-2013, https://doi.org/10.5194/bg-10-8185-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
M. K. Kajos, H. Hakola, T. Holst, T. Nieminen, V. Tarvainen, T. Maximov, T. Petäjä, A. Arneth, and J. Rinne
Biogeosciences, 10, 4705–4719, https://doi.org/10.5194/bg-10-4705-2013, https://doi.org/10.5194/bg-10-4705-2013, 2013
H. Ikawa, I. Faloona, J. Kochendorfer, K. T. Paw U, and W. C. Oechel
Biogeosciences, 10, 4419–4432, https://doi.org/10.5194/bg-10-4419-2013, https://doi.org/10.5194/bg-10-4419-2013, 2013
B. R. K. Runkle, T. Sachs, C. Wille, E.-M. Pfeiffer, and L. Kutzbach
Biogeosciences, 10, 1337–1349, https://doi.org/10.5194/bg-10-1337-2013, https://doi.org/10.5194/bg-10-1337-2013, 2013
T. Krings, K. Gerilowski, M. Buchwitz, J. Hartmann, T. Sachs, J. Erzinger, J. P. Burrows, and H. Bovensmann
Atmos. Meas. Tech., 6, 151–166, https://doi.org/10.5194/amt-6-151-2013, https://doi.org/10.5194/amt-6-151-2013, 2013
H. Hakola, H. Hellén, M. Hemmilä, J. Rinne, and M. Kulmala
Atmos. Chem. Phys., 12, 11665–11678, https://doi.org/10.5194/acp-12-11665-2012, https://doi.org/10.5194/acp-12-11665-2012, 2012
Related subject area
Biogeochemistry: Modelling, Terrestrial
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Representation of the terrestrial carbon cycle in CMIP6
Does dynamically modeled leaf area improve predictions of land surface water and carbon fluxes? Insights into dynamic vegetation modules
Observational benchmarks inform representation of soil organic carbon dynamics in land surface models
X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Future projections of Siberian wildfire and aerosol emissions
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulphur and nitrogen atmospheric deposition
When and why microbial-explicit soil organic carbon models can be unstable
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Climate-based prediction of carbon fluxes from deadwood in Australia
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
The effect of temperature on photosystem II efficiency across plant functional types and climate
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Elevated atmospheric CO2 concentration and vegetation structural changes contributed to gross primary productivity increase more than climate and forest cover changes in subtropical forests of China
Developing the DO3SE-crop model for Xiaoji, China
Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem
Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2
A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
Using Free Air CO2 Enrichment data to constrain land surface model projections of the terrestrial carbon cycle
Multiscale assessment of North American terrestrial carbon balance
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Spatial biases reduce the ability of Earth system models to simulate soil heterotrophic respiration fluxes
Tropical dry forest response to nutrient fertilization: a model validation and sensitivity analysis
Connecting competitor, stress-tolerator and ruderal (CSR) theory and Lund Potsdam Jena managed Land 5 (LPJmL 5) to assess the role of environmental conditions, management and functional diversity for grassland ecosystem functions
A global fuel characteristic model and dataset for wildfire prediction
Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?
Temporal variability of observed and simulated gross primary productivity, modulated by vegetation state and hydrometeorological drivers
Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia
A modeling approach to investigate drivers, variability and uncertainties in O2 fluxes and O2 : CO2 exchange ratios in a temperate forest
Modeling coupled nitrification–denitrification in soil with an organic hotspot
A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland
Enabling a process-oriented hydro-biogeochemical model to simulate soil erosion and nutrient losses
Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium limitation of forest productivity – Part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
Global evaluation of terrestrial biogeochemistry in the Energy Exascale Earth System Model (E3SM) and the role of the phosphorus cycle in the historical terrestrial carbon balance
Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts and climate change on future soil weathering rates in Sweden
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024, https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary
Short summary
This study investigates present-day carbon cycle variables in CMIP5 and CMIP6 simulations. Overall, CMIP6 models perform better but also show many remaining biases. A significant improvement in the simulation of photosynthesis in models with a nitrogen cycle is found, with only small differences between emission- and concentration-based simulations. Thus, we recommend using emission-driven simulations in CMIP7 by default and including the nitrogen cycle in all future carbon cycle models.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024, https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary
Short summary
Plants at the land surface mediate between soil and the atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to consider these dynamics. Two models that predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness, which is caused by a mismatch between implemented physical relations and observable connections.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024, https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Short summary
We provide an ensemble-model-based GPP dataset (ERF_GPP) that explains 85.1 % of the monthly variation in GPP across 170 sites, which is higher than other GPP estimate models. In addition, ERF_GPP improves the phenomenon of “high-value underestimation and low-value overestimation” in GPP estimation to some extent. Overall, ERF_GPP provides a more reliable estimate of global GPP and will facilitate further development of carbon cycle research.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024, https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate-change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024, https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Short summary
A first-of-its-kind global-scale model of temperature resilience and tolerance of photosystem II maximum quantum yield informs how plants maintain their efficiency of converting light energy to chemical energy for photosynthesis under temperature changes. Our finding explores this variation across plant functional types and habitat climatology, highlighting diverse temperature response strategies and a method to improve global-scale photosynthesis modeling under climate change.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-694, https://doi.org/10.5194/egusphere-2024-694, 2024
Short summary
Short summary
The DO3SE-crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-Crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, it integrates into Earth System Models for a comprehensive understanding of agriculture's interaction with global systems.
