Articles | Volume 13, issue 22
Biogeosciences, 13, 6211–6228, 2016
https://doi.org/10.5194/bg-13-6211-2016
Biogeosciences, 13, 6211–6228, 2016
https://doi.org/10.5194/bg-13-6211-2016

Research article 18 Nov 2016

Research article | 18 Nov 2016

Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum

Michael J. Pennino et al.

Related authors

Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
Rose M. Smith, Sujay S. Kaushal, Jake J. Beaulieu, Michael J. Pennino, and Claire Welty
Biogeosciences, 14, 2831–2849, https://doi.org/10.5194/bg-14-2831-2017,https://doi.org/10.5194/bg-14-2831-2017, 2017
Short summary
Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds
Michael J. Pennino, Sujay S. Kaushal, Paul M. Mayer, Ryan M. Utz, and Curtis A. Cooper
Hydrol. Earth Syst. Sci., 20, 3419–3439, https://doi.org/10.5194/hess-20-3419-2016,https://doi.org/10.5194/hess-20-3419-2016, 2016
Short summary

Related subject area

Biogeochemistry: Stable Isotopes & Other Tracers
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829, https://doi.org/10.5194/bg-18-805-2021,https://doi.org/10.5194/bg-18-805-2021, 2021
Short summary
Silicon uptake and isotope fractionation dynamics by crop species
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020,https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020,https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653, https://doi.org/10.5194/bg-17-5639-2020,https://doi.org/10.5194/bg-17-5639-2020, 2020
Short summary
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020,https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary

Cited articles

4TU.Centre: Sources and Transformations of Anthropogenic Nitrogen along an Urban River-Estuarine Continuum, available at: http://doi.org/10.4121/uuid:e68c6141-f83e-4375-ac3b-088ddf4eff51, last access: 08 July 2016.
Aitkenhead-Peterson, J. A., Steele, M. K., Nahar, N., and Santhy, K.: Dissolved organic carbon and nitrogen in urban and rural watersheds of south-central Texas: land use and land management influences, Biogeochemistry, 96, 119–129, 2009.
Betlach, M. R. and Tiedje, J. M.: Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification, Appl. Environ. Microbiol., 42, 1074–1084, 1981.
Billen, G., Somville, M., De Becker, E., and Servais, P.: A nitrogen budget of the Scheldt hydrographical basin, Neth. J. Sea Res., 19, 223–230, 1985.
Boesch, D. F., Brinsfield, R. B., and Magnien, R. E.: Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture, J. Environ. Qual., 30, 303–320, 2001.
Download
Short summary
The results of this paper report the analysis of the fate and transport of wastewater and anthropogenic nitrogen along the Potomac River estuary, from Washington D.C. to the Chesapeake Bay. In conjunction with a mass balance approach, nitrate isotopes were used to estimate fluxes and trace the sources and transformations of N along the estuary. This study shows that estuaries have a large capacity to transform N inputs, but with large seasonal variability due to hydrological extremes.
Altmetrics
Final-revised paper
Preprint