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024, https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary
Short summary
Stomata are pores on leaves that regulate gas exchange between plants and the atmosphere. Existing land models unrealistically assume stomata can jump between steady states when the environment changes. We implemented dynamic modeling to predict gradual stomatal responses at different scales. Results suggested that considering this effect on plant behavior patterns in diurnal cycles was important. Our framework also simplified simulations and can contribute to further efficiency improvements.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Shuyue Li, Bonnie Waring, Jennifer Powers, and David Medvigy
Biogeosciences, 21, 455–471, https://doi.org/10.5194/bg-21-455-2024, https://doi.org/10.5194/bg-21-455-2024, 2024
Short summary
Short summary
We used an ecosystem model to simulate primary production of a tropical forest subjected to 3 years of nutrient fertilization. Simulations parameterized such that relative allocation to fine roots increased with increasing soil phosphorus had leaf, wood, and fine root production consistent with observations. However, these simulations seemed to over-allocate to fine roots on multidecadal timescales, affecting aboveground biomass. Additional observations across timescales would benefit models.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Joe R. McNorton and Francesca Di Giuseppe
Biogeosciences, 21, 279–300, https://doi.org/10.5194/bg-21-279-2024, https://doi.org/10.5194/bg-21-279-2024, 2024
Short summary
Short summary
Wildfires have wide-ranging consequences for local communities, air quality and ecosystems. Vegetation amount and moisture state are key components to forecast wildfires. We developed a combined model and satellite framework to characterise vegetation, including the type of fuel, whether it is alive or dead, and its moisture content. The daily data is at high resolution globally (~9 km). Our characteristics correlate with active fire data and can inform fire danger and spread modelling efforts.
Brooke A. Eastman, William R. Wieder, Melannie D. Hartman, Edward R. Brzostek, and William T. Peterjohn
Biogeosciences, 21, 201–221, https://doi.org/10.5194/bg-21-201-2024, https://doi.org/10.5194/bg-21-201-2024, 2024
Short summary
Short summary
We compared soil model performance to data from a long-term nitrogen addition experiment in a forested ecosystem. We found that in order for soil carbon models to accurately predict future forest carbon sequestration, two key processes must respond dynamically to nitrogen availability: (1) plant allocation of carbon to wood versus roots and (2) rates of soil organic matter decomposition. Long-term experiments can help improve our predictions of the land carbon sink and its climate impact.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, and Albert I. J. M. Van Dijk
Biogeosciences, 20, 4109–4134, https://doi.org/10.5194/bg-20-4109-2023, https://doi.org/10.5194/bg-20-4109-2023, 2023
Short summary
Short summary
Australia's land-based ecosystems play a critical role in controlling the variability in the global land carbon sink. However, uncertainties in the methods used for quantifying carbon fluxes limit our understanding. We develop high-resolution estimates of Australia's land carbon fluxes using machine learning methods and find that Australia is, on average, a stronger carbon sink than previously thought and that the seasonal dynamics of the fluxes differ from those described by other methods.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023, https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) is a useful constraint for estimating photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a novel temperature function for enzyme carbonic anhydrase (CA) activity and optimize conductances using observations. The optimal activity of CA occurs below 40 °C, and Ball–Woodrow–Berry parameters are slightly changed. These reduce/increase uptakes in the tropics/higher latitudes and contribute to resolving discrepancies in the COS global budget.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, https://doi.org/10.5194/bg-20-2265-2023, 2023
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences, 20, 1879–1899, https://doi.org/10.5194/bg-20-1879-2023, https://doi.org/10.5194/bg-20-1879-2023, 2023
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health.
In this study, climate change effects on weathering were studied on sites in Sweden using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer and increases with global warming but that weathering during drought summers can become as low as winter weathering.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Cited articles
Alstad, K. P. and Whiticar, M. J.: Carbon and hydrogen isotope ratio characterization of methane dynamics for Fluxnet Peatland Ecosystems, Org. Geochem., 42, 548–558, 2011.
Aurela, M., Laurila, T., and Tuovinen, J.: Annual CO2 balance of a subarctic fen in northern Europe: importance of wintertime efflux, J. Geophys. Res., 107, 4607, https://doi.org/10.1029/2002JD002055, 2002.
Aurela, M., Riutta, T., Laurila, T. Tuovinen, J.-P., Vesala, T., Tuittila, E.-S., Rinne, J., Haapanala, S., and Laine, J.: CO2 exchange of a sedge fen in southern Finland-the impact of a drought period, Tellus B, 59, 826–837, 2007.
Badawy, B., Rödenbeck, C., Reichstein, M., Carvalhais, N., and Heimann, M.: Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM), Biogeosciences, 10, 6485–6508, https://doi.org/10.5194/bg-10-6485-2013, 2013.
Baldocchi, D.: "Breathing" of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, 2008.
Beck, P. S. A. and Goetz, S. J.: Satellite observations of high northern latitude vegetation productivity changes between 1982–2008: ecological variability and regional differences, Environ. Res. Lett., 6, 045501, https://doi.org/10.1088/1748-9326/6/4/045501, 2011.
Boike, J., Wille, C., and Abnizova, A.: Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res., 113, G03025, https://doi.org/10.1029/2007JG000540, 2008.
Boucher, O., Friedlingstein, P., Collins, B., and Shine, K. P.: The indirect global warming potential and global temperature change potential due to methane oxidation, Environ. Res. Lett., 4, 044007, https://doi.org/10.1088/1748-9326/4/4/044007, 2009.
Bromwich, D., Kuo, Y.-H., Serreze, M., Walsh, J., Bai, L. S., Barlage, M., Hines, K., and Slater, A.: Arctic system reanalysis: call for community involvement, EOS T. Am. Geophys. Un., 91, 13–14, 2010.
Chanton, J. P.: The effect of gas transport on the isotope signature of methane in wetlands, Org. Geochem., 36, 753–768, 2005.
Choudhury, B. J.: Carbon use efficiency, and net primary productivity of terrestrial vegetation, Adv. Space Res., 26, 1105–1108, 2000.
Christensen, T. R., Jackowicz-Korczy\'nski, M., Aurela, M., Crill, P., Heliasz, M., Mastepanov, M., and Friborg, T.: Monitoring the multi-year carbon balance of a subarctic palsa mire with micrometeorological techniques, AMBIO, 41, 207–217, 2012.
Christiansen, C. T., Schmidt, N. M., and Michelsen, A.: High Arctic dry heath CO2 exchange during the early cold season, Ecosystems, 15, 1083–1092, https://doi.org/10.1007/s10021-012-9569-4, 2012.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Connolly, J., Roulet, N. T., Seaquist, J. W., Holden, N. M., Lafleur, P. M., Humphreys, E. R., Heumann, B. W., and Ward, S. M.: Using MODIS derived fPAR with ground based flux tower measurements to derive the light use efficiency for two Canadian peatlands, Biogeosciences, 6, 225–234, https://doi.org/10.5194/bg-6-225-2009, 2009.
Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H. and Chanton, J. P.: Partitioning pathways of CO2 production in peatlands with stable carbon isotopes, Biogeochemistry, 114, 327–340, https://doi.org/10.1007/s10533-012-9813-1, 2013.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.
Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J., and Ghislain, P.: Determination of phenological dates in boreal regions using normalized difference water index, Remote Sens. Environ., 97, 26–38, https://doi.org/10.1016/j.rse.2005.03.011, 2005.
Dijkstra, F. A., Prior, S. A., Runion, G. B., Torbert, H. A., Tian, H., Lu, C., and Venterea, R. T.: Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments, Front. Ecol. Environ., 10, 520–527, 2012.
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B., and Gatti, L. V.: Observational constraints on recent increases in the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803, https://doi.org/10.1029/2009GL039780, 2009.
Dolman, A. J., van der Werf, G. R., van der Molen, M. K., Ganssen, G., Erisman, J.-W., and Strengers, B.: A carbon cycle science uptake since IPCC AR-4, AMBIO, 39, 402–412, 2010.
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan, T. V., and Aerts, R.: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, 460, 616–619, 2009.
Elberling, B., Tamstorf, M. P., Michelsen, A., Arndal, M. F., Sigsgaard, C., Illeris, L., Bay, C., Hansen, B. U., Christensen, T. R., Hansen, E. S., Jakobsen, B. H., and Beyens, L.: Soil and plant community-characteristics and dynamics at Zackenberg, Adv. Ecol. Res., 40, 223–248, 2008.
Elberling, B., Askaer, L., Jørgensen, C. J., Joensen, H. P., Kühl, M., Glud, R. N., and Lauritsen, F. R.: Linking Soil O2, CO2, and CH4 concentrations in a wetland soil: implications for CO2 and CH4 fluxes, Environ. Sci. Technol., 45, 3393–3399, 2011.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., Keuper, F., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C.-H., Webber, P. J., Welker, J. M., and Wookey, P. A.: Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time, Ecol. Lett., 15, 164–175, 2012.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J. S., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.-C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) mission, Proc. IEEE, 98, 704–716, 2010.
Forbrich, I., Kutzbach, L., Wille, C., Becker, T., Wu, J., and Wilmking, M.: Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high- resolution landcover classification and source weight modeling, Agr. Forest Meterol., 151, 864–874, 2011.
Frenzel, P. and Rudolph, J.: Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum, Plant Soil, 202, 27–32, 1998.
Gedney, N. and Cox, P. M.: The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity, J. Hydrometeorol., 4, 1265–1275, 2003.
Glanville, H. C., Hill, P. W., Maccarone, L. D., Golyshin, P. N., Murphy, D. V., and Jones, D. L.: Temperature and soil water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem, Funct. Ecol., 26, 1366–1380, 2012.
Grosse, W., Armstrong, J., and Armstrong, W.: A history of pressurized gas-flow studies in plants, Aquat. Biol., 54, 57–100, 1996.
Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R., and Aurela, M.: Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements, Theor. Appl. Climatol., 70, 203–213, 2001.
Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and Δ14C, Glob. Change Biol., 19, 649–661, 2013a.
Hicks Pries, C. E., Schuur, E. A. G., Vogel, J. G., and Natali, S. M.: Moisture drives surface decomposition in thawing tundra, J. Geophys. Res.-Biogeo., 118, 1133–1143, https://doi.org/10.1002/jgrg.20089, 2013b.
Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation, Bound.-Lay. Meteorol., 42, 55–78, 1988.
Hudson, J. M. G., Henry, G. H. R., and Cornwell, W. K.: Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Change Biol., 17, 1013–1021, 2011.
Huemmrich, K. F., Gamon, J. A., Tweedie, C. E., Oberbauer, S. F., Kinoshita, G., Houston, S., Kuchy, A., Hollister, R. D., Kwon, H., Mano, M., Harazono, Y., Webber, P. J., and Oechel, W. C.: Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions, Rem. Sens. Environ., 114, 481–489, 2010a.
Huemmrich, K. F., Kinoshita, G., Gamon, A., Houston, S., Kwon, H., and Oechel, W. C.: Tundra carbon balance under varying temperature and moisture regimes, J. Geophys. Res., 115, G00102, https://doi.org/10.1029/2009JG001237, 2010b.
Hugelius, G., Routh, J., Kuhry, P., and Crill, P.: Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain, J. Geophys. Res.-Biogeo., 117, G02030, https://doi.org/10.1029/2011JG001873, 2012.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013.
Inglett, K. S., Inglett, P. W., Reddy, K. R., and Osborne, T. Z.: Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation, Biogeochemistry, 108, 77–90, 2012.
Ise, T. and Moorcroft, P. R.: The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model, Biogeochemistry, 80, 217–231, 2006.
Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of peat decomposition to climate change through water-table feedback, Nat. Geosci., 1, 763–766, 2008.
Jackowicz-Korczy\'nski, M., Christensen, T. R., Bäckstrand, K., Crill, P., Friborg, T., Mastepanov, M., and Ström, L.: Annual cycle of methane emission from a subarctic peatland, J. Geophys. Res.-Biogeo., 115, G02009, https://doi.org/10.1029/2008JG000913, 2010.
Joabsson, A., Christensen, T. R., and Wallén, B.: Vascular plant controls on methane emissions from northern peatforming wetlands, Trends Ecol. Evol., 14, 385–388, 1999.
Kane, E. S.: Ecosystem carbon storage: squeezing the Arctic carbon balloon, Nat. Clim. Change, 2, 841–842, 2012.
Kettridge, N., Binley, A., Green, S. M., and Baird, A. J.: Ebullition events monitored from northern peatlands using electrical imaging, J. Geophys. Res., 116, G04004, https://doi.org/10.1029/2010JG001561, 2011.
Kim, Y., Kimball, J. S., Zhang, K., and McDonald, K. C.: Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth, Remote Sens. Environ., 121, 472–487, 2012.
Kimball, J. S., Jones, L. A., Zhang, K., Heinsch, F. A., McDonald, K. C., and Oechel, W. C.: A satellite approach to estimate land-atmosphere CO2 exchange for boreal and Arctic biomes using MODIS and AMSR-E, IEEE T. Geosci. Remote, 47, 569–587, 2009.
Kimball, J. S., Reichle, R., McDonald, K., and Njoku, E.: Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document (ATBD): SMAP Level 4 Carbon Data Product (L4_C), Initial Release v. 1, Jet Propulsion Laboratory, California Institute of Technology, 73 pp., 2012.
King, D. A., Turner, D. P., and Ritts, W. D.: Parameterization of a diagnostic carbon cycle model for continental scale application, Remote Sens. Environ., 115, 1653–1664, 2011.
Kip, N., van Winden, J. F., Pan, Y., Bodrossy, L., Reichart, G. -J., Smolders, A. J. P., Jetten, M. S. M., Damsté, J. S. S., and Op den Camp, H. J. M.: Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems, Nat. Geosci., 3, 617–621, 2010.
Kutzbach, L., Wille, C., and Pfeiffer, E.-M.: The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia, Biogeosciences, 4, 869–890, https://doi.org/10.5194/bg-4-869-2007, 2007.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soils: a review, Eur. J. Soil Biol., 37, 25–50, 2001.
Levy, P. E., Burden, A., Cooper, M. D., Dinsmore, K. J., Drewer, J., Evans, C., Fowler, D., Gaiawyn, J., Gray, A., Jones, S. K., Jones, T., McNamara, N. P., Mills, R., Ostle, N., Sheppard, L. J., Skiba, U., Sowerby, A., Ward, S. E., and Zieli\'nski, P.: Methane emissions from soils: synthesis and analysis of a large UK data set, Glob. Change Biol., 18, 1657–1669, 2012.
Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration, Funct. Ecol., 8, 315–323, 1994.
Lund, M., Lafleur, P. M., Roulet, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H., Flanagan, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J., Schubert, P., and Nilsson, M. B.: Variability in exchange of CO2 across 12 northern peatland and tundra sites, Glob. Change Biol., 16, 2436–2448, 2010.
Marushchak, M. E., Kiepe, I., Biasi, C., Elsakov, V., Friborg, T., Johansson, T., Soegaard, H., Virtanen, T., and Martikainen, P. J.: Carbon dioxide balance of subarctic tundra from plot to regional scales, Biogeosciences, 10, 437–452, https://doi.org/10.5194/bg-10-437-2013, 2013.
McCallum, I., Franklin, O., Moltchanova, E., Merbold, L., Schmullius, C., Shvidenko, A., Schepaschenko, D., and Fritz, S.: Improved light and temperature responses for light-use-efficiency-based GPP models, Biogeosciences, 10, 6577–6590, https://doi.org/10.5194/bg-10-6577-2013, 2013.
McGuire, A. D., Hayes, D. J., Kicklighter, D. W., Manizza, M., Zhuang, Q., Chen, M., Follows, M. J., Gurney, K. R., McClelland, J. W., and Melillo, J. M.: An analysis of the carbon balance of the Arctic Basin from 1997 to 2006, Tellus B, 62, 455–474, 2010.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Meng, L., Hess, P. G. M., Mahowald, N. M., Yavitt, J. B., Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Jauhiainen, J., and Fuka, D. R.: Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations, Biogeosciences, 9, 2793–2819, https://doi.org/10.5194/bg-9-2793-2012, 2012.
Merbold, L., Kutsch, W. L., Corradi, C., Kolle, O., Rebmann, C., Stoy, P. C., Zimov, S. A., and Schulze, E.-D.: Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem, Glob. Change Biol., 15, 2599–2614, 2009.
Moosavi, S. C. and Crill, P. M.: Controls on CH4 and CO2 emissions along two moisture gradients in the Canadian boreal zone, J. Geophys. Res.-Atmos., 102, 261–277, 1997.
Natali, S. M., Schuur, E. A., and Rubin, R. L.: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost, J. Ecol., 100, 488–498, 2012.
Oberbauer, S. F., Cheng, W., Gillespie, C. T., Ostendorf, B., Sala, A., Gebauer, G., Virginia, R. A., and Tenhunen, J. D.: Landscape patterns of carbon dioxide exchange in tundra ecosystems, in: Ecological Studies, Vol. 120, edited by: Reynolds, J. F. and Tenhunen, J. D., Springer-Verlag Berlin, Heidelberg, 223–256, 1996.
Olefeldt, D., Roulet, N. T., Bergeron, O., Crill, P., Bäckstrand, K., and Christensen, T. R.: Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res. Lett., 39, 589–603, https://doi.org/10.1029/2011GL050355, 2012.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones, Glob. Change Biol., 19, 589–603, 2013.
Olivas, P. C., Oberbauer, S. F., Tweedie, C. E., Oechel, W. C., and Kuchy, A.: Responses of CO2 flux components of Alaskan Coastal Plain tundra to shifts in water table, J. Geophys. Res.-Biogeo., 115, G00105, https://doi.org/1029/2009JG001254, 2010.
Olsrud, M. and Christensen, T. R.: Carbon partitioning in a wet and a semiwet subarctic mire ecosystem based on in situ 14C pulse labeling, Soil Biol. Biochem., 43, 231–239, 2011.
Parmentier, F. J. W., van der Molen, M. K., van Huissteden, J., Karsanaev, S. A., Kononov, A. V., Suzdalov, D. A., Maximov, T. C., and Dolman, A. J.: Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra, J. Geophys. Res.-Biogeo., 116, G04013, https://doi.org/10.1029/2011JG001653, 2011a.
Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., and Dolman, A. J.: Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo., 116, G03016, https://doi.org/10.1029/2010JG001637, 2011b.
Parmentier, F. J. W., van Huissteden, J., Kip, N., Op den Camp, H. J. M., Jetten, M. S. M., Maximov, T. C., and Dolman, A. J.: The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra, Biogeosciences, 8, 1267-1278, https://doi.org/10.5194/bg-8-1267-2011, 2011c.
Parmentier, F. J. W., Christensen, T. R., Sorensen, L. L., Rysgaard, S., McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower sea-ice extent on Arctic greenhouse-gas exchange, Nature Clim. Change, 3, 195–202, 2013.
Peng, D., Zhang, B., and Liu, L.: Comparing spatiotemporal patterns in Eurasian FPAR derived from two NDVI-based methods, Int. J. Digital Earth, 5, 283–298, 2012.
Petrescu, A. M. R., van Beek, L. P. H., van Huissteden, J., Prigent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J. W., and Dolman, A. J.: Modeling regional to global CH4 emissions of boreal and arctic wetlands, Global Biogeochem. Cy., 24, GB4009, https://doi.org/10.1029/2009GB003610, 2010.
Porter, C. H., Jones, J. W., Adiku, S., Gijsman, A. J., Gargiulo, O., and Naab, J. B.: Modeling organic carbon and carbon-mediated soil processes in DSSAT V4.5, Oper. Res. Int. J., 10, 274–278, 2010.
Potter, C., Klooster, S., Hiatt, S., Fladeland, M., Genovese, V., and Gross, P.: Methane emissions from natural wetlands in the United States: Satellite-derived estimation based on ecosystem carbon cycling, Earth Interact., 10, 1–12, 2006.
Preuss, I., Knoblauch, C., Gebert, J., and Pfeiffer, E.-M.: Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation, Biogeosciences, 10, 2539–2552, https://doi.org/10.5194/bg-10-2539-2013, 2013.
Raupach, M. R.: Influences of local feedbacks on land-air exchanges of energy and carbon, Glob. Change Biol., 4, 477–494, 1998.
Reiche, M., Gleixner, G., and Küsel, K.: Effect of peat quality on microbial greenhouse gas formation in an acidic fen, Biogeosciences, 7, 187–198, https://doi.org/10.5194/bg-7-187-2010, 2010.
Reichle, R. H., Koster, R. D., De Lannoy, G. J. M., Forman, B. A., Liu, Q., Mahanama, S. P. P., and Toure, A.: Assessment and enhancement of MERRA land surface hydrology estimates, J. Climate, 24, 6322–6338, 2011.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, 2011.
Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953, https://doi.org/10.5194/bg-8-1925-2011, 2011.
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J., Tuittila, E., and Vesala, T.: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique, Tellus B, 59, 449–457, 2007.
Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T., Haapanala, S., Pihlatie, M., and Tuittila, E.-S.: Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystems, Tellus B, 59, 838–852, 2007.
Roberts, J.: The influence of physical and physiological characteristics of vegetation on their hydrological response, Hydrol. Process., 14, 2885–2901, 2000.
Rosenberry, D. O., Glaser, P. H., and Siegel, D. I.: The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs, Hydrol. Processes, 20, 3601–3610, 2006.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: A continuous satellite-derived measure of global terrestrial primary production, BioScience, 54, 547–560, 2004.
Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on ecosystem- scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res., 113, 3096–3110, https://doi.org/10.1029/2007JG000505, 2008.
Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia, Glob. Change Biol., 16, 3096–3110, 2010.
Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. M., and Brovkin, V.: Estimating the near-surface permafrost-carbon feedback on global warming, Biogeosciences, 9, 649–665, https://doi.org/10.5194/bg-9-649-2012, 2012.
Schubert, P., Eklundh, L., Lund, M., and Nilsson, M.: Estimating northern peatland CO2 exchange from MODIS time series data, Remote Sens. Environ, 114, 1178–1189, 2010a.
Schubert, P., Lund, M., Ström, L., and Eklundh, L.: Impact of nutrients on peatland GPP estimations using MODIS time series, Remote Sens. Environ., 114, 2137–2145, 2010b.
Schubert, P., Lagergren, F., Aurela, M., Christensen, T., Grelle, A., Heliasz, M., Klemedtsson, L., Lindroth, A., Pilegaard, K., Vesala, T., and Eklundh, L.: Modeling GPP in the Nordic forest landscape with MODIS time series data-Comparison with the MODIS GPP product, Remote Sens. Environ., 126, 136–147, 2012.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra, Nature, 459, 556–559, 2009.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D., Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska, J. Geophys. Res., 115, G00104, https://doi.org/10.1029/2009JG001248, 2010.
Sigsgaard, C.: Guidelines and sampling procedures for the geographical monitoring programme of Zackenberg Basic. Zackenberg Ecological Research Operations, GeoBasis, 124 pp., 2011.
Sitch, S., McGuire, A. D., Kimball, J., Gedney, N., Gamon, J., Engstrom, R., Wolf, A., Zhuang, Q., Clein, J., and McDonald, K. C.: Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling, Ecol. App., 17, 213–234, 2007.
Sjögersten, S. and Wookey, P. A.: The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone, AMBIO, 38, 2–10, 2009.
Solano, R., Didan, D., Jacobson, A., and Huete, A.: MODIS Vegetation Index User's Guide (MOD13 Series), Version 2.0. Vegetation Index and Phenology Lab, The University of Arizona, 42 pp., 2010.
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.
Street, L. E., Stoy, P. C., Sommerkorn, M., Fletcher, B. J., Sloan, V. L., Hill, T. C., and Williams, M.: Seasonal bryophyte productivity in the sub-Arctic: a comparison with vascular plants, Funct. Ecol., 26, 365–378, 2012.
Ström, L., Ekberg, A., Mastepanov, M., and Christensen, T. R.: The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland, Glob. Change Biol., 9, 1185–1192, 2003.
Ström, L., Mastepanov, M., and Christensen, T. R.: Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands, Biogeochemistry, 75, 65–82, 2005.
Sturtevant, C. S. and Oechel, W. C.: Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle, Glob. Change Biol., 19, 2853–2866, https://doi.org/10.1111/gbc.12247, 2013.
Sturtevant, C. S., Oechel, W. C., Zona, D., Kim, Y., and Emerson, C. E.: Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska, Biogeosciences, 9, 1423–1440, https://doi.org/10.5194/bg-9-1423-2012, 2012.
Sun, X., Song, C., Guo, Y., Wang, X., Yang, G., Li, Y., Mao, R., and Lu, Y.: Effect of plants on methane emissions from a temperate marsh in different seasons, Atmos. Envion., 60, 277–282, 2012.
Tagesson, T., Mastepanov, M., Tamstorf, M. P., Eklundh, L., Schubert, P., Ekberg, A., Sigsgaard, C., Christensen, T. R., and Ström, L.: High-resolution satellite data reveal an increase in peak growing season gross primary production in a high-Arctic wet tundra ecosystem 1992–2008, Int. J. Appl. Earth Obs., 18, 407–416, 2012a.
Tagesson, T., Mölder, M., Mastepanov, M., Sigsgaard, C., Tamstorf, M. P., Lund, M., Falk, J. M., Lindroth, A., Christensen, T. R., and Ström, L.: Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem, Glob. Change Biol., 18, 1928–1940, 2012b.
Tagesson, T., Mastepanov, M., Mölder, M., Tamstorf, M. P., Eklundh, L., Smith, B., Sigsgaard, C., Lund, M., Ekberg, A., Falk, J. M., Friborg, T., Christensen, T. R., and Ström, L.: Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using in situ and high-resolution satellite data, Tellus B, 65, 19722, https://doi.org/10.3402/tellusb.v65i0.19722, 2013.
Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673–2694, https://doi.org/10.5194/bg-7-2673-2010, 2010.
Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., and McGuire, D.: Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland, J. Geophys. Res., 113, G00A10, https://doi.org/10.1029/2007JG000496, 2008.
van Huissteden, J., van den Bos, R., and Marticorena Alvarez, I.: Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils, Neth. J. Geosci., 85, 3–18, 2006.
van Hulzen, J. B., Segers, R., van Bodegom, P. M., and Leffelaar, P. A.: Temperature effects on soil methane production: an explanation for observed variability, Soil Biol. Biochem., 31, 1919–1929, 1999.
Verry, E. S., Boelter, D. H., Paivanen, J., Nichols, D. S., Malterer, T., and Gafni, A.: in: Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest, edited by: Kolka, R., Sebestyen, S., Verry, E. S., and Brooks, K., CRC Press, Boca Raton, 135–176, 2011.
von Fischer, J. C., and Hedin, L. O.: Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers, Global Biogeochem. Cy., 21, GB2007, https://doi.org/10.1029/2006GB002687, 2007.
von Fischer, J. C., Rhew, R. C., Ames, G. M., Fosdick, B. K., and von Fischer, P. E.: Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska, J. Geophys. Res., 115, G00103, https://doi.org/10.1029/2009JG001283, 2010.
Wagner, D., Kobabe, S., and Liebner, S.: Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia, Can. J. Microbiol., 55, 73–83, 2009.
Walter, B. P., and Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, 2013.
Watts, J. D., Kimball, J. S., Jones, L. A., Schroeder, R., and McDonald, K. C.: Satellite microwave remote sensing of contrasting surface water inundation changes within the Arctic-Boreal Region, Remote Sens. Environ., 127, 223–236, 2012.
Wegner, L. H.: Oxygen transport in waterlogged plants, in: Waterlogging Signalling and Tolerance in Plants, edited by: Mancuso, S. and Shabala, S., Springer-Verlag Berlin Heidelberg, 294 pp., 2010.
Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E. -M.: Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling, Glob. Change Biol., 14, 1395–1408, 2008.
Wu, J., Roulet, N. T., Sagerfors, J., and Nilsson, M. B.: Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill wetland model (MWM), J. Geophys. Res.-Biogeo., 118, 795–807, https://doi.org/10.1002/jgrg.20045, 2013.
Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T., Martin, T. A., Matamala, R., Baldocchi, D., Bohrer, G., Bragoni, D., and Scott, R.: Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model, Remote Sens. Environ., 124, 581–595, 2012.
Yang, R. and Friedl, M. A.: Determination of roughness lengths for heat and momentum over boreal forests, Bound.-Lay. Meterol., 107, 581–603, 2002.
Yi, Y., Kimball, J. S., Jones, L. A., Reichle, R. H., and McDonald, K. C.: Evaluation of MERRA land surface estimates in preparation for the soil moisture active passive mission, J. Climate, 24, 3797–3816, 2011.
Yi, Y., Kimball, J. S., Jones, L. A., Reichle, R. H., Nemani, R., and Margolis, H. A.: Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model, J. Geophys. Res.-Biogeo., 118, 606–622, https://doi.org/10.1002/jgrg.20053, 2013.
Yuan, W., Luo, Y., Li, X., Liu, S., Yu, S., Zhou, T., Bahn, M., Black, A., Desai, A. R., Cescatti, A., Marcolla, B., Jacobs, C., Chen, J., Aurela, M., Bernhofer, C., Gielen, B., Bohrer, G., Cook, D. R., Dragoni, D., Dunn, A. L., Gianelle, D., Grünwald, T., Ibrom, A., Leclerc, M. Y., Lindroth, A., Liu, H., Marchesini, L. B., Montagnani, L., Pita, G., Rodeghiero, Rodrigues, A., Starr, G., and Stoy, P. C.: Redefinition and global estimation of basal ecosystem respiration rate, Global Biogeochem. Cy., 25, GB4002, https://doi.org/10.1029/2011GB004150, 2011.
Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J., and Wu, P.: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nat. Clim. Change, 3, 47–51, 2012a.
Zhang, Y., Sachs, T., Li, C., and Boike, J.: Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model, Glob. Change Biol., 18, 1428–1440, 2012b.
Zhao, M., Heinsch, F. A., Nemani, R. M., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164–176, 2005.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model, Global Biogeochem. Cy., 18, GB3010, https://doi.org/10.1029/2004GB002239, 2004.
Zona, D., Oechel, W. C., Kochendorfer, J., Paw U, K. T., Salyuk, A. N., Olivas, P. C., Oberbauer, S. F., and Lipson, D. A.: Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra, Global Biogeochem. Cy., 23, GB2013, https://doi.org/10.1029/2009GB003487, 2009.
Zona, D., Oechel, W. C., Richards, J. H., Hastings, S., Kopetz, I., Ikawa, H., and Oberbauer, S.: Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska, Ecology, 92, 633–644, 2011.
Zona, D., Lipson, D. A., Paw U, K. T., Oberbauer, S. F., Olivas, P., Gioli, B., and Oechel, W. C.: Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding, Global Biogeochem. Cy., 26, GB2004, https://doi.org/10.1029/2011GB004037, 2012.
Zubrzycki, S., Kutzbach, L., Grosse, G., Desyatkin, A., and Pfeiffer, E.-M.: Organic carbon and total nitrogen stocks in soils of the Lena River Delta, Biogeosciences, 10, 3507–3524, https://doi.org/10.5194/bg-10-3507-2013, 2013.
Altmetrics
Final-revised paper
Preprint